
Numerical Analysis vs. Mathematics 

Modern mathematics often does not deal with the 
practical problems which face numerical analysis. 

R. W. Hamming 

The purpose of this paper is to 
illustrate by means of examples some 
differences between numerical analysis 
and mathematics. These differences may 
be loosely classified under the headings 
of taste, importance of processes, mis- 
leading models, and the effects of 
"noise," though some of the examples 
fall under several headings. 

One reason for pointing out these 
differences is that just as statistics some 
30 to 40 years ago was regarded as a 
dirty, inferior part of mathematics, so 
too at present numerical analysis is 
often thought to be an inferior part of 
mathematics, a part which should strive 
to improve itself by copying mathe- 
matics. And, just as statistics broke free 
and began to develop along its own 
natural lines, so too it is hoped that 
numerical analysis will soon follow its 
own natural growth. 

The reason for using examples is 
simply that neither mathematics nor 
numerical analysis is defined in any 
satisfactory manner, hence no direct 
proof of the differences can be given. 
I hope that the examples I use will be 
regarded as typical of many others and 
not as special isolated cases. 

Experience shows that many persons 
regard these examples as an attack on 
and a criticism of mathematics rather 
than what they are intended to be, 
merely illustrations of some differences 
between mathematics and numerical 
analysis. It should also be pointed out 
that just as there are still many mathe- 
maticians writing about mathematical 
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statistics, so also many mathematicians 
write about mathematical numerical 
analysis-it is not so much the subject 
matter that makes a field but rather it 
is the attitude toward the material that 
serves to define the field. 

Mathematical Taste 

Let us begin with "taste." Mathe- 
maticians (quite properly) attach much 
importance to elegance, deep results, 
important theorems, and so forth. 
However, mathematicians tend to iden- 
tify elegance with surprise, and hence 
to arrange their final presentation in a 
surprising manner rather than in a 
manner which would tend to reveal how 
it was found. As a result the poor 
student merely enjoys the elegant pre- 
sentation without finding out how to do 
mathematics. I am hopeful that numeri- 
cal analysis will not go down the path 
of elegance as opposed to clarity. 

As an illustration of this point, con- 
sider the widely cited result that \/2 
cannot be written as a fraction. It 
sounds somewhat deep and perhaps 
difficult to prove. But if I say, "The 
square of a fraction (in reduced form) 
cannot be an integer," you see almost 
immediately not only the isolated re- 
sult for -\/ but the general case, and 
furthermore you have no difficulty in 
making the trivial generalization to 
other integer powers. It is only by stat- 
ing the theorem backwards, as it were, 
that the surprise is obtained. 

As a second example of taste, mathe- 
maticians tend to put great emphasis 
on existence theorems whose purpose 
is to show that what they are talking 
about actually exists. Unfortunately, 

all too often the method of proof is 
non-constructive, so that the person 
who wishes to do something has no 
idea of how to find the solution that 
has been proved to exist. On the other 
hand in practical computing we often 
compute things when we have no exist- 
ence theorem to show they exist. 

As a third example of taste, suppose 
I announce that some triangles, though 
which ones I have no idea, have a 
certain property. Most mathematicians 
would quite justly look at me askance. 
But if in numerical analysis I give a 
method which often, though I do not 
always know when, produces a solu- 
tion to a difficult problem, then it is 
likely to be regarded as an important 
advance. 

Attention to Processes 

Let us turn to the second point, the 
importance of processes. On the sur- 
face of mathematics one sees great care 
in the statement of theorems and in 
the rigor of the proofs, but it is surpris- 
ing how sloppy has been the treatment 
of processes. You are surprised? Con- 
sider, then, the command given to 
generations of algebra students, "sim- 
plify the following:" What does 
"simplify" mean? Quite recently a 
definition for 9th grade students has 
been hammered out: the simplified re- 
sult should have only one division and 
no radicals in the denominator. In 
short, 

1 1 
\/a Vb 

is not simple, but 

V ab (Va + Vb) 
ab 

is the corresponding simplified form! 
It must be obvious without my pro- 

ducing more examples of this kind that 
there are probably many, as yet ap- 
parently unanalyzed, different mean- 
ings to the oft used word "simplify," 
and also that the different meanings 
probably have different domains of 
applicability. 

Let me pick another well-known re- 
sult, this time from the theory of 
equations. One way to solve a real 
quartic requires finding the roots of a 
resolvent cubic. The real quartic can 
always be factored into the real quad- 
ratics, but in the case of four complex 
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roots only one of the roots of the 
cubic will do this. Which one? Mathe- 
maticians apparently seldom care, nor 
perhaps should they, to answer this 
question, but to the numerical analyst 
it is of great importance if he is to 
use this method on a machine. 

More generally, when one attempts 
to put many of the well-known proc- 
esses of mathematics on a computing 
machine one finds that there is a great 
vagueness, and waving of hands, and 
occasional shouting of "Any fool 
knows!" and that in the long run a 
much more careful examination of the 
basic ideas and processes must be made 
before one can make much progress. I 
have been repeatedly shocked to find out 
how often I thought I knew what I was 
talking about; but that in the acid test of 
describing explicitly to a machine what 
was going on I was revealed to have 
been both ignorant and extremely 
superficial. It is this many-times-re- 
peated experience that has led me to 
assert that mathematics has often 
chosen to ignore the careful examina- 
tion and exposition of the methods it 
uses. 

