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It is notoriously difficult to convey 
a proper impression of the frontiers 
of mathematics to nonspecialists. Ul- 
timately the difficulty stems from the 
fact that mathematics is an easier sub- 
ject than the other sciences. Conse- 
quently, many of the important pri- 
mary problems of the subject-that is, 
problems which can be understood by 
an intelligent outsider-have either 
been solved or carried to a point 
where an indirect approach is clearly 
required. The great bulk of pure mathe- 
matical research is concerned with sec- 
ondary, tertiary, or higher-order prob- 
lems, the very statement of which 
can hardly be understood until one 
has mastered a great deal of technical 
mathematics. 

Pure mathematics deals entirely with 
abstractions. Contrary to popular im- 
pression, abstractions are not vague; 
they can be defined with far greater 
precision than anything in the real 
world; consequently, they can support 
very long chains of logical reasoning. 
Imagine a biologist who painstakingly 
studies the digestive process of an 
amoeba. Suppose, after understanding 
this to his satisfaction, he retires to 
his armchair and extrapolates his re- 
sults through successive levels of the 

animal kingdom ane 
a theory of the dil 
man. It would be abs 
his theory would ha 
relation to the obse 
man digestion. Yet 
regularly does sometl 
to this. He applies in 
contexts theories wh 
in very simple ones, 
expects, he finds, th 
valid, not merely tn 
tail. 

When a mathemati 
lem he cannot solv 
scientist he tries to s 
related problem whi 
tain only part of the 
original. But the n 
far more alternative 
simpler problem tha 
or biologist. Other 
stricted by nature, w 
matician is restrictec 
coherence and some 
siderations of taste. 
greater freedom, m 
lems evolve more r 
the end product seen 
origins. Yet most 
matics today is concer 
that have grown na 
mary questions of 
many of which haN 
value. Once one dex 
pure mathematics he 
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sue his favorite problems without seri- 
ous concern for their origins. In fact, 
it is almost necessary to do so, because 
no one can keep up with all of mathe- 
matics today. 

f an This is all very well for the special- 
ist, but to present these problems to 

.IorVy the outside world with no description 
of how they are related to the broad- 
er field is a disservice to mathematics. 

iS; itS A person may read, for example, that 
is, its topology is the study of "rubber-sheet- 
zulus. geometry"-that is, of properties of 

geometrical figures which withstand 
stretching. Later he reads that a signifi- 

leason cant theorem of topology has the con- 
sequence that at any given moment 
there are two points on the surface 
of the earth which are precise anti- 

d comes up with podes and which enjoy the same baro- 
gestive process in metric pressure and the same tempera- 
surd to expect that ture. If he now decides that topology 
ive any particular is a hopelessly frivolous subject, I can- 
rved facts of hu- not blame him. 
the mathematician I should like to give you a brief 
hing rather similar look at one of the most famous prob- 
i very complicated lems of mathematics, the n-body prob- 
lich were derived lem, to sketch how some important 

and he not only questions of topology are related to it, 
at the results are and finally to tell you about two im- 
outline but in de- portant recent discoveries in topology 

whose significance is only beginning to 
ician meets a prob- be appreciated. 
e, like any other 
solve instead some 
ch seems to con- Differential Equations 

difficulties of the 
nathematician has To begin with we must understand 
-s in choosing a something of differential equations. 
n does a chemist Suppose the Cleveland police depart- 
scientists are re- ment erected a sign at each street cor- 

ihereas the mathe- ner in the city which specified that 
d only by logical any car arriving at that corner leave 
:what vague con- along a definite street, no U-turns be- 

Because of this ing permitted. A definite path would 
athematical prob- thereby be determined for every car. 
apidly, and often If we knew the traffic directions ex- 
ns unrelated to its plicitly, we could compute the path of 
of pure mathe- any car, given its starting point. 

