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Events, Laws of Nature, ai 
Invariance Principl 

Eugene P. Wig 

It is a great and unexpected honor 
to have the opportunity to speak here 
today. Six years ago, Yang and Lee 
spoke here, reviewing symmetry prin- 
ciples in general and their discovery 
of the violation of the parity principle 
in particular (1). There is little point 
in repeating what they said on the his- 
tory of the invariance principles, or 
on my own contribution to these, which 
they, naturally, exaggerated. What I 
would like to discuss instead is the gen- 
eral role of symmetry and invariance 
principles in physics, both modern and 
classical. More precisely, I would like 
to discuss the relation between three 
categories which play a fundamental 
role in all natural sciences: events, 
which are the raw materials for the sec- 
ond category, the laws of nature, and 
symmetry principles, for which I would 
like to support the thesis that the laws 
of nature form the raw material. 

Events and Laws of Nature 

It is often said that the objective of 
physics is the explanation of nature, or 
at least of inanimate nature. What do 
we mean by explanation? It is the 
establishment of a few simple principles 
which describe the properties of what 
is to be explained. If we understand 
something, its behavior-that is, the 
events which it presents-should not 
produce any surprises for us. We 
should always have the impression that 
it could not be otherwise. 
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It is clear that, in thi 
does not endeavor to 
In fact, the great succe 
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it can be specified at all: if a further 
specification were possible, this specifi- 
cation would be considered as an added 
initial condition. As is well known, be- 
fore the advent of quantum theory it 

nrd was believed that a complete descrip- 
tion of the behavior of an object is 

es possible so that, if classical theory were 
valid, the initial conditions and the laws 
of nature together would completely 
determine the behavior of an object. 

mner The preceding statement is a defini- 
tion of the term "initial condition." 
Because of its somewhat unusual na- 
ture, it may be worthwhile to illustrate 

is sense, physics this on an example. Suppose we did 

explain nature. not know Newton's equation for the 
ss of physics is motion of stars and planets 

due to a restriction of its objectives: it 
only endeavors to explain the regular- 
ities in the behavior of objects. This 
renunciation of the broader aim, and 
the specification of the domain for 
which an explanation can be sought, 
now appears to us an obvious neces- 
sity. In fact, the specification of the 
explainable may have been the greatest 
discovery of physics so far. It does 
not seem easy to find its inventor, or 
to give the exact date of its origin. 
Kepler still tried to find exact rules for 
the magnitude of the planetary orbits, 
similar to his laws of planetary motion. 
Newton already realized that physics 
would deal, for a long time, only with 
the explanation of those of the regu- 
larities discovered by Kepler which we 
now call Kepler's laws (2). 

The regularities in the phenomena 
which physical science endeavors to 
uncover are called the laws of nature. 
The name is actually very appropriate. 
Just as legal laws regulate actions and 
behavior under certain conditions but 
do not try to regulate all actions and 
behavior, the laws of physics also de- 
termine the behavior of its objects of 
interest only under certain well-defined 
conditions but leave much freedom 
otherwise. The elements of the behav- 
ior which are not specified by the laws 
of nature are called initial conditions. 
These, then, together with the laws of 
nature, specify the behavior as far as 

ri - G ' M ri 
r.i j 

but had found only the equation deter- 
mining the third derivative of the po- 
sition 

r, =G _,' Mj X 

rij(ri . rtj)- 3rij(rij r) j) (2) 

More generally, if the forces Fi are 
nongravitational, one would have written 

Miri - (ri grad) F + Fi. (2a) 

The initial conditions then would con- 
tain not only all the ri and ii, but also 
the 'ir. These data, together with the 
"equation of motion" (Eq. 2), would 
then determine the future behavior of 
the system just as ri, ri and Eq. 1 de- 
termine it. The fact that initial condi- 
tions and laws of nature completely 
determine the behavior is similarly 
true in any causal theory. 

The surprising discovery of Newton's 
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age is just the clear separation of laws 
of nature on the one hand and initial 
conditions on the other. The former 
are precise beyond anything reasonable; 
we know virtually nothing about the 
latter. Let us pause for a minute at this 
last statement. Are there really no 
regularities concerning what we just 
called initial conditions? 

