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Dislocation Movements in Met 

Defects in atomic structure of crystalline s, 
determine their plastic propei 

Doris Kuhlmann-Wilsdorf and Heinz G. F. Wil 

Defects in crystals are responsible for 
the differences that exist between the 
properties of any given real crystal, 
or crystal aggregate, and those calcu- 
lated for the corresponding "ideal" 
crystal; that is, calculated from the 
mathematical model of an ideally reg- 
ular array of infinitely many atoms. 
With respect to a number of properties, 
such as density, elastic constants, spe- 
cific heat, and melting point, the differ- 
ences between real crystals and ideal 
crystals of the same type are minor. 
For example, if we calculate the tem- 
perature dependence of the specific 
heat of, say, rocksalt, by considering an 
ideal array of sodium and chlorine ions 
in a cubic arrangement, we find a 
satisfactory agreement between theory 
and experimental fact. However, be- 
sides such "structure-insensitive" prop- 
erties, there are many "structure-sensi- 
tive" properties which reveal enormous 
differences between ideal and real crys- 
tals. In particular, this is true for the 
whole range of plastic properties of 
crystals and crystal aggregates. In- 
cluded are all metals and alloys since 
these, as is well known from x-ray 
evidence, are crystalline even though 
their external shape rarely gives any 
indication of this fact. Metals owe their 
usefulness for technical applications 
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(4). These include the formation of 
etch pits at the points where disloca- 
tions intersect surfaces, x-ray techni- 
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olids electron transparent foils viewed in the 
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techniques and field ion microscopy 
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sdorf and even the atomic arrangement near 
their axes. With these methods, a com- 
prehensive body of experimental data 
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crystal will have to be cut away in 
places, or material will have to be filled 
in, except in the special case that the 
surface of the cut is parallel to the 
displacement everywhere. 

From the description of the three 
steps in making a dislocation, it follows 
that a dislocation cannot start or end 
inside a crystal, and that the Burgers 
vector over the whole length of a dis- 
location must be constant. However, 
dislocations can be joined, can branch, 
and can form networks, inasmuch as 
consecutive cuts can coincide over parts 
of their length. It is intuitively obvi- 
ous, and can be demonstrated by means 
of elasticity theory, that dislocations 
generated as described are the centers 
of strong internal stress fields, the in- 
tensity of which is inversely propor- 
tional to the distance from the axis. 

A dislocation whose direction is per- 
pendicular to its Burgers vector is 
named "edge dislocation." The name 
was chosen because dislocations of this 
type can be formed by inserting an 
extra slice of material into a plane cut 
made according to the aforementioned 
first step. The edge of the inserted slice 
(which follows the straight or arbitrar- 
ily curved edge of the cut) will then 
coincide with the dislocation axis (Fig. 
2a). 

a b 

(c) 

Fig. 1. A dislocation made by a cut- 
ting, shifting, and rejoining operation in 
three steps. a, A cut is made partway 
through a crystal. b, The two sides of the 
cut are rigidly displaced relative to each 
other, so that any two corresponding 
points on the surfaces of the cut, such as 
points A, are separated by the same dis- 
placement vector b, named the Burgers 
vector. c, After appropriately filling-in 
material, the sides of the cut are rejoined. 
The surface defined by the dislocation axis 
and the direction of the Burgers vector, 
indicated by shading, is the slip surface. 
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A dislocation with its direction 
parallel to its Burgers vector arises 
from a relative shifting operation 
parallel to the straight edge of a cut. 
An imagined set of planes normal to 
the edge of the cut-that is, normal to 
the dislocation axis-with a uniform 
spacing of one Burgers vector, is there- 
by transformed into a continuous screw 
surface, since, at the cut, each plane 
is joined to its nearest neighbor. This, 
then, is named a "screw dislocation" 
(Fig. 2b). Mixed dislocations are all 
intermediate cases between the two ex- 
tremes. Thus, in curved dislocations, 
certain segments may have screw char- 

acter, other segments edge character, 
and the remainder may be of mixed 
type. 

In crystals, in order for a dislocation 
to be stable or metastable, it is neces- 
sary that the atoms on the two faces 
of the cut be rejoined in a position of 
stable or metastable crystallographic 
order. This requirement is fulfilled if 
the Burgers vector is either a lattice 
vector, or leads from a regular lattice 

point to a possible metastable atomic 

position, or leads from one metastable 
position to another one. In the case 
that the Burgers vector leads to a meta- 
stable atomic position, a fault is gen- 
erated on rejoining the two sides of 
the cut. The dislocation will border 
this fault and is referred to as "imper- 
fect," in contrast to perfect dislocations 
whose Burgers vectors are lattice vec- 
tors. Imperfect dislocations occur only 
in certain types of crystals and, within 

these, only on certain planes. The re- 

sulting faults are known as "stacking 
faults." 