rned with problems An ordinary differential equation 
iturally from pri- presents an analogous problem involv- 
obvious interest, ing a continuous system of traffic in- 

ve great practical structions. It specifies a direction at 
velops a taste for each point of the plane. Imagine a 
, is likely to pur- small object moving in the plane and 
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always obeying these traffic directions. 
It will follow a curve in the plane 
which has the prescribed direction at 
each of its points. Such a curve is 
called an integral curve of the differen- 
tial equation. If the instructions are too 
hodge-podge, it may be impossible to 
follow them; however, if we assume 
that the directions specified at nearby 
points are nearly parallel, we can prove 

that there is a 
through each p 
we imagine all 
the plane, then t] 
with curves. In 
will look rather 
in large regions 
diverge sharply 
solve a different 
find the integral 

\ 
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I / 
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/ 
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Fig. 1. A first-order ordinary differential equation in one vari; 
each point of the plane, find curves which are at each point t 
segments. 

unique integral curve A helpful way to think of a dif- 
oint of the plane. If ferential equation involves the intui- 
such curves drawn in tive notion of infinitesimal segments. 
he plane will be paved The direction at each point may be 
every small area they specified by an arbitrarily short line 
like parallel lines, but segment through the point (Fig. 1), 
different curves may and we may think of these segments 

from one another. To as "infinitely short." These infinitesi- 
ial equation means to mal segments are equally infinitesimal 

curves explicitly. segments of the desired curves (Fig. 
2), since a curved line looks straight 
when viewed under sufficient magnifi- 

/ / cation. Thus, the differential equation 
may be regarded as giving the desired 

/! / curves fragmented into infinitesimal 

/ J pieces. The process of reassembling 
/^~/ ~ these pieces into whole curves is called 

f </ d integration. 

.// Returning to the cars moving in the 
' streets let us suppose that at each 

// / r street corner, in addition to a direction, 
a definite speed is prescribed. Then we 

.~~ -^^ can not only deduce the path followed 
by a car, we can also find the exact 
time required to cover each section of 
the path. 

~-- *-*? Correspondingly, in the continuous 
case we can specify at each point of 
the plane not only a direction but also 

--~ 
^~ 

a speed. This leads to a new kind of 
differential equation, in which we as- 
sign an arrow at each point of the 
plane (Fig. 3); the direction of the 
arrow tells us the direction in which an 
object should move, and the length of 

able. iven irections at the arrow tells us the speed. An ob- able. Given directions at 
angent to the given line ject which moves in accordance with 

these prescriptions must now not only 
follow a definite curve in the plane, 
it must traverse each section of the 
curve in a definite time. To solve this 
differential equation we must integrate 
once to find the paths or integral 
curves, and then integrate again to find 
the exact times of flight along the 
paths. 

Fig. 2. Solution of the differential equation of Fig. 1. The plane is covered with curves 
having the desired direction at each point. 
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Generalization to Space 

We can, of course, generalize this 
idea to space. A differential equation 
is the assignment of an arrow at each 
point of space. An integral curve of 
the differential equation is a curve 
which is tangent at each of its points 
to the arrow prescribed at that point. 
If the prescribed arrows do not vary 
too rapidly from point to point, either 
in length or in direction, there will 
be a unique integral curve through each 
point of space and there will be a 

unique motion along each integral 
curve which conforms to the pre- 
scribed speeds. To solve the differen- 
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tial equation means to find specifi- 
cally the integral curves and the times 
of flight along them. 

Take some curve in space, not an 
integral curve. The various integral 
curves emanating from this curve will 
form a surface (Fig. 4). If we start 
from a system of more or less parallel 
curves, we will get a system of more 
or less parallel surfaces. Each of these 
surfaces will be made up of integral 
curves. Finding a family of surfaces of 
this type which pave space nicely is 
called integrating the differential equa- 
tion once. With such a family of sur- 
faces explicitly known, we are well 
along toward solving the problem. Giv- 
en a point p, we seek the integral 
curve through p. We know it lies on 
the unique surface S of our family, 
which passes through p. Since S is 
explicitly known, we can confine our 
attention to S in searching for the in- 
tegral curve C. Finding C on the (pre- 
sumably curved) surface S is not very 
different from finding an integral curve 
for a differential equation in the plane. 
The differential equation must be in- 
tegrated twice more, once to find the 
curves and again to find the times of 
flight. 