The last statement would certainly 
not be true if the laws of nature Eqs. 2 
and 2a were adopted, that is, if we 
considered the ri as part of the initial 
conditions. In this case, there would be 
a relation, in fact the precise relation 
of Eq. 1, between the elements of the 
initial conditions. The question, there- 
fore, can be only: are there any rela- 
tions between what we really do con- 
sider as initial conditions? Formulated 
in a more constructive way: how can 
we ascertain that we know all the laws 
of nature relevant to a set of phenom- 
ena? If we do not, we would deter- 
mine unnecessarily many initial condi- 
tions in order to specify the behavior 
of the object. One way to ascertain this 
would be to prove that all the initial 
conditions can be chosen arbitrarily-a 
procedure which is, however, impossi- 
ble in the domain of the very large (we 
cannot change the orbits of the plan- 
ets) or the very small (we cannot 
precisely control atomic particles). No 
other equally unambiguous criterion is 
known to me, but there is a distinguish- 
ing property of the correctly chosen- 
that is, minimal-set of initial condi- 
tions which is worth mentioning. 

The minimal set of initial conditions 
not only does not permit any exact 
relation between its elements; on the 
contrary, there is reason to contend 
that these are, or at some time have 
been, as random as the externally im- 
posed, gross constraints allow. I wish 
to illustrate this point first on an exam- 
ple which, at first, seems to contradict 
it because this example shows its power, 
and also its weakness, best. 

Let us consider for this purpose again 
our planetary system. It was mentioned 
before that the approximate regularities 
in the initial conditions, that is, the 
determinants of the orbits, led Kepler 
to the considerations which were then 
left by the wayside by Newton. These 
regularities form the apparent counter- 
example to the aforementioned thesis. 
However, the existence of the regulari- 
ties in the initial conditions is consid- 
ered so unsatisfactory that it is felt 
necessary to show that the regularities 
are but a consequence of a situation in 
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which there were no regularities. Per- 
haps von Weizsaicker's attempt in this 
direction (3) is most interesting: he 
assumes that originally the solar system 
consisted of a central star, with a gas 
in rotation, but otherwise in random 
motion, around it. He then deduces 
the aforementioned regularities of the 
planetary system, now called Bode's 
law, from his assumption. More gen- 
erally, one tries to deduce almost all 
"organized motion," even the existence 
of life, in a similar fashion. It must be 
admitted that few of these explanations 
have been carried out in detail (4), but 
the fact that such explanations are at- 
tempted remains significant. 

The preceding paragraph dealt with 
cases in which there is at least an ap- 
parent evidence against the random 
nature of the uncontrolled initial con- 
ditions. It attempted to show that the 
apparently organized nature of these 
initial conditions was preceded by a 
state in which the uncontrolled initial 
conditions were random. These are, on 
the whole, exceptional situations. In 
most cases, there is no reason to ques- 
tion the random nature of the noncon- 
trolled, or nonspecified, initial condi- 
tions, and the random nature of these 
initial conditions is supported by the 
validity of the conclusions arrived at 
on the basis of the assumption of ran- 
domness. One encounters such situa- 
tions in the kinetic theory of gases and, 
more generally, whenever one describes 
processes in which the entropy in- 
creases. Altogether, then, one obtains 
the impression that whereas the laws 
of nature codify beautifully simple reg- 
ularities, the initial conditions exhibit, 
as far as they are not controlled, equally 
simple and beautiful irregularity. Hence 
there is perhaps little chance that some 
of the former remain overlooked. 

The preceding discussion character- 
ized the laws of nature as regularities 
in the behavior of an object. In quan- 
tum theory, this is natural: the laws of 
quantum mechanics can be suitably for- 
mulated as correlations between sub- 
sequent observations on an object. 
These correlations are the regularities 
given by the laws of quantum me- 
chanics (5). The statements of classi- 
cal theory, its equations of motion, are 
not customarily viewed as correlations 
between observations. It is true, how- 
ever, that their purpose and function is 
to furnish such correlations and that 
they are, in essence, nothing but a 
shorthand expression for such correla- 
tions. 