From the preceding explanations and 

from Fig. 1, it is apparent that the 
strains around a dislocation are propor- 
tional to its Burgers vector. By Hookes 

law, stresses and strains are propor- 
tional to each other, and hence, the 

energy of a dislocation is proportional 
to the square of its Burgers vector. The 
stresses around dislocations are usually 
such that dislocations repel each other 
if their Burgers vectors include angles 
smaller than 90 degrees between them, 
but attract if the same angle is larger 
than 90 degrees. As a result, disloca- 
tions tend to have the shortest pos- 
sible Burgers vectors, since dislocations 
with longer Burgers vectors can usually 
lose energy by dissociating into two or 
more dislocations so that the Burgers 
vectors of the resultant dislocations add 

up to the Burgers vector of the original 
dislocation. Dislocations being mobile, 

the resultant dislocations then move 
apart. The most common dislocations 
are, therefore, those whose Burgers vec- 
tors are the shortest vectors between 
equivalent atoms in the crystal. 

The same cause leads to a peculiar 
effect when metastable atomic positions 
exist in a crystal. In that case, perfect 
dislocations can form so-called "ex- 
tended" dislocations (6) by dissociating 
into two or more imperfect dislocations 
such that their Burgers vectors lead to 
and from these metastable positions. 
The vector sum of the Burgers vectors 
of the resultant imperfect dislocations, 
named "partials," then equals the Bur- 

gers vector of the original perfect dis- 
location, but, after dissociation, the sum 
of the squares of the Burgers vectors, 
and with it the energy, is smaller than 
the square of the Burgers vector (and 
the energy) of the undissociated dislo- 
cation. The partials then include rib- 
bons of stacking fault between them, 
the equilibrium width of which is the 

larger, the lower the stacking fault 

energy. 

(b) 
Fig. 2. a, Edge dislocation, generated 
by inserting a plane extra slice of material, 
bounded by an arbitrary curve, into a 
specimen. b, Screw dislocation, formed by 
cutting, shifting, and a rejoining operation, 
whereby the displacement vector b is 
parallel to the edge of the cut. A set of 
imagined planes normal to the axis is 
thereby transformed into a screw surface 
as indicated. 
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Conservative and 

Nonconservative Motion 

From a geometrical point of view, 
dislocations in crystals are always mo- 
bile. They constitute a disturbance in 
the crystal which can move as a wave 
moves over water, or as an elastic 
shock wave travels through a material. 
While a dislocation may move large 
distances, the atoms thereby suffer only 
small displacements. From the nature 
of the cutting and rejoining operation 
that would generate dislocations, it is 
apparent that the movement of a dislo- 
cation can be interpreted as the con- 
tinuous motion of the edge of the cut. 
The cutting and rejoining can be ef- 
fected without bodily transfer of crystal 
substance to or from the sides of the 
cut only if the Burgers vector is par- 
allel to the cut. 

Thus, that surface which is defined 
by the direction of the Burgers vector 
and the axis of the dislocation is the 
only surface on which the dislocation 
can move "conservatively" (without the 
simultaneous bodily transfer of matter, 
except for the relative displacement 
through one Burgers vector according 
to the second step mentioned). There- 
fore, dislocation motion on this partic- 
ular surface, named the "slip surface" 
(see also Fig. ic), is the easiest kind of 
motion, and causes slip by one Burgers 
vector over the area swept out by the 
dislocation axis. For this reason, the di- 
rection of the Burgers vector is often 
called the "slip direction." Hence a dis- 
location axis can always be regarded as 
the boundary between two parts of the 
slip surface, over which the total trans- 
lation that has taken place differs, in 
magnitude and direction, by its Burgers 
vector. 

In actual crystals, common slip sur- 
faces are the most closely packed crys- 
tal planes. The word "slip system" 
refers to the combination of Burgers 
vector and crystallographic slip plane. 
Evidently, dislocations belonging to a 
particular slip system can move between 
each and every close-neighbor pair of 
the actual atomic planes which are the 
crystallographic slip planes in that slip 
system. Crystals usually contain several 
equivalent slip systems, the multiplicity 
of slip systems increasing with crystal 
symmetry. 

For example, in face-centered cubic 
crystals, there are altogether twelve 
{111}, < 110 > slip systems. On their 
slip systems, crystals can slip freely, 
as soon and as long as sufficient 
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numbers of mobile dislocations are 
available. 

The deformation, which takes place 
by the operation of one slip system, is 
the same that would result if a stack 
of corrugated iron sheets were pushed 
in the direction of the corrugations, or 
if a pack of playing cards were sheared 
in a particular direction. This mode of 
deformation, called "shear," "transla- 
tion," or "slip," is by far the most im- 
portant mechanism of plastic deforma- 
tion in metals. It is illustrated in Fig. 
3. The shear deformation, y, defined 
as tangential offset divided by normal 
distance between the slip planes, 

,y = a/h 

in Fig. 3, is given by the important 
equation 

- plb. 

Here b is the Burgers vector, p is the 
total length of dislocation line per unit 
volume (measured in cm/cm8 or in 
cm-2), and 1 is the average distance 
moved by the dislocations. For ex- 
ample, in Fig. 3 let the shear y = a/h 
have been caused by N dislocations 
parallel to the z-axis, each one having 
a Burgers vector parallel to the x-axis, 
and each one moving the distance 7- 
L/ n, where L is the length of the slip 
plane in the direction of the motion of 
the dislocations. Then the tangential 
offset caused by each of the dislocations 
was b/n, the total offset a = Nb/n, 
yielding the shear 

7 - Nb/nh 
or 

y = (N/Lh) (L/n)b = plb. 