The step to higher dimensions is 
clear, even if the geometrical imagery 
has only a fictitious significance. In 
four dimensions we prescribe an "ar- 
row" at each point. Then we try to 
find a family of three-dimensional sur- 
faces which "pave" the four-dimen- 
sional space; that is, we try to inte- 
grate the equation once. If successful, 
we try to integrate again, which means 
that we try to "pave" each three-di- 
mensional surface with two-dimension- 
al surfaces. A third integration gives 
us the integral curves, and a fourth, 
the times of flight. In still higher di- 
mensions the situation is the same. We 
successively seek ways to pave space 
with surfaces of lower and lower di- 
mension, each of which has the prop- 
erty that it is made up of integral 
curves. After integrating one time less 
than the original dimension we will 
have found the curves, and one more 
integration will be required to find the 
times of flight along the curves. 

Planetary Motion 

One of the most important applica- 
tions of differential equations and one 
of the greatest triumphs of mathemati- 
cal physics is the Newtonian theory of 
planetary motion. According to New- 
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Fig. 3. A parametric ordinary differential equation of the first order in two dimen- 
sions. A speed (indicated by the lengths of the arrows) is now prescribed at each point 
of the plane in addition to the direction specified in Fig. 1. The integral curves are 
the same as before, but now times of flight along each curve are also determined. 

ton the state of each body in the solar 
system can be described by six num- 
bers, three to designate its position 
and three to designate its velocity-- 
that is, the speed and direction of its 
motion. 

If we wish to consider an ab- 
breviated solar system consisting of the 
sun and one planet, we will require 
six numbers to describe the state of 
each body, or 12 numbers in all. 
Thus, the set of all conceivable states 
of the system can be regarded as 
points in a 12-dimensional space. At 
each instant the actual state of the 
system will be a single point in this 
state-space. As time elapses, the suc- 
cessive states of the system form a 
curve in state-space; we can say that 
the actual state moves in state-space. 

Newton proposed that the actual 
state will move in accordance with a 
differential equation described by his 
laws of motion and gravity. These laws 
prescribe at each point of state-space 
an arrow which tells the velocity the 
actual state will have if it should pass 
through this point. (Since the state of 
a body includes its velocity, a velocity 
in state-space is what we ordinarily call 
an acceleration. Newton's laws of mo- 
tion and gravity describe the accelera- 
tion of each body in the system as 
a function of the state.) The problem 
of two bodies is thereby reduced to 
solving a differential equation. To find 
the motion of a specific system we 
must find the integral curve through 

the starting state and the times of 
flight along it. 

The general problem of two bodies 
is to find all the integral curves and 
the times of flight along them. This 
means we must integrate the differen- 
tial equation 12 times, once for each 
dimension of the state-space. This was 
worked out by Newton, and a remark- 
able result appeared: the predicted be- 
havior of the planets was in precise 
agreement with the laws of planetary 
motion empirically determined by Kep- 
ler. As we all know, this theoretical 
success was one of the great turning 
points in the history of science. 

If we apply the two-body solution 
separately to the various planets, we 
are neglecting the interactions between 
them. The theory also predicts the ef- 
fect of these interactions. If we take 
three bodies, the state of the whole 
system is described by six numbers 
for each body, so the set of all con- 
ceivable states can be regarded as an 
1 8-dimensional space. Again, Newton's 
theory gives us arrows in the state- 
space which tell us how the states will 
evolve. To predict the behavior of a 
specific system we must find the inte- 
gral curve through the starting state 
and the motion along it. To solve the 
three-body problem means to find all 
the integral curves and the times of 
flight along them. To do this, we must 
integrate 18 times. It is easy to inte- 
grate the equation 10 times, leaving 
8 to go. We can interpret this as fol- 
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Fig. 4 (left). A parametric ordinary differential equation of the first order in three dimensions. Arrows at each point of space 
determine the integral curves and the time of flight. The integral curves emanating from the nonintegral curve AB form a surface 
ABCD called an integral surface. Another curve, A'B', which is more or less parallel to AB, generates another integral surface 
A'B'C'D' more or less parallel to ABCD. Surface A"B"C"D" is similarly generated. This leads to a covering of space by a family 
of integral surfaces. Another family of curves AA'A", BB'B", and so on, generates another family of integral surfaces. The inter- 
section of two integral surfaces from different families is an integral curve; for example, the integral surface BB"C"C meets ABCD 
in the integral curve BC. Fig. 5 (right). Parametric differential equation in the plane, with spiral integral curves. Because one 
curve spirals out and another spirals in, there must be an intermediate one which spirals neither in nor out and is therefore a 
closed curve. [Courtesy Addison-Wesley, Cambridge, Mass.] 

