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Fig. 1. Mass spectrum of xenon tetroxide.

spectrum of mercury. The fragmenta-
tion pattern varied very little with the
energy of the ionizing beam of elec-
trons.

The volatility of XeO: was demon-
strated by its very rapid distillation
when a liquid nitrogen bath was re-
placed by one of dry ice.

The same reaction conducted in a
test tube yields a gas with a strong
pungent odor which gives a test with
potassium iodide-starch paper. These
properties could be caused by ozone;
however, only a small peak was ob-
served at mass 48 in the mass spec-
trometer.

JouN L. HustoN
Loyola University, Chicago, Illinois
MARTIN H. STUDIER
Eric N. SLoTH
Chemistry Division, Argonne National
Laboratory, Argonne, Illinois 60440
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Computer Program for Printing
Undeformed Fourier Maps

Abstract. The program calculates the
values of the function at those points
where the computer can print them.

A doubly periodic function that can
be represented by a Fourier series with
known coefficients is usually computed
at m by n points in the mesh (two-
dimensional period). The mesh, a par-
allelogram in the general case, has
each of its sides subdivided into an
integral number -of parts, m or n. The
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machine prints the results in a rectan-
gular array, which is a deformed map
of the mesh. The deformation has two
sources: (i) the map cannot be true to
scale in both directions and (ii) the
parallelogram is transformed into a
rectangle.

The purpose of the program is to
print an array of numbers that can be
contoured directly into a map, on
which true distances and angles can be
measured. Two cases can be consid-
ered. In one the mesh is orthogonal
(a rectangle) and in the other it is non-
orthogonal (a parallelogram).

Orthogonal mesh. For example, ca
in the orthorhombic system, with ¢ < a.

The problem is one of scale only.
In general, for any convenient scale,
say 1 A to 2 inches, ¢ will be a non-
integral multiple M of the width of one
machine-printed digit (or interval),
and a will be another nonintegral multi-
ple N of some interline spacing (single,
double, . . .). The machine will be
asked to calculate the values of the
doubly periodic function precisely at
the points where they can be printed.
These points form a rectangular array,
which we will call the “machine grid.”
Successive rows come at x = pa/M,
where

p=0,1,2,...,mm+1

and m < M < m + 1. Along each
row, points come at z = rc/N, where

r=0,1,2,...

andn< N< n+1.

The summation of the Fourier series
at the points of the machine grid can
be shortened thanks to a recurrence
formula of H. Takahashi (). To cal-
culate either

,nn+1

H
C=%a+ ax cos 2ThX
k=1
or
H
S= ay sin 27hX
r=1

(note that the coefficients a» need not
be the same in S as in C), compute the
following sequence of us’s: .

Uo = amu,

Uy =2uocos2wX + an.,
U =2wcos2aX —u, +an-,
............................... ,
Un =2Un-1¢0S2TTX — Up: + Au-n,

Ugzs =2 up3¢08 27X — up-+ + a,,
Un1 =2 up.2cos 27X — un_s + ay,
ug =2unp,c08 27X —ug-, + Qo,

a

Fig. 1. Monoclinic mesh ca, with trace
of (hOl) plane and intercepts of the latter
on a, da’, and c, equal to OP, OQ, and OR,
respectively.

but keep only the last three values.
Then C or S, as the case may be, is
given by,

C=1 (un — ua-z)
or by

S = un-, sin 27 X.

Although the Takahashi formula was
proposed for a small computer and for
calculations that made use of an inte-
gral number of subdivisions in the
period (for example, M = m = 45, 60,
100, . . . ; with X = 1/M), its main
advantages are that it permits the use
of a nonintegral number of subdivisions
and that it eliminates the looking up
of sine and cosine tables, which is usual
in the Beevers-Lipson summation meth-
od.

Non-orthogonal mesh. For example,
ca in the monoclinic system, with

a<ec.

The mesh is a parallelogram. In
view of the fact that the translation re-
peat need not have the same shape as
the mesh, we propose, for purposes of
computation, that the repeat of the
Fourier function be taken as a rectan-
gle instead of a parallelogram. This
result can be achieved by using non-
integral Miller indices (h0l). For ex-
ample, the parallelogram ca can be re-
placed by the rectangle ca’ (Fig. 1),
where

a =asin g’
and
a'/h' = xqsin g,
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with 8/ = 180° — (. Symbol (h0!)
transforms to (A’'0l). From the equa-
tion of the trace of the (AOl) plane
and the equation of 0d’,

h(x/a) +l(z/c) =1
and

z=xcos B,
we find xe, the abscissa of the point of

intersection Q of the two lines. We
then obtain

h =h+gql,
qg=(a/c) cos B'.