If in addition to slip, a mechanism 
operates by which the bodily transfer 
of matter may take place, then the dis- 
locations can leave their slip surfaces 
and move "nonconservatively" in any 
arbitrary direction. Actually, such mech- 
anisms do exist. They are the creation 
or annihilation of "point defects," that 
is, of vacant lattice sites as well as inter- 
stitial atoms. The motion of dislocations 
normal to their slip surface is termed 
"climb." 

Forces Inducing Dislocation Motion 

1) Glide forces: As we saw, disloca- 
tion motion causes plastic deformation. 
As a logical consequence, forces must 
act on dislocations, causing them to 
glide when loads are applied to crystals. 
What then are these glide forces? 

y 

Fzig 3dr 

Fig. 3. Auxiliary drawing to clarify the 
geometry of shear due to dislocation mo- 
tion. Illustrated is the shear (or slip or 
translation) which would be caused by 
the movement of dislocations, with Bur- 
gers vectors parallel to the x-axis, on 
planes normal to the y-axis. 

If an infinitesimally small volume 
element, dv, subject to stresses rT (i 
and j being x, y, or z), is deformed by 
plastic strains, d y i, then the work 
done (W) on the volume element by 
any one of the stress components is 

dWij == Trj d/ij dv. 

Thus, for the case of Fig. 3, where of 
all strain components only d y v. is finite, 
only the stress component T Jv does any 
work on the crystal. Therefore, the 
glide force on the dislocations must be 
due solely to this one shear stress com- 
ponent, namely the one which is acting 
on the slip plane in slip direction, 
named the "resolved shear stress." If a 
uniform shear stress throughout the 
specimen is assumed, a shear increment 

dyyx - pb dl 

(Fig. 3), causes the work done on the 
crystal to be 

dWy. = Vryx dyyx = VrTx pbdl 

with V the volume of the specimen. 
This must equal the work done in mov- 
ing the dislocations (7). Hence 

dWy. = FG p V d/, 

where Fo is the glide force per unit 
length of dislocation line, acting to drive 
the dislocations along their slip planes. 
Thus, one obtains 

FG = bTy, 

for the glide force per unit length of 
dislocation line. This is a quite general 
result. Specifically if -r is a function 
of position, the value of the resolved 
shear stress at the dislocation axis must 
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Fig. 4 (left). Networks of "decorated" dislocations in the basal plane of a freshly grown zinc crystal. The dislocations have been 
made visible by etching. Only parts of the networks are visible because of a small angular misorientation between the specimen 
surface and the plane of the networks (X 1000). [Courtesy of V. Damiano] Fig. 5 (center). Dislocation loops due to the 
condensation of vacant lattice sites in the form of close-packed single layers, in aluminum quenched from close to its melting point. 
The loops outline the boundaries of the condensed layers. Electron micrograph of a foil in transmission about 3000 A thick (36) 
(X 40,000). Fig. 6 (right). Sequences of very small prismatic dislocation loops radiating out from precipitates in annealed 
aluminum. The loops are "punched" into the material due to differences in thermal expansion coefficients of matrix material and 
precipitates. The long smooth lines are glide dislocations, probably due to accidental deformation of the foil. Electron trans- 
mission micrograph (x 35,000). 

be taken, that is, the force on any given 
dislocation due to stresses usually 
changes from point to point. 

By considering dislocations as the 
boundaries of slipped regions on slip 
planes, it becomes obvious that glide 
forces must always act normal to the 
dislocation axes in order to expand 
regions of favorable slip and to shrink 
regions in which the slip opposes the 
applied stresses. 

2) Climb forces: Since supersatura- 
tions of interstitial atoms, vacant lattice 
sites, and their aggregates, can be 
eliminated by climbing dislocations, it 
follows that such supersaturations cause 
forces on dislocations, inducing them to 
climb. 

The magnitude of these climb forces 
can be found, according to Bardeen and 

Herring (8) thus. If a dislocation of 

length I and Burgers vector b, includ- 
ing an angle 0 with the dislocation axis, 
climbs through the distance dx, this 

corresponds to the transfer of volume 

dV =- lb sin 0 dx 

of the material and thus corresponds 
to the generation or destruction of 

dN -= lb sin 0 dx/l 

vacant lattice sites or interstitial atoms, 
where g is the atomic volume. The 
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Gibbs free energy gained (or ex- 
pended) thereby is 

dG =+ - ? dN, 

where /ta is the chemical potential of 
the single defects involved, either that 
of vacancies or interstitials. The chemi- 
cal potential, in turn, is given by 

Ad- =kT In (c/Co) 

where c/co is the supersaturation. There- 
fore, the climb force per unit length of 
dislocation is found as 

1 dG 1 dN 
FcIl- - = - idx 

b sin 0 c 
kT - In-. 

Q1 Co 

Thus, the climb force only acts on that 

component of the Burgers vector which 

is normal to the dislocation axis. It 

drives the dislocations normal to their 

slip planes in that direction which tends 
to establish equilibrium of the point 
defects. 