lows. Given a starting state, we can 
describe an eight-dimensional surface in 
the space of states such that all future 
states will lie on this surface. But an 
eight-dimensional surface is a long way 
from a curve. From Newton to Poin- 
care, many mathematicians tried to find 
further integrals of the three-body 
problem without success. Finally Poin- 
care, in the latter part of the last cen- 
tury, showed that there are no further 
integrals in closed form (1). This means 
that progress can only be made by ap- 
proximation techniques. 

The idea of approximate solutions 
of the three-body problem, and even of 
the n-body problem, had occupied the 
minds of mathematicians from the days 
of Newton. Many of the greatest 
mathematicians worked to find efficient 
methods for predicting the planetary 
motion. Approximate solutions require 
a great deal of numerical work, and 
there were no computing machines, 
not even desk calculators, in 1800. 
Nevertheless it was possible to pre- 
dict, even then, the motions of the 
heavenly bodies within the accuracy 
of observations. 

The theory has served so well that 
we accept as commonplace the fact 
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that we can predict the exact circum- 
stances of eclipses for many years to 
come. But on one occasion, at least, 
a prediction of the Newtonian theory 
was dramatic. In the early 19th cen- 
tury the observed motion of the planet 
Uranus (discovered in 1781) was 
found to be at variance with the New- 
tonian theory. To resolve the difficulty 
Adams and Leverrier independently 
predicted the existence and approxi- 
mate location of the hitherto unknown 
planet Neptune, which was found 
shortly thereafter within 1 degree of 
the predicted spot! 

There have been some major theoret- 
ical advances in the Newtonian theory 
in the last few years. In particular I 
would like to mention the work of 
Arnol'd. The solar system appears to 
be stable. We can predict the course 
of the planets for thousands of years 
to come, and we find that they do not 
stray far from the simple Keplerian or- 
bits calculated by neglecting the plane- 
tary interactions. But thousands of 
years is not forever, and it may be 
that the solar system is unstable. After 
several billion years, say, the earth 
might suddenly emerge from the solar 
system at a speed sufficient to project 

it irretrievably into outer space. Or 
two planets might collide-another 
form of instability. Arnol'd has proved 
a strong stability theorem concerning 
Newtonian n-body systems (2). Slight- 
ly overstated for simplicity, his theo- 
rem is as follows. If one body is a 
great deal larger than all the others 
and if the system starts in a super- 
ficially stable state, then it is in fact 
stable. Of course this result is of 
mathematical significance only, because 
it allows for neither relativistic nor 
quantum theoretic effects and neglects 
totally the other stars in the universe. 

Topological Methods 

Let us return to a special differential 
equation in two dimensions. Suppose 
that, as in Fig. 5, there is an integral 
curve which winds inward and another 
which spirals outward. It is easy to 
see, and it can be rigorously proved, 
that somewhere in between there must 
be an integral curve which spirals 
neither in nor out but actually meets 
itself precisely. Such a curve then con- 
tinues around and around the same cir- 
cuit indefinitely. If the differential equa- 
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tion represented a problem in plane- 
tary motion, this curve would repre- 
sent a periodic solution; the system 
would return at regular intervals to 
the same state and retrace its motion 
over and over again. 

Note how little we need to know 
to guarantee the existence of a periodic 
orbit. In the first place, we don't have 
to know the inner and outer curves 
precisely. It is enough to know that 
one spirals in and the other out. This 
we may establish through approximate 
calculation. Secondly, we don't really 
have to know the differential equation 
we are dealing with precisely, because 
a slight change in the equation will 
leave the same qualitative situation- 
namely, one integral curve spirals in 
and the other spirals out. 