Laws of Nature and Invariance 

We have ceased to expect from phys- 
ics an explanation of all events, even 
of the gross structure of the universe, 
and we aim only at the discovery of the 
laws of nature, that is, the regularities 
of the events. The preceding section 
gives reason for the hope that the regu- 
larities form a sharply defined set and 
are clearly separable from what we call 
initial conditions, in which there is 
a strong element of randomness. How- 
ever, we are far from having found 
that set. In fact, if it is true that there 
are precise regularities, we have reason 
to believe that we know only an infini- 
tesimal fraction of these. The best 
evidence for this statement derives per- 
haps from a fact which was mentioned 
here by Yang 6 years ago: the multi- 
plicity of the types of interactions. 
Yang mentioned four of them-gravita- 
tional, weak, electromagnetic, and 
strong, and it now seems that there are 
two types of strong interactions. All 
these play a role in every process, but 
it is hard, if not impossible, to believe 
that the laws of nature should have 
such complexity as implied by four or 
five different types of interactions be- 
tween which no connection, no analogy, 
can be discovered. 

It is natural, therefore, to ask for a 
superprinciple which is in a similar 
relation to the laws of nature as these 
are to the events. The laws of nature 
permit us to foresee events on the basis 
of the knowledge of other events; the 
principles of invariance should permit 
us to establish new correlations between 
events, on the basis of the knowledge 
of established correlations between 
events. This is exactly what they do. 
If it is established that the existence of 
the events A, B, C, . . . necessarily en- 
tails the occurrence of X, then the oc- 
currence of the events A', B', C', . . . 
also necessarily entails X', if A', B', C', 
. . . and X' are obtained from A, B, C, 
. . and X by one of the invariance 
transformations. There are three cate- 
gories of such invariance transforma- 
tions: 

a) Euclidean transformations: the 
primed events occur at a different loca- 
tion in space, but in the same relation 
to each other, as the unprimed events. 

b) Time displacements: the primed 
events occur at a different time, but 
separated by the same time intervals 
from each other as the unprimed ones. 

c) Uniform motion: the primed 
events appear to be the same as the 
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unprimed events from the point of view 
of a uniformly moving coordinate sys- 
tem. 

The first two categories of invariance 
principles were always taken for 
granted. In fact, it may be argued that 
laws of nature could not have been 
recognized if they did not satisfy some 
elementary invariance principles such 
as those of categories a and b-if they 
changed from place to place, or if 
they were also different at different 
times. The principle c is not so natural. 
In fact, it has often been questioned, 
and it was an accomplishment of ex- 
traordinary magnitude on the part of 
Einstein to have reestablished it in his 
special theory of relativity. However, 
before discussing this point further, it 
may be useful to make a few general 
remarks. 

The first remarkable characteristic 
of the invariance principles which were 
enumerated is that they are all geo- 
metric, at least if four-dimensional 
space-time is the underlying geometri- 
cal space. By this I mean that the in- 
variance transformations do not change 
the events; they only change their loca- 
tion in space and time and their state 
of motion. One could easily imagine a 
principle in which, let us say, protons 
are replaced by electrons and vice 
versa, velocities by positions, and so 
on (6). 

The second remarkable character- 
istic of the preceding principles is that 
they are invariance rather than covari- 
ance principles. This means that they 
postulate the same conclusion for the 
primed premises as for the unprimed 
premises. It is quite conceivable that, 
if certain events A, B, . . . take place, 
the events Xi, X2, XS . . . will follow 
with certain probabilities pi, p2, p . . . . 
From the transformed events A', B', C', 
the transformed consequences X1', X2', 
X3, . . . could follow with changed 
probabilities such as 

pl = ( p, 1 + p.n2), 
P2' =p2(1 -P2 + p2), 

but this is not the case; we always had 
pi, = pi. 

These two points are specifically 
mentioned because there are symmetry 
principles, the so-called crossing rela- 
tions (7), which may be precisely valid 
and which surely do not depend on 
specific types of interactions. In these 
regards they are, or may be, similar 
to the geometric invariance principles. 
They differ from these because they do 
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change the events and they are covari- 
ance rather than invariance principles. 
Thus, from a full knowledge of the 
cross section for neutron-proton scatter- 
ing, they permit one to obtain some of 
the neutron-antiproton collision cross 
sections. The former events are surely 
different from the neutron-antiproton 
collisions, and the cross sections for 
the latter are not equal to the neutron- 
proton cross sections but are obtained 
from these by a rather complicated 
mathematical procedure. Hence, the 
crossing relations, even though they do 
not depend on a specific type of inter- 
action, are not considered to be geo- 
metrical symmetry conditions, and they 
will not be considered here. Similarly, 
we shall not be concerned with the 
dynamic symmetry principles which are 
symmetries of specific interactions, such 
as electromagnetic interactions or strong 
interactions, and are not formulated in 
terms of events (7). 