Frictional Forces 

Dislocations will change their posi- 
tions only so long as the driving forces 
are larger than the sum of all forces 
resisting dislocation motion. Some of 

such forces are quite obvious. For 

example, internal stress systems of 
whatever origin, and including those 
set up by other dislocations, may coun- 
teract the externally applied stresses. 
Furthermore, the motion of a disloca- 
tion is blocked at crystal boundaries by 
incoherent precipitates and by rigid sur- 
face layers, as for example oxide layers 
on free metal surfaces. Moreover, a so- 
called "imperfect" dislocation, a dislo- 
cation whose Burgers vector leads from 
or to a metastable position, and which, 
therefore, borders a stacking fault, is 
attracted toward: that fault, and thus 
cannot be easily moved away from it. 
But a finite force is even required to 
move single "perfect" dislocations, (that 
is, dislocations whose Burgers vectors 
are lattice vectors and which, therefore, 
do not border stacking faults), in other- 
wise perfect crystals. 

In a homogeneous continuum, free of 
relaxation effects, a dislocation would 
be expected to move in response to in- 
finitely small stresses, since its energy 
would not depend on position. To a 
large extent, the same can be said about 
a perfect dislocation in a crystal with 
respect to all regions in which linear 
elastic behavior obtains. In the dis- 
location core, however, the normal 
theory of elasticity breaks down, and 
the detailed positions of the atoms have 
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to be considered. The pattern of atomic 
arrangement in the core changes pe- 
riodically with the position of the dis- 
location, so that the same atomic ar- 
rangement in the core is restored every 
time that the axis moves through inter- 
vals of one Burgers vector. Slightly 
different energies are of necessity asso- 
ciated with these different configura- 
tions, that is, the core energy is a 
periodic function of the dislocation 
position with a periodicity interval b. 
The force required to overcome the 
steepest gradient of the core energy as 
a function of dislocation position is the 
smallest force which will move a dis- 
location. 

This force has been named the 
Peierls-Nabarro force for the scientists 
who made the first calculations of its 
magnitude (7, 9). Another classic 
paper on this topic was contributed 
by Huntington, Dickey, and Thomson 
(10). The calculations are most diffi- 
cult, and the results are at best reliable 
only to a factor of two or so. This is 
because the effect is due to only small 
fluctuations in the core energy, which 
itself cannot be properly evaluated. The 
Peierls-Nabarro force may perhaps be 
given approximately by 

2 
Tr, - r erit/G 

3 

where G is the modulus of rigidity and 
renit is the stress at which an ideal dis- 
location-free crystal would slip on the 
crystal plane considered (11). The 
value T,r,t is always much larger still 
than the highest fracture stresses of 
metals, namely on the order of 3 to 10 
percent of the numerical value of G, 
depending on crystal type and slip 
plane. For the slip planes of the most 
ductile metals, the lower figure applies, 
but in semi-conductors G/T-i t 5 to 
8, and TD in these is thus much higher 
than in metals. 

In actual fact, rD is an overestimate 
for at least two reasons. Thermal ac- 
tivation helps dislocations to overcome 
the Peierls-Nabarro force, and it is 
believed that, owing to uncorrelated 
atomic vibrations, including zero-point 
motion, the positions of dislocation 
axes are not defined with mathematical 
precision (11). In other words, at no 
time do the actual atomic positions 
precisely conform to those which would 
be calculated for a dislocation. These 
deviations from the ideal atomic posi- 
tions have the consequence that the 
dislocation axis has an "uncertainty," 
or expressed differently, every disloca- 
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tion in a real crystal always corresponds 
to a spectrum of infinitely many dis- 
locations with infinitely small Burgers 
vectors, distributed over a small region. 
If the extent of this "uncertainty 
region" becomes comparable with or 
larger than one Burgers vector, then the 
dislocation does in fact straddle a signifi- 
cant part of, or more than, one com- 
plete period of the core-energy curve. 
Then the effective frictional stress re- 
sulting from the periodic change of core 
energy with dislocation position be- 
comes markedly reduced. A theoretical 
estimate of the effect (11) indicates 
that it operates with moderate strength 
in close- packed metals - aluminum, 
copper, nickel, zinc, brass, silver, and 
gold-even to the lowest temperatures. 
However, in body-centered cubic met- 
als, particularly iron and simple steels, 
the effect should cease somewhere near 
or below room temperature. Experi- 
mental evidence concerning the magni- 
tude of the "uncertainty" effect is still 
lacking. 

Additional frictional forces act on 
dislocations in impure metals and in 
alloys, since even very small concen- 
trations of impurity atoms can effec- 
tively anchor dislocations. At least 
three different mechanisms are respon- 
sible: 

1) Cottrell (12) was the first to point 
out that impurity atoms in nominally 
"pure" metals must interact with the nor- 
rmal stresses of dislocations. He argued 
that, during suitable annealing treat- 
ments, all interstitial atoms and those 
substitutional impurity atoms which are 
larger than the atoms of the matrix are 
attracted to regions of dilatation, while 
substitutional impurity atoms smaller 
than the matrix atoms diffuse to regions 
of compression. "Impurity atmospheres" 
should thereby form, reducing the ener- 
gy of the dislocations by the amount 
of the binding energies. Dislocations 
thus anchored are practically immobile 
until a sufficiently high stress, often 
combined with thermal activation, frees 
them abruptly. The discontinuous yield- 
ing of iron has been explained on this 
basis, with carbon and nitrogen caus- 
ing the anchoring. 