This is one of the simplest examples 
of what are called topological argu- 
ments. The branch of mathemat- 
ics which studies them for their own 
sake is called topology. While some re- 
sults of topology were known earlier, 
the subject did not obtain a serious 
place in mathematics until Poincare 
showed that such arguments could 
prove the existence of periodic solu- 
tions in special cases of the three-body 
problem (1). Since that time the sub- 
ject has grown to be one of the most 
significant branches of mathematics. 

Let us look at another topological 
fact germane to differential equations. 
We noted that in solving a three-di- 
mensional differential equation one us- 
ually first finds a system of surfaces 
each of which is made up of integral 
curves. There will usually be many 
ways to organize the integral curves 
into surfaces. It might happen that 
one of these surfaces is a closed sur- 
face-that is, a surface which is finite 
in extent but without edges. Figure 6 
shows some closed surfaces: the sur- 
face of a ball, known as the 2-sphere; 
the surface of a ring or torus; the 
surface of a two-holed solid. We can 
go on to the surfaces of solids with 
more and more holes. This gives us a 
sequence of surfaces which are all 
topologically distinct. Furthermore, 
every closed surface in three-dimen- 
sional space is topologically equivalent 
to one of the surfaces in this infinite 
sequence of surfaces. 

Let us pause to recall what topologi- 
cal equivalence means. It is usually 
said that topology imagines the figures 
to be made of rubber and that two 
figures are equivalent if one can be 
stretched or compressed without tear- 
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ing to look like the other. This is not 
strictly correct. It is permissible to 
tear the figure, provided you sew it 

up again along the tear when you 
are done. This distinction can be ap- 
preciated in terms of a knotted and 
an unknotted loop of string (Fig. 7). 
These figures are themselves topologi- 
cally equivalent, but it is quite impos- 
sible to deform one to look like the 
other. To deform the knotted loop into 
a circle you must temporarily cut it, 
untie the knot, and rejoin the ends. 

Going back to surfaces, we know, 
then, that if we encounter a closed 
surface in solving a differential equa- 
tion in three-dimensional space, it 
must be topologically one of these. But 
more than that, it must be a surface 
which can be covered by a family 
of more or less parallel curves. A 
sphere cannot be covered with such 
a family of curves. Think, for ex- 
ample, of the equator and the circles 
of latitude on a globe. These cover 
the sphere neatly except for the poles, 
where the curves degenerate. It is easy 
to convince yourself by trials, and it 
can be rigorously proved, that there 
is no way to cover a sphere by curves 
without there being at least one point 
where the curves break down. In fact, 
of all the surfaces in our infinite list, 
only the torus can be covered by 
curves. Consequently, only the torus 
can appear as a closed integral sur- 
face for a three-dimensional differen- 
tial equation. 

These facts show that topology can 
provide information of definite value 
even in applied mathematics. Let us 
consider some of the questions which 
arise naturally when we review the 
facts about surfaces. 

The simple sequence of surfaces de- 
scribed in the preceding paragraphs 
contains every possible kind of closed 
surface in three-dimensional space. 
What about non-closed surfaces-that 
is, surfaces of infinite extent? These 
are also known, but the classification 
is quite complicated. What happens if 
we go to higher dimensions? If we 
look for two-dimensional closed sur- 
faces in four-dimensional space we 
find a new infinite list of possibilities. 
One of these is the famous Klein bot- 
tle (Fig. 8), which is improperly dis- 
played in 3-space. It can be put in 3- 
space only if you let it intersect itself. 
Of all the new surfaces, only the Klein 
bottle can be covered with curves, so 
it is the only new one that might ap- 
pear in solving a four-dimensional dif- 

Fig. 6. The simplest closed surfaces in 
three-dimensional space: (top) the 2- 
sphere; (middle) the torus; (bottom) the 
double torus. None of the closed curves 
shown on the torus or the double torus 
can be shrunk to a point without leaving 
the surface. On the other hand, every 
closed curve in the 2-sphere can be 
shrunk to a point without leaving the sur- 
face. [Courtesy Addison-Wesley, Cam- 
bridge, Mass.] 