As to the geometrical principles, it 
should be noted that they depend on 
the dividing line between initial condi- 
tions and laws of nature. Thus, the 
law of nature Eq. 2 or 2a, obtained 
from Newton's principle by differentia- 
tion with respect to time, is invariant 
also under the transformation to a uni- 
formly accelerated coordinate system 

ri' = r + ta t' = t (3) 

where a is an arbitrary vector. Natu- 
rally, this added principle can have no 
physical consequence because, if the 
initial conditions ri, ir, ri are realizable 
(that is, satisfy Eq. 1), the transformed 
initial conditions ri' = ri, ri' ri, ri 
=i + 2a cannot be realizable. 

The symmetry principles of the pre- 
ceding discussion are those of New- 
tonian mechanics or the special theory 
of relativity. One may well wonder 
why the much more general, and ap- 
parently geometrical, principles of in- 
variance of the general theory have not 
been discussed. The reason is that I 
believe, in conformity with the views 
expressed by V. Fock (8), that the 
curvilinear coordinate transformations 
of the general theory of relativity are 
not invariance transformations in the 
sense considered here. These were so- 
called active transformations, replacing 
events A, B, C, . . . by events A', B', 
C', . . . and unless active transforma- 
tions are possible, there is no physically 
meaningful invariance. However, the 
mere replacement of one curvilinear 
coordinate system by another is a "rede- 
scription" in the sense of Melvin (9); 

it does not change the events and does 
not represent a structure in the laws 
of nature. This does not mean that 
the transformations of the general the- 
ory of relativity are not useful tools 
for finding the correct laws of gravita- 
tion; they evidently are. However, as 
I suggested elsewhere (7), the princi- 
ple which they serve to formulate is 
different from the geometrical invari- 
ance principles considered here; it is a 
dynamical invariance principle. 

The Use of Invariance Principles, 

Approximate Invariances 

The preceding two sections empha- 
sized the inherent nature of the invari- 
ance principles as being rigorous cor- 
relations between those correlations 
between events which are postulated by 
the laws of nature. This at once points 
to the use of the set of invariance prin- 
ciples which is surely most important 
at present: to be touchstones for the 
validity of possible laws of nature. A 
law of nature can be accepted as valid 
only if the correlations which it postu- 
lates are consistent with the accepted 
invariance principles. 

Incidentally, Einstein's original arti- 
cle which led to his formulation of the 
special theory of relativity illustrates 
the preceding point with greatest clar- 
ity (10). He points out in this article 
that the correlations between events are 
the same in coordinate systems in uni- 
form motion with respect to each other, 
even though the causes attributed to 
these correlations at that time did de- 
pend on the state of motion of the co- 
ordinate system. Similarly, Einstein 
made the most extensive use of invari- 
ance principles to guess the correct 
form of a law of nature, in this case 
that of the gravitational law, by postu- 
lating that this law conforms with the 
invariance principles which he postu- 
lated (11). Equally remarkable is the 
present application of invariance prin- 
ciples in quantum electrodynamics. 
This is not a consistent theory-in fact, 
not a theory in the proper sense be- 
cause its equations are in contradiction 
to each other. However, these contra- 
dictions can be resolved with reason- 
able uniqueness by postulating that the 
conclusions conform to the theory of 
relativity (12). Another approach, even 
more fundamental, tries to axiomatize 
quantum field theories, the invariance 
principles forming the cornerstone of 
the axioms (13). I will not further en- 
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large on this question because it has 
been discussed often and eloquently. 
In fact, I myself spoke about it but a 
short time ago (7). 