2) Interstitial impurity atoms of a 
kind which impose a tetragonal strain 
on their immediate surroundings can 
interact with the shear stresses of a 
dislocation as substitutional atoms of 
different sizes interact with the normal 
stresses. This type of anchoring, first 
investigated by Nabarro (13) and later 
by Schoeck and co-workers (14), seems 

to be of particular importance in iron, 
with carbon and nitrogen again as the 
active impurities. 

3) It was pointed out by Suzuki 
(15) that substitutional atoms in nom- 
inally "pure" metals as well as in alloys 
would have to have either a higher or 
a lower free energy within stacking 
faults than they have in the rest of the 
matrix. Therefore, just a few atomic 
jumps by substitutional atoms close to 
extended dislocations will cause the 
stacking faults between the partial dis- 
locations either to become enriched or 
to be depleted of atoms of solute. In 
both cases, the energy of the extended 
dislocation would be reduced, and 
the dislocation would be anchored as 
in the other two cases. 

The three anchoring mechanisms are 
largely responsible for the hardening 
which results when pure metals are 
alloyed. That is, they greatly contribute 
to one of the technologically most im- 
portant effects by which the properties 
of metals can be manipulated. 

Origin of Dislocations 

The line energy of stable perfect dis- 
locations in metals amounts to about 
2 ev/A. Dislocations, being line defects, 
are generally hundreds or even thou- 
sands of angstroms long and thus have 
energies of many electron volts. This 
means that dislocations never exist in 
thermal equilibrium. Furthermore, when 
a dislocation loop is generated on a 
slip plane, the work done by applied 
shear stresses of magnitude up to the 
fracture stress is small compared to 
the dislocation energy, except for loop 
diameters very much larger than one 
Burgers vector. Consequently, external- 
ly applied stresses of usual magnitudes 
cannot possibly generate dislocations in 
metals that previously were dislocation- 
free. Instead, stresses in the order of 
Terit are required for the initiation of 
dislocations. 

These facts were realized as soon as 
the concept of dislocations had been 
introduced into solid-state theory. How- 
ever, valid answers to the problem of 
how dislocations originate in unde- 
formed crystals were comparatively 
long delayed. By now, various kinds 
of mechanisms operating during crystal 
growth are known to produce disloca- 
tions, mainly in the form of regular 
networks (Fig. 4). Also, the condensa- 
tion of vacant lattice sites in the form 
of coherent layers, in effect eliminating 
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parts of atomic planes, leads to disloca- 
tion loops. These outline the condensed 
sheets of vacancies after the adjoining 
atomic planes have collapsed to fill-in 
the disc-shaped cavity. Figure 5 gives 
an example of such loops in quenched 
aluminum as seen with the electron 
microscope. Finally, localized stresses, 
such as those that arise at the boun- 
daries of precipitates during heating 
and cooling, because of differences in 
thermal expansion coefficient, may be- 
come large enough for the generation 
of sequences of prismatic dislocations 
(Fig. 6), as was first shown by Jones 
and Mitchell (16). 

Geometry of Glide Motions 

In the absence of stresses and of 
supersaturated vacancies and intersti- 
tials, dislocations shorten as far as is 
possible. Correspondingly, dislocations 
in newly grown, then slow-cooled, un- 
deformed (colloquially "as - grown") 
crystals are present in the form of net- 
works with straight links (Fig. 4). 
Similarly, line tension keeps gliding 
dislocations on slip planes straight, or 
only slightly curved, unless these dis- 
locations meet localized obstacles, such 
as precipitates, and intersecting disloca- 
tions, between which they will be driven 
forward by the resolved shear stress 
while held back, locally, at the obsta- 
cles. The nature of the obstacles deter- 
mines whether the dislocations will in- 
tersect or circumvent (17) the obstacles 
(Fig. 7). Circumventing of obstacles oc- 
curs in metals containing incoherent 
precipitates. The finer the dispersion of 
the precipitates, the higher the stress 
necessary to move the dislocations past 
them. This is the major cause of pre- 
cipitation hardening. 

A dislocation whose axis lies com- 
pletely in one plane with its Burgers 
vector, which at the same time is an 
easy slip plane, often is referred to as 
"glide" dislocation. Besides these, real 
crystals contain "prismatic" dislocations 
whose axes do not lie in a plane with 
their Burgers vectors, so that their slip 
surfaces are general prisms-whence 
the name. These usually result from 
vacancy condensation, or from high lo- 
calized stresses at interfaces between 
matrix and precipitates (see Figs. 5 
and 6). In general, the resolved shear 
stresses on prismatic slip surfaces differ 
from place to place, and different sec- 
tions of the slip surfaces offer different 
resistance to glide motion, depending 
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on their crystallographic orientation. 
Therefore, prismatic dislocations do not 
execute the same relatively simple mo- 
tions as glide dislocations, but parts of 
them may be driven in one direction, 
other parts in the opposite direction, 
and some sections will be immobile. 

