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It was 24 years ago that I entered 
Columbia College as a freshman and 
discovered the subject of logic. I can 
recall well the particular circumstance 
which led to this discovery. 

One day I was browsing in the li- 

brary and came across a little volume 

by Bertrand Russell entitled Mysticism 
and Logic. At that time, barely 16, I 
fancied myself something of a mystic. 
Like many young people of that age I 
was filled with new emotions strongly 
felt. It was natural that any reflective 
attention should be largely occupied 
with these, and that this preoccupation 
should give a color and poignancy to 

experience which found sympathetic 
reflection in the writings of men of 

mystical bent. 
Having heard that Russell was a 

logician I inferred from the title of 
his work that his purpose was to con- 
trast mysticism with logic in order to 
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exalt the latter at the expense of the 
former, and I determined to read the 

essay in order to refute it. But I dis- 
covered something quite different from 
what I had imagined. Indeed, contrast- 

ing aspects of mysticism and logic were 
delineated by Russell, but his thesis 
was that each had a proper and im- 

portant place in the totality of human 

experience, and his interest was to de- 
fine these and to exhibit their inter- 

dependence rather than to select one 
as superior to the other. I was dis- 
armed, I was delighted with Russell's 
lucent and persuasive style, I began 
avidly to read his other works, and was 
soon caught up with logical concepts 
which have continued to occupy at 
least a portion of my attention ever 
since. 

Bertrand Russell was a great pop- 
ularizer of ideas, abstract as well as 
concrete. Probably many of you have 
been afforded an introduction to 
mathematical logic through his writ- 

ings, and perhaps some have even been 
led to the point of peeping into the 
formidable Principia Mathematica 
which he wrote with Alfred White- 
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head about 1910. You will recall, then, 
the astonishing contention with which 
he shocked the mathematical world of 
that time-namely, that all of mathe- 
matics was nothing but logic. Mathe- 
maticians were generally puzzled by 
this radical thesis. Really, very few 
understood at all what Russell had in 
mind. Nevertheless, they vehemently 
opposed the idea. 

This is readily understandable when 
you recall that a companion thesis of 
Russell's was that logic is purely tauto- 
logical and has really no content what- 
ever. Mathematicians, being adept at 
putting 2 and 2 together, quickly in- 
ferred that Russell meant to say that 
all mathematical propositions are com- 
pletely devoid of content, and from 
this it was a simple matter to pass to 
the supposition that he held all mathe- 
matics to be entirely without value. 
Aux armes, citoyens du monde mathe- 
matique! 

Half a century has elapsed since 
this gross misinterpretation of Russell's 
provocative enunciation. These 50 
years have seen a great acceleration 
and broadening of logical research. 
And so it seems to me appropriate to 
seek a reassessment of Russell's thesis 
in the light of subsequent development. 

Definitions and Proofs 

In order to explain how Russell 
came to hold the view that all of 
mathematics is nothing but logic, it 
is necessary to go back and discuss two 

important complexes of ideas which 
had been developed in the decades be- 
fore Russell came into the field. The 
first of these was a systematic reduc- 
tion of all the concepts of mathematics 
to a small number of them. This 
process of reduction had indeed been 
going on for a very long time. As far 
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back as the days of Descartes, for ex- 
ample, we can see at least an imperfect 
reduction of geometric notions to al- 
gebraic ones. Subsequently, with the 
development of set theory initiated 
by Georg Cantor, the reduction of the 
system of real numbers to that of 
natural numbers marked another great 
step in this process. But perhaps the 
most daring of these efforts, the culmi- 
nating one, was the attempt by a Ger- 
man mathematician, Gotlob Frege, to 
analyze the notion of natural number 
still further and reduce it to a concept 
which he considered to be of a purely 
logical nature. 

Frege's work was almost entirely 
unnoticed in his own time (the last 
three decades of the 19th century), 
but when Bertrand Russell came upon 
Frege's work he realized its great sig- 
nificance and gave these ideas very 
wide currency through his own bril- 
liant style of exposition. The ultimate 
elements into which the notion of nat- 
ural number was analyzed by Frege 
and by Russell were entities which 
they called "propositional functions." 
To this day there persists a controversy 
among philosophers as to just what 
these objects are, but at any rate they 
are connected with certain linguistic 
expressions which are like sentences 
except for containing variables. Just 
as there is a certain proposition asso- 
ciated with (or expressed by) the sen- 
tence "U Thant is an astronaut," for 
example, so there is a propositional 
function associated with the expression 
"x is an astronaut." Since propositions 
had long been recognized as consti- 
tuting one of the most basic portions 
of the domain of investigation of logi- 
cians, and since propositional func- 
tions are very closely related to propo- 
sitions, it was natural to consider these, 
too, to be a proper part of the subject 
of logic. It is in this sense that Frege 
seemed able, by a series of definitions, 
to arrive at the notion of number, as 
well as at the other notions under 
study in various parts of mathematics, 
starting from purely logical notions. 