Fig. 7. A knotted loop and an unknotted 
loop are topologically equivalent, but 
neither can be deformed into the other 
unless a temporary cut is made. 
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Fig. 8. The Klein bottle is a closed surface 
which does not fit into ordinary space 
without self-intersections. 

ferential equation. What happens in 5- 
space? Nothing new. There are no 
further kinds of closed two-dimension- 
al surfaces in any space. 

Suppose we look for three-dimen- 
sional surfaces in higher-dimensional 
space. Can we again find a simple de- 
scription of all the types? No, or at 
least not yet. There appears to be an 
overwhelming number of possibilities. 

A truly remarkable problem appears 
here. The simplest type of closed three- 
dimensional surface is the 3-sphere. 
This is the surface of a solid four- 
dimensional ball. It shares with its rel- 
ative the 2-sphere the property of be- 

ing simply connected. In everyday 
terms this means that if you have a 
loop of string in the surface of a ball 
you can always gather it in to a point 
without removing it from the surface. 
Of all closed two-dimensional surfaces, 
only the 2-sphere has this property 
(see Fig. 6). Among closed three-di- 
mensional surfaces the only known 

simply connected one is the 3-sphere. 
Poincare conjectured about 60 years 
ago that no other closed three-dimen- 
sional surface has this property, but 
this has never been proved [(3); since 
this article was written, proofs have 
been announced independently, but not 

yet published, by Poenaru and Haken]. 

A B C 

A corresponding problem can be raised 
concerning spheres of higher dimen- 
sion. Generally speaking, questions of 
this sort get harder as dimensions in- 
crease. It was a great surprise, there- 
fore, when Stallings in 1960 (4) 
proved that the generalized Poincare 
conjecture is true for dimensions 7 and 
up. His result was extended by Zee- 
man (5) shortly thereafter to cover 
dimensions 5 and 6. 

Among two-dimensional surfaces, 
only the torus and Klein bottle can be 
smoothly covered by curves. What 
higher-dimensional surfaces can be so 
covered? Even though we don't know 
all the surfaces, we can decide this 
question for any explicitly given sur- 
face. On the other hand, we have 
no general method for deciding wheth- 
er or not an explicit surface of high 
dimension can be paved with more or 
less parallel two-dimensional surfaces. 

Differential Topology 

The latest development in this area 
is the rise of a new subject called dif- 
ferential topology. It is hard to date 
its origin, but differential topology can 
be said to have begun with the work 
of Thom in the early 1950's (6). 

Topologists do not distinguish be- 
tween a square and a circle, because 
the one can be deformed into the oth- 
er by stretching. The curves and sur- 
faces which arise in analysis are 
smooth, like the circle, the sphere, 
or the torus; they have no corners or 
edges. Differential topology focuses en- 

tirely on these smooth curves and sur- 
faces. 

The differential topologist uses a 
more restrictive notion of equivalence 

A 
I 

B 

A' 

P' Pt 
Before 

c 

B' C' 

After 

of surfaces than the ordinary topolo- 
gist. When a differential topologist de- 
forms a smooth surface, he not only 
keeps it smooth, he keeps every smooth 
curve lying in that surface smooth. 
It is easier to describe what he does 
not do than what he does. Consider 
an ordinary plane and move it into 
itself as follows (Fig. 9): every point 
above a certain line L is kept fixed, 
but every point below L is moved to 
the right by an amount equal to its dis- 
tance below L. Then any smooth curve 
which crosses L develops a corner 
after the plane is moved. This is the 
sort of thing that is prohibited by the 
differential topologist, although it 
would be accepted by the ordinary to- 
pologist. A differential topologist re- 
gards two smooth surfaces as equiva- 
lent if the first can be deformed in 
this more restrictive fashion to look 
like the second, possibly with some 
temporary tearing and resewing. The 
rigorous formulation of these ideas in- 
volves the ideas of the differential cal- 
culus, and this is what gives the sub- 
ject its name. 

In low dimensions it is true that 
two smooth surfaces which are topolog- 
ically equivalent are also equivalent 
in the sense of differential topology. 
But in 1955 Milnor gave an example 
of two seven-dimensional surfaces 
which are topologically equivalent but 
not differentially equivalent (7). This 
shows that differential topology is not 
just topology masquerading in new 
clothing, it is a genuinely new sub- 
ject. In another sense, therefore, dif- 
ferential topology began with Milnor's 
example. 