Figure 8 illustrates the motion re- 
sulting when a shear stress acts on a 
straight link of a prismatic dislocation 
formed through vacancy condensation, 
as in Fig. 5, while the neighboring parts 
of the loop remain immobile. Succes- 
sive stages are labeled a, b, c, and so 
forth. From this figure it is apparent 
that dislocation multiplication is ef- 
fected, since the original dislocation link 
is restored every time a cycle is com- 
pleted and an expanding closed loop 
has been generated. 

This is but one example of disloca- 
tion multiplication by the so-called 
Frank-Read mechanism (18). There is 
now no doubt that dislocations are 
multiplied by this mechanism during 
plastic deformation. 

The case shown in Fig. 8 is simpler 
than many others, since the dislocation 
segments which stay fixed, the so-called 
"pole" dislocations, have a Burgers vec- 
tor lying in the plane in which the 
multiplication takes place. Although 
this is not necessary, the sweeping 

?_50. 

^, i 

(a) 0 

Fig. 7 (above). Two successive stages in 
the movement of a glide dislocation, cir- 
cumventing and encircling obstacles dis- 
persed over its slip plane. 

Fig. 8 (right). Dislocation multiplication,, 

dislocation may be anchored by disloca- 
tions having a Burgers vector compo- 
nent normal to the plane of multiplica- 
tion. In such a case, each revolution 
of the sweeping dislocation moves it 
perpendicular to its original slip plane 
on to the next atomic plane (19). Still 
other forms arise if one side of the 
sweeping dislocation is attached to pole 
dislocations which cause the sweeping 
dislocation to move down, while the 
pole dislocations on the other side 
cause a planar motion, or a motion in 
the upward direction. Finally, the 
sweeping dislocation can spin around 
only one pole if it is somehow anchored 
at its other end. The last case results 
in a single spiral, and an operating 
source of this type was directly ob- 
served in the electron microscope as 
shown in Fig. 9 (20). 

A sequence of dislocations emitted 
from the same source may form a so- 
called "pile-up" when the leading dis- 
location is held up at some obstacle 
and the trailing ones pile up behind it. 
Such pile-ups are an important fea- 
ture in the plastic deformation of 
metals. After this was first clearly rec- 
ognized (21), the concept of disloca- 
tions, emitted from easily acting sources 
and piled up behind obstacles, has been 
incorporated into many theories of 

0 
0 

0 
(b) 0.O 

arising when one link in an otherwise 
anchored prismatic dislocation loop (of 
hexagonal shape) moves under the in- 
fluence of a resolved shear stress acting 
on it. Successive stages are labeled a, b, c, 
and so forth. This is one example of the 
so-called "Frank-Read" mechanism. 
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plastic deformation and "workharden- 
ing." The term "workhardening" refers 
to the phenomenon that the applied 
stress must be increased continously in 
order to deform a metal, since metals 
normally offer an increasing resistance 
to further deformation, that is they 
"workharden." 

Where sequences of dislocations 
reach surfaces, surface steps or "slip 
lines" are formed. The investigation of 
slip lines is a useful tool for the study 
of the distribution of mobile disloca- 
tions in crystals, their mean free paths, 
and other characteristics. However, it 
must be realized that slip lines show 
where dislocations have moved, not 
where they are. Furthermore, slip lines 
are, by definition, surface phenomena, 
and care must be exercised in deciding 
to what extent the conclusions based on 
slip-line investigations may be applied 
to dislocation behavior in the bulk of 
specimens. Figure 10 is a micrograph 
of slip lines on a-brass. 

For screw dislocations, that is, for dis- 
locations having a Burgers vector par- 
allel to the axis, no specific slip plane 
is defined, but all planes containing the 
dislocation axis can act as slip plane, 
at least from a purely geometrical view- 
point. Therefore, gliding screw disloca- 
tions can move from one slip plane 
into another one, inclined to the 
first, in a motion named "cross slip" 
(22) (Fig. 1 la), provided that at least 
two planes intersecting the screw dislo- 
cation have a low Peierls-Nabarro 
stress. "Double-cross slip" (Fig. llb) 
is repeated cross-slip motion, first from 
one slip plane into another slip plane 
intersecting the former in a direction 
parallel to the screw dislocation, and 
then back- into a plane parallel to the 
original slip plane. It is generally be- 
lieved that cross slip and double-cross 
slip play an important role in the be- 
havior of actual dislocations in real 
crystals. 

In discussing the nature of disloca- 
tions, reference has been made to the 
fact that "perfect" dislocations may 
split into "partials," including ribbons 
of stacking fault between them when- 
ever metastable positions of low energy 
exist on the slip plane. Such extended 
dislocations are quite common in layer 
crystals composed of close-packed 
planes with comparatively weak bind- 
ing between the planes. In face-cen- 
tered cubic metals, the ordinary glide 
dislocations on { 111 } planes with V1 

<110> as Burgers vectors can split 
up in that same manner. Stacking 
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Fig. 9 (left). Frank-Read dislocation source of a type in which the sweeping dislocation 
spirals around a pole dislocation (20) (X 45,000). Fig. 10 (right). Stepped surface 
due to slip on atomistic planes of two slip systems in a-brass. Such steps are named 
slip lines (X 9000). 

faults formed in this way, dragging be- 
hind moving partials, are seen in Fig. 
12 (lower right). Two partials result 
whose Burgers vectors are of type 1/6 

< 211 >, but in face-centered cubic 
metals, the stacking fault energies are 
generally much higher than in layer 
crystals, and the equilibrium widths to 
which the dislocations split are conse- 
quently much smaller. Glide disloca- 
tions on basal planes in hexagonal met- 
als can split into partials in much the 
same manner. 