The second important line of devel- 
opment which preceded Russell, and 
upon which he drew for his ideas, was 
the systematic study by mathematical 
means of the laws of logic which 
entered into mathematical proofs. This 
development was initiated by George 
Boole, working in England in the mid- 
dle of the 19th century. He discovered 
that certain of the well-known laws of 
logic could be formulated with the 
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aid of algebraic symbols such as the 
plus sign, the multiplication sign, and 
the equality sign and of variables. For 
example, Boole used the familiar equa- 
tion P.Q = Q.P. to express the fact that 
sentences of the form "P and Q" and 
"Q and P" must be both true or both 
false (whatever the sentences P and Q 
may be), while the generally unfa- 
miliar algebraic equation -(P.Q)- 
(-P) + (-Q) indicates that the sen- 
tence "Not both P and Q" has the 
same truth value as "Either not P or 
not Q." Boole demonstrated that 
through the use of such algebraic no- 
tation one can effect a great saving in 
the effort needed to collate and apply 
basic laws of logic. Later his work was 
extended and deepened by the Ameri- 
can C. S. Peirce and the German 
mathematician E. Schr6der. And Rus- 
sell himself, working within this tradi- 
tion, found it a convenient basis for 
a systematic development of all math- 
ematics from logic. By combining the 
symbolic formulation of logical laws 
with the reduction of mathematical 
concepts to a logical core, he was able 
to conceive of a unified development 
such as was attempted in the Principia 
Mathematica. 

From Russell to Godel 

What was the Principia like? Well 
of course the work is still not com- 
pleted (only three of four projected 
volumes having appeared); and since 
Bertrand Russell has most recently 
seemed to occupy himself with the 
political effects of certain physical re- 
search it may, perhaps, never be com- 
pleted! Nevertheless, one can see 
clearly the intended scope of the work. 
Surprisingly, it reminds one of the 
present massive undertaking by the 
Bourbaki group in France. For even 
though the Principia and Bourbaki 
are very dissimilar in many ways, each 
attempts to present an encyclopedic 
account of contemporary mathemati- 
cal research unified by a coherent 
point of view. 

In the Principia, starting from cer- 
tain axioms expressed in symbolic form 
which were intended to express basic 
laws of logic (axioms involving only 
what Russell conceived to be logical 
notions), the work systematically pro- 
ceeds to derive the other laws of logic, 
to introduce by definition such mathe- 
matical notions as the concept of num- 
ber and of geometric space, and finally 

to develop the main theorems con- 
cerning these concepts as part of a 
uniform and systemic development. 

Viewed in retrospect, the contempo- 
rary logician is struck by the willing- 
ness of Russell and Whitehead to rest 
their case on what, for a mathema- 
tician, must be considered such flimsy 
evidence. The world of empirical sci- 
ence, of course, expects to achieve 
conviction on the basis of empirical 
evidence, but the quintessence of the 
mathematician's approach, especially 
of the mathematical logician's, is the 
demand always for proof before a 
thesis is accepted. Yet you see that 
whereas Russell was interested in estab- 
lishing that in a certain sense all of 
mathematics could be obtained from 
his logical axioms and concepts, he 
never really set out to give a proof of 
this fact! All he did was to gather the 
basic ideas that had been developed 
in a nonformal and unsystematic way 
by mathematicians before him, and to 
say, in effect, "You see that I have 
been able to introduce all this loosely 
formulated work within the precise 
framework of my formal system. And 
it's pretty clear, isn't it, that I have all 
the tools available to formalize such 
further work as mathematicians are 
likely to do?" 

In this respect one is reminded of 
the approach of that first great axiom- 
atizer and geometer, Euclid. Euclid, 
too, conceived that all propositions of 
geometry-that is, all the true state- 
ments about triangles, circles, and those 
other figures in which he was inter- 
ested-could be developed from the 
simple list of concepts and axioms he 
gave. But in his case, too, there was 
never any attempt to prove this fact 
other than by the empirical process of 
deriving a large number of geometric 
propositions from the axioms and then 
appealing to the good will of the 
audience, so to speak. "Well," we may 
imagine him saying, "look how much 
I have been able to deduce from my 
axioms. Aren't you pretty well con- 
vinced that all geometric facts follow 
from them?" 