As an example let us take the cal-
culation of a two-dimensional Fourier
series in “ferri-annite,” a one-layer
monoclinic synthetic iron mica,

KFCaH (SisFQ“) 040 (OH ) 2

which crystallizes in space group C2/m.
With the axes zx” and the mesh ca’, the
electron-density projection onto (010)
is given by (2):

p(x,2) = % Z 2 F(h'0l') X
ron

cos 27 (h' _x_'_ + l’i)
a c’

(where A = ca’ = ca sin B’ is the mesh
area) or, replacing 4’ by its value and
noting that F(4'0l') = F(h0l), by

p(x2) = —; 2 2 F(hOl) X
T

cos 2 [(h + ql) —’3,—+l-%],

where (h0!l) refers to the mesh ca.
For the practical summation we write

L
o (x,2)= % 2 C’; cos 2xl Z’c -
=0

2 < !
Z( 2 S'vsin2ml - ),
=1
with
C'; = C,; cos 2mql % —S; sin Zvrql%,

’
X
)

S =S cos Zvrql—z,— + C; sin 277ql7

and

H
Ci=F(00) + X [F(OD + F(R0D]
h=1

cos 27h i:,
a
forl > 0,

H

2 F(h00) cos 27h 2,
h=1 @

Co =15 F(000) +
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Fig. 2. Electron-density projection of
monoclinic mica “ferri-annite” onto ca’
plane. The parallelogram (or asymmetric
domain) is one-quarter of the mesh. Con-
tours are drawn directly on the print-out.
x' increases from left to right, z' from top
to bottom (see numbers along left edge).

for 1=0,

H
S = 2 [F(hOl) — F(FOI)] sin 27h 2—
h o=

The summations C: and S: are carried
out over integral values of %; they are
given the ordinary summation formulas
for space group C2/m. The only
change required by introduction of
the nonintegral A’ indices is that, in
summations over I, the coefficients C":
and S': must be used instead of C: and
Si.

The value of g is constant for a given
mesh ca, so that for fixed ! and (x'/
a'), the sine and cosine of 2xql(x'/a’)
are also constant. In order to avoid
having to compute these values for
every I and (x'/a’), we use the for-
mulas for the cosine and sine of the
sum of two angles, in the following
form:

pt+1 _
costr————M =

p 1 ., p 1
cos 2wﬁcos ZﬂT—‘M sin 277 37 5in 2 2
. prt_
sin 27 M- 1
. P D . 1
sin 291 A 08 2vr—M+ cos 277'——M sin 21 I

where M is the number (not neces-
sarily integral) of subdivisions in the
period and p is an integer. These for-
mulas have to be applied twice, as /
and (x'/a’) are made to increase. They
are also used to compute cos 27X and
sin 27X, which are needed in Taka-
hashi’s formulas.

The next step is to produce an unde-
formed map. This is done as in the case
of the orthogonal mesh (see above).
The map obtained (Fig. 2) is on the
scale of 1 angstrom to 2 inches on the
print-out. The horizontal edge a' was
divided into 53.475 parts; the vertical
edge c, in 123.84 parts. With two digits
the value of the function may increase
from — 9 to 109 (printed as 09).

For a three-dimensional triclinic syn=-
thesis, the method could be generalized,
the triclinic cell being replaced by a
rectangular parallelepiped, or else
printed rectangular sections could be
stacked with the appropriate offset for
the inter-section spacing.

J. D. H. DoNNAY
HirosHI TAKEDA
Crystallographic Laboratory,
Johns Hopkins University,
Baltimore 18, Maryland
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Natural Carbon-14 Activity of
Organic Substances in Streams

Abstract. Carbon-14 measurements
made on organic contaminants ex-
tracted from streams show percent-
ages of industrial waste and domestic
sewage. The method, used previously
for studies of the atmosphere, can be
used in studies of pollution sources.

The two most important sources of
organic chemical pollution of water
are industrial wastes and domestic
effluents (sewage). It is desirable to
distinguish between these substances
in streams in order to plan abatement
measures, for they injure water quality
in different ways. By recovering the or-
ganic substances from a polluted stream
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