Let me repeat, I am not saying that 
the mathematicians were wrong or su- 
perficial; I am documenting the point 
that the two fields have different goals 
and objects-mathematics has tended to 
be precise in its statements of results 
and in its rigor, while numerical analy- 
sis, and computing generally, tends to 
put great emphasis on the clear state- 
ment of the processes used. This em- 
phasis on methods used is receiving 
more attention in many fields of activ- 
ity, and thus, in some respects, the 
goals and objectives of computing are 
more in tune with the rest of our scien- 
tific culture than are those of traditional 
mathematics. 

Mathematics and the Real World 

In using the phrase "misleading 
models" it is difficult to avoid the accu- 
sation that it is I who am making the 
mistake rather than the mathematician 
who published the model. Yet I feel 
that I have the reasonable point that 
many of the most famous results in 
mathematics are regularly announced 
as if they were relevant to the real 
world. 

Let me give as a first example a 
widely advertised result in pure mathe- 
matics-the impossibility of trisecting 
an arbitrary angle with straightedge and 

474 

compass. The proof rests on the postu- 
late that a line is determined by two 
points. If this postulate is modified 
slightly so that a straightedge with two 
marks is allowed to define a straight 
line, then there are well-known con- 
structions which do trisect an arbi- 
trary angle. The amount of adjustment 
necessary in the case of the marked 
ruler is not significantly greater than 
that for the two points. Of course, 
trisection by repeated guessing is also 
very easy in practice. The theorem is 
simply an artifact of a small detail of 
a postulate. 

Let me cite another example of the 
irrelevance of some mathematical re- 
sults of practical applications. The 
Riemann integral exists for functions 
which are continuous except for, say, 
having 1078 discontinuities. Does any- 
one believe that the difference between 
the Lebesgue and Riemann integrals 
can have physical significance, that 
whether, say, an airplane would or 
would not fly could depend on this 
difference? If such were claimed I 
should not care to fly in that plane! 

Since I am apt to be misunderstood 
at this point let me clearly state: I am 
not commenting on mathematics, I am 
commenting on the relevance of much 
of mathematics to computing, and 
more broadly to the application of 
mathematics to the real world. I am 
attempting to document my thesis that 
the objectives, standards, and so on of 
mathematics are often not appropriate 
to computing and to many of the ap- 
plications of mathematics. I am also 
trying to show that the computing ex- 
pert needs to be wary of believing 
much that he learns in his mathematics 
courses; in a sense he must learn 
mathematics so well that he can de- 
fend himself against it. 

As another example of what I mean 
by "misleading models," there is in a 
readily available book a lovely treat- 
ment of the relative effectiveness of 
the rule of false position (or secant 
method) and of Newton's method (of 
fitting a tangent line). The treatment 
is based on the assumption that when 
a function at a point xl has been 
evaluated, as much computing labor is 
required to evaluate a derivative at x1 
as to evaluate the function at a new 
point x2. As anyone can see who looks 
at the kinds of functions generally oc- 
curring in numerical analysis, once the 
pieces of the function have been com- 
puted it is usually relatively easy to 
compute the derivative at the same 

point-the same radicals occur, and 
the same logs, exponentials, and trigo- 
nometric functions tend to occur in 
both. But when the author finally as- 
sembles the comparison of the two 
methods in one place there is abso- 
lutely no mention of the highly un- 
realistic hypothesis! As a result quite 
a few people, impressed by his mathe- 
matical rigor and elegance, have been 
led astray in their choice of a practical 
method. 

Generally speaking, in the early his- 
tory of mathematics long experience in 
the real world preceded both the ab- 
straction of the postulates and the 
formulation of the definitions of geom- 
etry, and subsequent experience has 
validated their general usefulness. Thus 
early mathematics tended to follow the 
classical test of science, the regular 
(though not exclusive) appeal to ob- 
servations in the real world. But it is 
difficult to imagine how by appeal to 
observations many of the postulates of 
current mathematics could either be 
verified or shown to be unsuitable, and 
one can only conclude that much of 
modern mathematics is not related to 
science but rather appears to be more 

closely related to the famous scholastic 
arguing of the Middle Ages. It is my 
belief that numerical analysis will be 
wise to follow the lead of the sciences, 
and that its usefulness, and hence its 
ultimate health, will probably be best 
served by regular, though certainly not 
exclusive, appeal to the world of 
experience. 

"Noise" 

The last point to be considered is 
the effects of "noise," that is, small un- 
certainties in the initial data, in the 
model, or in the processes used. In a 
sense the trisection of an angle with 
ruler and compass is an example of 
large effects due to small changes in 
the assumptions. It should be obvious 
that in practical situations only 
"noise-resistant" mathematics (statisti- 
cians say "robust") can be used, and 
the rest of mathematics should be 
classed as "art forms" of pure mathe- 
matics. 