To be touchstones for the laws of 
nature is probably the most important 
function of invariance principles. It is 
not the only one. In many cases, con- 
sequences of the laws of nature can be 
derived from the character of the math- 
ematical framework of the theory, to- 
gether with the postulate that the laws 
-the exact form of which need not 
be known-conform with invariance 
principles. The best known example is 
the derivation of the conservation laws 
for linear and angular momentum, and 
for energy, and the motion of the cen- 
ter of mass, either on the basis of the 
Lagrangian framework of classical me- 
chanics or the Hilbert space of quantum 
mechanics, by means of the geometrical 
invariance principles enumerated be- 
fore (14). Incidentally, conservation 
laws furnish at present the only gen- 
erally valid correlations between ob- 
servations with which we are familiar; 
for those which derive from the geo- 
metrical principles of invariance it is 
clear that their validity transcends that 
of any special theory-gravitational, 
electromagnetic, and so forth-which 
are only loosely connected in present- 
day physics. Again, the connection be- 
tween invariance principles and con- 
servation laws-which in this context 
always include the law of the motion 
of the center of mass-has been dis- 
cussed in the literature frequently and 

adequately. 
In quantum theory, invariance prin- 

ciples permit even further-reaching con- 
clusions than in classical mechanics and, 
as a matter of fact, my original inter- 
est in invariance principles was due to 
this very fact. The reason for the in- 
creased effectiveness of invariance prin- 
ciples in quantum theory is due, es- 

sentially, to the linear nature of the 
underlying Hilbert space (15). As a 

result, from any two state vectors, f, 
and V2, an infinity of new state vectors 

.= a1 l + a2 b2 (4) 

can be formed, ai and a2 being arbi- 
trary numbers. Similarly, several, even 
infinitely many, states can be superim- 
posed with largely arbitrary coefficients. 
This possibility of superposing states is 

by no means natural physically. In 

particular, even if we know how to 
bring a system into the states bi, and b2, 

we cannot give a prescription how to 

bring it into a superposition of these 
states. This prescription would have to 

998 

depend, naturally, on the coefficients 
with which the two states are super- 
imposed and is simply unknown. Hence, 
the superposition principle is strictly an 
existence postulate-but a very effec- 
tive and useful existence postulate. 

To illustrate this point, let us note 
that in classical theory, if a state, such 
as a planetary orbit, is given, another 
state, that is another orbit, can be pro- 
duced by rotating the initial orbit 
around the center of attraction. This 
is interesting but has no very surprising 
consequences. In quantum theory the 
same is true. In addition, however, the 
states obtained from a given one by 
rotation can be superimposed as a re- 
sult of the aforementioned principle. 
If the rotations to which the original 
state was subjected are uniformly dis- 
tributed over all directions, and if the 
states so resulting are superimposed 
with equal coefficients, the resulting 
state has necessarily spherical symme- 
try. This construction of a spherically 
symmetric state could fail only if the 
superposition resulted in the null-vector 
of Hilbert space, in which case one 
would not obtain any state. In such 
a case, however, other coefficients 
could be chosen for the superposition- 
in the plane case, the coefficients einm, 
where p is the angle of rotation of the 
original state-and the resulting state, 
though not spherically symmetric, or 
in the plane case axially symmetric, 
would still exhibit simple properties 
with respect to rotation. This possi- 
bility, the construction of states which 
have either full rotational symmetry 
or at least some simple behavior with 
respect to rotations, is the one which 
is fundamentally new in quantum the- 
ory. It is also conceptually satisfying 
that simple systems, such as atoms, 
have states of high symmetry. 

The superposition principle also per- 
mits the exploitation of reflection sym- 
metry. In classical mechanics as well 
as in quantum mechanics, if a state is 

possible, the mirror image of that state 
is also possible. However, in classical 
theory no significant conclusion can be 
drawn from this fact. In quantum the- 

ory, original-state and mirror image 
can be superimposed, with equal or 

oppositely equal coefficients. In the 
first case the resulting state is symme- 
tric with respect to reflection, in the 
second case antisymmetric. The great 
accomplishment of Lee and Yang, 
which was mentioned earlier (1), was 

just a very surprising reinterpretation 
of the physical nature of one of the 
reflection operations, that of space re- 

flection, with the additional proof that 
the old interpretation cannot be valid. 
The consideration of "time inversion" 
requires rather special care because the 
corresponding operator is antiunitary. 
Theoretically, it does lead to a new 
quantum number and a classification of 
particles (16) which, however, has not 
been applied in practice. 