But of course there were mathema- 
ticians and logicians who were not 
convinced. And so the demand for 
proof was raised. 

Actually, the proper formulation of 
the problem of whether a system of 
axioms is adequate to establish all of 
the true statements in some domain of 
investigation requires a mathematically 
precise formulation of the notion of 
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"true sentence," and it was not until 
1935 that Alfred Tarski, in a great 
pioneering work, made fully evident the 
form in which semantical notions must 
be analyzed for mathematical lan- 
guages. Of course, it is a trivial matter 
to give the conditions under which any 
particular sentence is true. For exam- 
ple, in the theory of Euclidean geom- 
etry the sentence "All triangles have 
two equal angles" is true if, and only 
if, all triangles have two equal angles. 
However, Tarski made it clear that 
there is no way to utilize this simple 
technique in order to describe (in a 
finite number of words) conditions for 
the truth of all the infinitely many sen- 
tences of a language; for this purpose 
a very different form of definition, 
structural and recursive in character, 
is needed. 

Even before Tarski's treatment of 
semantics, indeed as early as 1919, we 
find the first proof of what we call, in 

logic, "completeness." The mathema- 
tician Emil Post (in his doctoral dis- 
sertation published in that year), limit- 

ing his attention to a very small frag- 
ment of the system created by White- 
head and Russell, was able to show 
that for any sentence in that fragment 
which was "true under the intended 

interpretation of the symbols," one 
could indeed get a proof by means of 
the axioms and rules of inference 
which had been stated for the system. 
Subsequently, further efforts were 
made to extend the type of complete- 
ness proof which Post initiated, and 
it was hoped that ultimately the entire 
system of the Principia could be 

brought within the scope of proofs 
of this kind. 

In 1930, Kurt Godel contributed 

greatly to this development and to 
this hope when he succeeded in prov- 
ing the completeness of a deductive 

system based upon a much larger por- 
tion of mathematical language than 
had been treated by Post. Gidel's 

proof deals with the so-called "first- 
order predicate logic," which treats of 
mathematical sentences containing var- 
iables of only one type. When such a 
sentence is interpreted as referring to 
some mathematical model, its variables 
are interpreted as ranging over the ele- 
ments of the model; in particular, there 
are no variables ranging over sets of 
model elements, or over the integers 
(unless these happen to be the ele- 
ments of the particular model). Now 
Godel shows that if we have any sys- 
tem of axioms of this special kind, 
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then whenever a sentence is true in 
every model satisfying these axioms 
there must be a proof of finite length, 
leading from the axioms to this sen- 
tence, each line of the proof following 
from preceding lines by one of several 
explicitly listed rules of logic. This 
result of Godel's is among the most 
basic and useful theorems we have in 
the whole subject of mathematical 
logic. 

But the very next year, in 1931, the 
hope of further extension of this kind 
of completeness proof was definitely 
dashed by G6del himself in what is 
certainly the deepest and most famous 
of all works in mathematical logic. 
Godel was able to demonstrate that 
the system of Principia Mathematica, 
taken as a whole, was incomplete. That 
is, he showed explicitly how to con- 
struct a certain sentence, about natural 
numbers, which mathematicians could 
recognize as being true under the in- 
tended interpretation of the symbolism 
but which could not be proved from 
the axioms by the rules of inference 
which were part of that system. 

Now, of course, if Godel had done 

nothing more than this, one might 
simply conclude that Russell and 
Whitehead had been somewhat care- 
less in formulating their axioms, that 
they had left out this true but un- 
provable sentence from among the 
axioms, and one might hope that by 
adding it as a new axiom a stronger 
system which was complete would be 
achieved. But Godel's proof shows 
that this stronger system, too, would 
contain a sentence which is true but 
not provable; that, indeed, if this sys- 
tem were further strengthened, by the 
addition of this new true but unprov- 
able sentence as an axiom, the result- 

ing system would again be incomplete. 
And indeed, if a whole infinite se- 

quence of sentences were to be ob- 
tained by successive applications of 
Goidel's method, and added simultane- 

ously to the original axioms of Prin- 

cipia, the same process could still be 

applied to find another true sentence 
still unprovable. 