One of the greatest surprises in this 
now very popular field was found by 
Kervaire in 1960. He gave an example 
of a closed ten-dimensional surface 
with corners which is not topolog- 
ically equivalent to any smooth sur- 
face (8). 

Let us describe this surface by anal- 

ogy in the geometric terms of our 
intuition. Since the figure in question 
is a surface it can be smoothed out 
at any point. But no matter how we 
smooth it, it always has at least one 
corner. If we smooth out that corner, 
another one pops up automatically 
somewhere else. 

Fig. 9. A motion of the plane into itself which is not admissable in differential topology. 
Points on and above line L are fixed. Points below L are displaced to the right by an 
amount equal to their distance below L; for example, P is moved to P'. The effect 
of this transformation is to introduce corners on the previously smooth curves AA', 
BB', and CC', at the points where they cross L. 
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Conclusion 

In conclusion, let me point out that 
I have discussed this general field of 

SCIENCE, VOL. 145 

^ 



mathematics entirely in terms of spe- 
cific facts and problems. Unfortunately 
the methods involved in proving these 
facts involve such a long journey up 
the ladder of abstraction that it is im- 
possible to give, in any brief article, 
a fair idea of how they work. Separat- 
ed from the methods which establish 
them, facts can convey only a partial 
picture of mathematics. Like the great 
temples of some religions, mathemat- 
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ics may be viewed only from the out- 
side by those uninitiated into its mys- 
teries. Anyone who thinks at all about 
what is involved in asserting that Ker- 
vaire's ten-dimensional surface is un- 
smoothable will sense the power of the 
methods topologists have developed for 
organizing our knowledge of space, but 
understanding these methods is re- 
served for those who devote years to 
the study of mathematics. 

ics may be viewed only from the out- 
side by those uninitiated into its mys- 
teries. Anyone who thinks at all about 
what is involved in asserting that Ker- 
vaire's ten-dimensional surface is un- 
smoothable will sense the power of the 
methods topologists have developed for 
organizing our knowledge of space, but 
understanding these methods is re- 
served for those who devote years to 
the study of mathematics. 

References 

1. H. Poincare, Les methodes nouvelles de la 
mecanique celeste (Gauthier-Villars, Paris, 
1892). 

2. V. I. Arnol'd, Dokl. Akad. Nauk SSSR 145, 
487 (1962) (in Russian). 

3. H. Poincare, Rend. Circ. Mat. Palermo 18, 
45 (1904). 

4. J. R. Stallings, Bull. Am. Math. Soc. 66, 
485 (1960). 

5. E. C. Zeeman, ibid. 67, 270 (1961). 
6. R. Thom, Compt. Rend. 237, 1733 (1953). 
7. J. Milnor, Ann. Math. 64, 399 (1956). 
8. M. A. Kervaire, Commentarii Math. Helv. 

34, 257 (1960). 

References 

1. H. Poincare, Les methodes nouvelles de la 
mecanique celeste (Gauthier-Villars, Paris, 
1892). 

2. V. I. Arnol'd, Dokl. Akad. Nauk SSSR 145, 
487 (1962) (in Russian). 

3. H. Poincare, Rend. Circ. Mat. Palermo 18, 
45 (1904). 

4. J. R. Stallings, Bull. Am. Math. Soc. 66, 
485 (1960). 

5. E. C. Zeeman, ibid. 67, 270 (1961). 
6. R. Thom, Compt. Rend. 237, 1733 (1953). 
7. J. Milnor, Ann. Math. 64, 399 (1956). 
8. M. A. Kervaire, Commentarii Math. Helv. 

34, 257 (1960). 