Although the motion of isolated dis- 
locations on slip planes is hardly af- 
fected by the presence or absence of 
splitting into partials, the formation 
of extended dislocations is important in 
at least three ways. (i) Intersections 
between extended dislocations are more 
difficult than between unextended dis- 
locations (6). (ii) Unless the Burgers 
vectors of the partials happen to be par- 
allel, (23) cross slip of extended disloca- 
tions can take place only if the two 
partials are first compressed to eliminate 
the stacking fault. This process may 
require high stresses and thermal activa- 
tion. (iii) Climb of extended disloca- 
tions similarly requires the prior elimi- 
nation of the stacking fault ribbon over 
the length of the climbing sections. 

Since all three mechanisms, disloca- 
tion intersections, cross slip, and climb, 
play a considerable role in the mecha- 
nism of plastic deformation, the magni- 
tude of the stacking-fault energy of 
metals is an important parameter in- 
fluencing the mechanical properties of 

crystals. Seeger (24) was the first to 
draw attention to this fact. Usually, the 
stacking-fault energies of alloys are 
lower than those of pure metals. Thus, 
the dislocations in alloys tend to be 
more widely split than in pure metals. 
A great part of the differences in me- 
chanical behavior between pure face- 
centered cubic metals and alloys can be 
explained on this basis. 

Fig. 11. Schematic representation of the 
geometry of cross slip (a) and double- 
cross slip (b) by dislocation parts having 
screw orientation at the moment of trans- 
fer into the intersecting slip plane. 
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Velocity of Dislocations 

That the speed of sound plays the 
same role in dislocation theory as the 
speed of light in relativity theory was 
first shown by Frank (25) and Eshelby 
(26). Dislocations are elastic disturb- 
ances in crystals, which cannot be prop- 
agated faster than the speed of sound 
in the same material. This fact expresses 
itself so that the energy of moving dislo- 
cations rises with the dislocation veloci- 
ty, v, as {1-v2/c2}-'/2 where c is the 
speed of sound in the material in which 
the dislocations are situated. Hence, the 
dislocation energy tends toward infinity 
as the velocity tends towards the speed 
of sound,-about 2 kilometers per sec- 
ond in metals. However, dislocations in 
actual crystals typically move much 
more slowly, namely, several microns 
per second at stresses close to the yield 
point, from observations on moving dis- 
locations in the electron microscope. 
However, v, the velocity of dislocations, 
rises sharply with increasing stress, r, 
namely as 

v= vo (r/ro)'. 

The first direct measurements of dis- 
location speed as a function of stress 
which yielded the named relationship 
have been performed by Johnson and 
Gilman (27), who revealed and studied 
dislocation etch pitting on the sur- 

faces of lithium fluoride crystals. Sub- 
sequently, similar measurements were 
performed on iron-silicon alloy (28) 
and on semiconductors (29). These 
measurements showed the exponent n 
to be near 1.5 for the case of semi- 
conductors, while n is about 25 for 
lithium fluoride and above 40 for silicon- 
iron. The reason for this enormous 
difference in the dependence of disloca- 
tion velocity on stress is not yet per- 
fectly understood. However, the pro- 
nounced differences between mechan- 
ical behavior of the brittle semiconduc- 
tors, such as germanium and silicon, 
and that of ductile metals can be under- 
stood from the great differences of 
Peierls-Nabarro stress on the one hand, 
and of stress sensitivity of dislocation 
velocity on the other hand. The semi- 
conductors are brittle because their 
Peierls-Nabarro stress is high, while at 
the same time dislocations in them can- 
not multiply at a rapid rate. Thus these 
materials cannot deform at a rapid rate 
when subjected to increasing stresses, 
and therefore, the semiconductors fail 
by brittle fracture at all except quite 
high temperatures. In ductile metals, by 
contrast, the Peierls-Nabarro stress is 
low and the dislocation velocity rises 
very steeply with increasing stress. Thus 
dislocation motion, and with it dislo- 
cation multiplication, is always fast 
enough to prevent brittle failure. 