Let me start with the fundamental 
theorem of algebra as an example. In 
some respects the main point of the 
theorem is that the functions 1, x, x2, 
. . . xn are linearly independent in 

any interval-otherwise a linear com- 
bination would be identically zero in 
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the interval. To fix ideas let us take 
the interval (-1 ` x I 1). Now, 
almost all computing done on a com- 
puting machine is to a fixed number of 
places, and as a result there is round- 
off and what is sometimes called "a 
roundoff noise level." In principle the 
roundoff errors are perfectly deter- 
minate, but it is convenient to regard 
them as random. Suppose this "noise 
level" is of size 10-6. Then, as Cheby- 
shev proved long ago, there exists a 
polynomial which starts out with x21 
(having unit coefficient) and which is 
less in absolute value than 10-6 in the 
whole interval. What then do we mean 
when we assert that 1, x, x2, . . . x21 
are linearly independent in the interval 
(-1 - x c 1)? We cannot distinguish 
the values of the polynomial from zero. 
A polynomial of degree 21 having the 
leading coefficient equal to 1 can be 
changed to a polynomial of degree 20 
and we cannot hope to detect the dif- 
ference! 

It is a simple matter to convert this 
special case to any interval and any 
noise level-given them, it is easy to 
determine the lowest-degree poly- 
nomial with the leading coefficient 1 
such that the polynomial is always less 
than the given noise level in the given 
interval. Thus the Chebyshev poly- 
nomials measure, in a sense, the break- 
down in practice of the fundamental 
theorem of algebra. Thus, we see that 
in numerical analysis we cannot glibly 
invoke this theorem without digging 
much deeper and asking if it is rele- 
vant and appropriate to the given situa- 
tion. The mathematical theorem as- 
serts that x1000 and x1002 are linearly 
independent in any interval no matter 
how small, but in practice how impos- 
sible it may be to detect! 

Again, a mathematician may prove 
that some iterative scheme converges, 
but unfortunately on a computing 

machine we may come down to a loop 
where a produces b and b produces a 
on successive iterations. How big shall 
we make this "circle of confusion?" 
Much depends on the development of 
roundoff in the loop, and much on the 
mathematical structure of the loop 
itself, and these are not easily analyzed 
in advance. 

Let me generalize from these isolated 
examples and assert that much of 
mathematics has been concerned with 
ideal "noise-free" concepts, and that in 
the practical applications of mathema- 
tics only those theorems and results 
which are "noise-resistant" can be of 
much use. 

Numerical analysis is dominated by 
the simple fact that our machines have 
a finite number length, be it single, 
double, or triple precision, and that 
almost all the numbers and processes 
we use will involve "roundoff noise." 
Lest you regard this as a defect let me 
point out that in quantum mechanics 
there is the famous Bohr correspond- 
ence principle which in a sloppy form 
states that, as the quantum size goes to 
zero, quantum mechanics must pass 
over to classical mechanics. Similarly, 
there is the obvious principle that as 
the roundoff noise level approaches 
zero the results of numerical analysis 
must pass over to classical analysis. 
And just as quantum mechanics is far 
richer in effects than is classical 
mechanics, so too is numerical analysis 
far richer than classical analysis. It 
only requires the courage to exploit 
and develop these new effects. 

It is not easy to propose a simple 
program for modifying mathematics to 
fit the needs of people in numerical 
analysis. So many of the basic ideas 
are not appropriate. For example it 
is customary in mathematics to say 
that if A = B, B = C, C D . . . 
Y = Z then A = Z; the idea that 

equivalence is indefinitely transitive 
simply breaks down in many practical 
applications of mathematics. 

Again, the real number system of 
mathematics has many properties 
which are not mirrored in reality. For 
example the "real numbers in a com- 
puter" are finite in number, have about 
as many numbers between 0 and 1 as 
there are above 1 (in a floating point 
machine), and are not, obviously, 
equally spaced. 

Summary 

I hope I have shown not that mathe- 
maticians are incompetent or wrong, 
but why I believe that their interests, 
tastes, and objectives are frequently 
different from those of practicing nu- 
merical analysts, and why activity in 
numerical analysis should be evaluated 
by its own standards and not by those 
of pure mathematics. I hope I have 
also shown you that much of the "art 
form" of mathematics consists of deli- 
cate, "noise-free" results, while many 
areas of applied mathematics, especially 
numerical analysis, are dominated by 
noise. Again, in computing the process 
is fundamental, and rigorous mathe- 
matical proofs are often meaningless in 
computing situations. Finally, in 
numerical analysis, as in engineering, 
choosing the right model is more im- 
portant than choosing the model with 
the elegant mathematics. 

I believe that it is important to make 
these distinctions, not only for numeri- 
cal analysis, but also because they are 
important for the debate on what kinds 
of mathematics should not be taught; 
also because the failure to do so has, 
on occasion, caused government money 
appropriated for numerical analysis 
to be diverted to the art form of pure 
mathematics. 
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