The immune response represents a 
differentiation process in which a small 
subpopulation of lymphoid cells repli- 
cate at an increased rate and synthesize 
y-globulin antibodies and perhaps other 
immune factors. For half a century 
now several phases of the immune 
process have been recognized (1). 
First, there is a "latent" period, which 
is the interval between the first injec- 
tion of antigen and the commence- 
ment of detectable antibody formation. 
Second, there is the phase of antibody 
synthesis which lasts for several weeks 
to many years. Finally, there is the 
phase of immunological memory, dur- 
ing which there is an enhanced anti- 
body response upon readministration 
of the specific antigen. This phase of 
immunological memory usually accom- 
panies antibody synthesis, can occur 
without it, and usually lasts for years. 
The enhanced antibody response after 
reinjection of antigen (the secondary 
antibody response) has a shorter latent 
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period and a higher peak concentra- 
tion of serum antibody than the pri- 
mary response. 

During the past decade, there has 
accumulated considerable new knowl- 
edge concerning the cellular and sero- 
logic aspects of the immune response. 
Regarding the cellular aspects, the com- 
plexity of the population dynamics of 
lymphoid cells has become evident. 
Primary (thymus) and secondary 
lymphoid organs (lymph nodes, spleen, 
and so forth) have been described (2), 
and reticuloendothelial cells have been 
considered necessary for the processing 
of antigen for the primary antibody 
response (3). It has become apparent 
that in addition to morphological dif- 
ferences between lymphoid cells, there 
are striking differences in their response 
to antigen. Although many lymphocytes 
encounter antigen in a primary re- 
sponse, only a small fraction of the 
cells respond by the synthesis of a 
specific antibody (4). There is also a 
constant exchange of lymphocytes be- 
tween lymphoid organs and lymph (5), 
and transformation of the small 
lymphocyte to a large replicating 
lymphocyte can occur (5, 6). 

period and a higher peak concentra- 
tion of serum antibody than the pri- 
mary response. 

During the past decade, there has 
accumulated considerable new knowl- 
edge concerning the cellular and sero- 
logic aspects of the immune response. 
Regarding the cellular aspects, the com- 
plexity of the population dynamics of 
lymphoid cells has become evident. 
Primary (thymus) and secondary 
lymphoid organs (lymph nodes, spleen, 
and so forth) have been described (2), 
and reticuloendothelial cells have been 
considered necessary for the processing 
of antigen for the primary antibody 
response (3). It has become apparent 
that in addition to morphological dif- 
ferences between lymphoid cells, there 
are striking differences in their response 
to antigen. Although many lymphocytes 
encounter antigen in a primary re- 
sponse, only a small fraction of the 
cells respond by the synthesis of a 
specific antibody (4). There is also a 
constant exchange of lymphocytes be- 
tween lymphoid organs and lymph (5), 
and transformation of the small 
lymphocyte to a large replicating 
lymphocyte can occur (5, 6). 

Serologists have long recognized that 
antibody molecules from the same spe- 
cies and of similar specificity can dif- 
fer in many ways: size (7), avidity 
(8), capacity to fix complement (9), 
ability to cross the placenta (10), and 
others, but there has been difficulty in 
relating biological to physical proper- 
ties. During the past several years there 
have been described three different mo- 
lecular classes of y-globulin molecules 
that can be associated with antibody 
activity, Y1A, ym, and y2 as defined by 
immunoelectrophoresis (11), and the 
biological properties of these molecules 
are now being systematically studied 
(12). In addition, observations have 
been made concerning the time of ap- 
pearance of these classes of antibody 
during immunization. 

This increase in our descriptive 
knowledge of the cellular and serologic 
events that follow antigenic stimulation 
has not yet resulted in an understand- 
ing of the mechanisms by which the 
observed events occur, so at the pres- 
ent time the immune response can only 
be defined in operational terms. In this 
article the different immune factors 
produced in response to antigenic stim- 
ulation and the influence of type and 
dose of antigen on various aspects of 
the immune response will be described, 
and the possible modes of regulation 
of the synthesis of these different im- 
mune factors will be discussed. 

In these studies, bacteriophage 
4X174 (4X) has been employed as 
antigen (13) because it presented sev- 
eral advantages over previously used 
systems. First, the phage is an excel- 
lent immunogen and trace amounts 
(0.1 /g) without the use of adjuvants 
stimulate the formation of precipitating 
antibody. Second, the assay for anti- 
body which depends upon the rate of 
inactivation (k) of phage by a given 
antiserum is an extremely sensitive and 
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