My discussion would be far from 
complete without some reference to 
approximate invariance relations. Like 
all approximate relations, these may be 
very accurate under certain conditions 
but fail significantly in others. The 
critical conditions may apply to the 
state of the object, or may specify a 
type of phenomenon. The most impor- 
tant example for the first case is that 
of low relative velocities. In this case, 
the magnetic fields are weak, and the 
direction of the spins does not influence 
the behavior of the other coordinates. 
One is led to the Russell-Saunders cou- 
pling of spectroscopy (17). Even more 
interesting should be the case of very 
high velocities in which the magnitude 
of the rest mass becomes unimportant. 
Unfortunately, this case has not been 
discussed in full detail, even though 
there are promising beginnings (18). 

Perhaps the most important case of 
special phenomena in which there are 
more invariance transformations than 
enumerated before is rather general: it 
comprises all phenomena, such as colli- 
sions between atoms, molecules, and 

nuclei, in which the weak interaction, 
which is responsible for beta decay, 
does not play a role. In all these cases, 
the parity operation is a valid invari- 
ance operation. This applies also in 
ordinary spectroscopy. 

In another interesting special type of 
phenomenon the electromagnetic inter- 
action also plays a subordinate role 
only. This renders the electric charge 
on the particles insignificant, and the 
interchange of proton and neutron, or 
more generally of the members of an 

isotopic spin multiplet, becomes an in- 
variance operation. These, and the 
other special cases of increased sym- 
metry, lead to highly interesting ques- 
tions which are, furthermore, at the 
center of interest at present. However, 
the subject has too many ramifications 
to be discussed in detail at this occa- 
sion. 
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There are essentially two ways in 
which physicists at present seek to ob- 
tain a consistent picture of the atomic 
nucleus. The first, the basic approach, 
is to study the elementary particles, 
their properties and mutual interaction. 
Thus one hopes to obtain a knowledge 
of the nuclear forces. 

If the forces are known, one should 
in principle be able to calculate deduc- 
tively the properties of individual com- 
plex nuclei. Only after this has been 
accomplished can one say that one com- 
pletely understands nuclear structures. 

Considerable progress in this direc- 
tion has been made in the last few years. 
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The work by Brueckner (1), Bethe 
(2), and others has developed ways of 
handling the many-body problem. But 
our knowledge of the nuclear forces is 
still far from complete. 

The other approach is that of the 
experimentalist and consists in obtain- 
ing by direct experimentation as many 
data as possible for individual nuclei. 
One hopes in this way to find regular- 
ities and correlations which give a clue 
to the structure of the nucleus. There 
are many nuclear models, but I shall 
speak only of one and leave the others 
to the next lecture, by Professor Jensen. 

The shell model, although proposed 
by theoreticians, really corresponds to 
the experimentalist's approach. It was 
born from a thorough study of the ex- 
perimental data, plotting them in differ- 
ent ways and looking for interconnec- 
tions. This was done on both sides of 
the Atlantic Ocean, and on both sides 
one found that the data show a remark- 
able pattern. This pattern emerges if 
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Magic Numbers 

One of the main nuclear features 
which led to the development of the 
shell structure is the existence of what 
are usually called the magic numbers. 
That such numbers exist was first re- 
marked by Elsasser in 1933 (3). What 
makes a number magic is that a con- 
figuration of a magic number of neu- 
trons, or of protons, is unusually stable 
whatever the associated number of the 
other nucleons. When Teller and I 
worked on a papei' on the origin of 
elements, we stumbled over the magic 
numbers. We found that there were a 
few nuclei which had a greater isotopic 
as well as cosmic abundance than our 
theory or any other reasonable contin- 
uum theory could possibly explain. 
Then we found that those nuclei had 
something in common: they had either 
82 neutrons, whatever the associated 
proton numbers, or 50 neutrons. Eighty- 
two and fifty are "magic" numbers. 
That nuclei of this type are unusually 
abundant indicates that the excess sta- 
bility must have played a part in the 
process of the creation of elements. 

We then read Elsasser's papers writ- 
ten in 1933. In the year 1948 much 
more was known about properties of 
nuclei than was available to Elsasser. 
The magic numbers not only stood up 
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