Jogs and Tangling of Dislocations 

Since a moving dislocation causes a 
translation over the area swept out by 
its axis, other dislocations, when inter- 
sected, are correspondingly sheared. 
Thereby "jogs" are formed on the in- 
tersected dislocations, whose length and 
direction equals the length and direc- 
tion of the Burgers vector of the cutting 
dislocation. The problem is symmetri- 
cal in the sense that the moving dis- 
location also acquires jogs, where, in 
turn, the length and direction of the 
jogs are equal to the Burgers vectors 
of the intersected dislocations (30). 
The slip surface of any dislocation, 
generated as we saw by all lines 
parallel to the Burgers vector inter- 
secting the dislocation axis, thus be- 
comes stepped if jogs are formed on 
the dislocation. Therefore, in order 
for conservative motion of a jogged 
dislocation to take place, the jogs must 
slip along the steps in the slip surfaces, 
that is, they must shift tangentially 
along the gliding dislocation, except in 
the case of jogs on edge dislocations. 
However, it is believed that the jogs will 
not always follow the directions of the 
aforementioned steps in the slip sur- 
face, particularly not those on screw 
dislocations (31), which means that the 
jogs will not necessarily move "con- 
servatively," and thus will generate 

Fig. 12 (left). A group of dislocations moving away from a low-angle boundary in an electron transparent foil of stainless steel 
viewed in the electron microscope. The direction of motion of dislocations can be recognized from the trails left behind by them. 
The latter are a diffraction effect which fades after a little while. Stacking faults recognizable by striped contrast are dragged out 
behind moving partial dislocations in the same group (20) (X 60,000). Fig. 13 (center). Tangled dislocations in an electron 
transparent foil gained from aluminum, lightly deformed in bulk, then thinned down (37) (X 25,000). Fig. 14 (right). Se- 
quences of etch pits, formed at the points of emergence of dislocations, arranged in piled-up groups. The material is deformed 
a-brass, lightly doped with cadmium to "decorate" the dislocations, and thus to make them susceptible to preferential-etching 
attack. The polished and etched surface was replicated with silicon monoxide, shadowed with tungsten oxide, and examined in 
the electron microscope (X 25,000). 
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point defects. Only intersections be- 
tween dislocations with Burgers vectors 
each in the slip plane of the other 
dislocation do not cause permanent 
jogs; in this case, shearing of the dis- 
locations takes place in their own slip 
surfaces, and thus the jogs are imme- 
diately eliminated by simple glide. The 
stress required for jog formation, and 
the drag on dislocations by jogs, have 
often been cited as mechanisms of 
work hardening, particularly by Basin- 
ski, van Bueren, Hirsch, and Mott 
(32). 

While there is little doubt that point 
defects are generated during glide, and 
while there is also little disagreement 
that the nonconservative motion of jogs 
is at least partly responsible, consider- 
able disagreement exists concerning the 
precise mechanisms operating. In par- 
ticular, Seitz (33) and Koehler (34) 
have proposed several different geo- 
metrical possibilities for point defect 
formation during slip and, more re- 
cently, an additional mechanism was 
suggested (35). 

Namely, as already explained dislo- 
cation axes in actual crystals are not 
mathematical lines but are better de- 
scribed by their "uncertainty regions," 
that is, we may think of the axes as 
smeared out within their uncertainty 
regions. Correspondingly, the slip sur- 
faces of dislocations are also not de- 
fined with mathematical precision, and 
the dislocation must, so to speak, 
diffuse away from their original slip 
surface in the course of their slip mo- 
tions, always shifting their imprecisely 
defined slip surface according to their 
momentary axis position. True, this 
effect will be large only for screw or 
near screw dislocations, but, in close- 
packed metals, the effect is believed to 
remain noticeable down to the lowest 
temperatures. The slight statistical de- 
partures of dislocations and jogs from 
mathematically precise planes must, of 
course, generate vacancies or inter- 
stitials, or both. 

Regardless of which process or proc- 
esses of defect generation should even- 
tually be proved to be the most impor- 
tant, the defects formed must be in 
considerable supersaturation and must 
be eliminated (33). The most obvious 
sinks (sites of elimination) for these va- 
cancies and interstitials are stationary or 
slow-moving dislocations which climb 

on absorbing these defects. We believe 
that this is the most important reason 
why dislocations in most pure metals, 
deformed at intermediate temperatures, 
do not form regular arrays, but form 
three-dimensional "tangles" of disloca- 
tions, interspersed with prismatic loops 
(Fig. 13). By contrast, most scientists 
working on this subject believe that 
cross slip or dislocation interactions 
rather than this peculiar kind of climb 
is responsible. 

The fact that face-centered cubic al- 
loys are not as susceptible to dislocation 
tangling as are pure face-centered cubic 
metals, but tend to form dislocation 
pile-ups (Fig. 14), would follow natu- 
rally from both explanations, since in 
alloys the stacking-fault energy is usual- 
ly lower than in the pure metals, and 
thus the glide dislocations in alloys are 
definitely split. Unless the two partials 
are somehow pushed together, which re- 
quires considerable stresses or energies, 
the dislocations are bound to specific 
atomic planes and therefore cannot 
cross slip, cannot climb, and do not 
have a noticeable uncertainty normal to 
the slip planes associated with them- 
selves. The origin of the dislocation 
tangles, then, is one of the problems in 
the theory of moving dislocations that 
is still under dispute. 

Summary 

Motions of dislocations are by far 
the most important cause of plastic de- 
formation in crystals, and thereby de- 
termine the mechanical properties of 
crystals in general, and of metals and 
their alloys in particular. Our under- 
standing of the plastic behavior of 
metals, as distinct from technical know- 
how, be it in rolling, bending, wire- 
drawing, turning, filing, or whatever, 
extends as far as our understanding of 
both the forces on dislocations and the 
motions executed in response to these 
forces, taking due account of the most 
complicated interactions between the 
dislocations. 
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