Actually, Godel described a very 
wide class of formal deductive systems 
to which his method applies. And most 
students of the subject have been con- 
vinced that any formal system of 
axioms and rules of inference which 
it would be reasonable to consider as 
a basis for a development of mathe- 
matics would fall in this class, and 
hence would suffer a form of incom- 

pleteness. From this viewpoint it ap- 
pears that one of the basic elements 
on which Russell rested his thesis that 
all mathematics could be reduced to 
logic must be withdrawn and recon- 
sidered. 

Consistency and Decision Problems 

I have been talking about complete- 
ness, which has to do with the ade- 

quacy of a formal system of axioms 
and rules of inference for proving true 
sentences. But I must mention, also, 
a second aim of the Russell-Whitehead 
Principia which also fared ill in the 
subsequent development of mathemati- 
cal logic. Russell and Whitehead were 
very much concerned with the ques- 
tion of consistency. While they hoped 
to have a complete system, one con- 

taining proofs for all correct state- 
ments, they were also concerned that 
their system should not contain proofs 
of incorrect results. In particular, in 
a consistent system such as they 
sought, it would not be possible to 
prove both a sentence and its nega- 
tion. 

To understand their concern with 
the question of consistency it is neces- 

sary to recall the rude wakening which 
mathematicians sustained in 1897 in 
connection with Cantor's theory of 
transfinite numbers. For centuries be- 
fore the time of Cantor mathematicians 
simply assumed that anyone who was 

properly educated in their subject could 

distinguish a correct proof from an in- 
correct one. Those who had trouble in 

making this distinction were simply 
"weeded out" in the course of their 

training and were turned from mathe- 
matics to lesser fields of study. And no 
one took up seriously the question of 

setting forth, in explicit and mathe- 
matical terms, exactly what was meant 

by a correct proof. 
Now when Cantor began his devel- 

opment of set theory he concerned 
himself with both cardinal and ordinal 
numbers of transfinite type. (These 
numbers can be used for infinite sets 
in very much the same way that we 
use ordinary numbers for counting and 

ordering finite sets.) Many of the 

properties of transfinite numbers are 
identical to those of ordinary numbers, 
and in particular Cantor showed that, 
given any ordinal number b, we can 
obtain a larger number, b + 1. How- 

ever, in 1897 an Italian mathematician, 
C. Burali-Forti, demonstrated that 
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there must be a largest ordinal number, 
by considering the set of all ordinal 
numbers in their natural order. Mathe- 
maticians were unable to find any 
point, either in the argument of Can- 
tor or in that of Burali-Forti, which 
they intuitively felt rested on incor- 
rect reasoning. Gradually it was real- 
ized that mathematicians had a genuine 
paradox on their hands, and that they 
would have to grapple at last with the 
question of just what was meant by a 
correct proof. Later, Russell himself 
produced an even simpler paradox in 
the intuitive theory of sets, based upon 
the set of all those sets which are not 
elements of themselves. 

This background sketch will make 
clear why it was that Russell and 
Whitehead were concerned that no 
paradox should be demonstrable in 
their own system. And yet they them- 
selves never attempted a proof that 
their system was consistent! The only 
evidence they adduced was that a 
large number of theorems had been 
obtained within their system without 
encountering paradox, and that all at- 
tempts to reproduce within the system 
of Principia Mathematica the Burali- 
Forti paradox, and such other para- 
doxes as were shown, had failed. 

As with the question of complete- 
ness, mathematicians were not satisfied 
with an answer in this form, and there 
arose a demand that an actual proof 
of the consistency be given for the 
system of Principia (and for other sys- 
tems then considered). The great and 
illustrious name of David Hilbert was 
associated with these efforts to achieve 
consistency proofs for various portions 
of mathematics, and under his stimulus 
and direction important advances were 
made toward this goal, both by him- 
self and by his students. But as with the 
efforts to prove completeness, Hilbert's 
program came to founder upon the 
brilliant ideas of Kurt Godel. 

Indeed, in that same 1931 paper to 
which I have previously referred, 
Godel was able to show that the ques- 
tions of consistency and completeness 
were very closely linked to one 
another. He was able to show that if a 
system such as the Principia were 
truly consistent, then in fact it would 
not be possible to produce a sound 
proof of this fact! Now this result 
itself sounds paradoxical. Nevertheless, 
when expressed with the technical ap- 
paratus which Godel developed, it is in 
fact a precisely established and clearly 
meaningful mathematical result which 
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has persuaded most, though admittedly 
not all, logicians that Hilbert's search 
for a consistency proof must remain 
unfulfilled. 

I should like finally to mention a 
third respect in which the original aim 
of mathematical logicians was frus- 
trated. The questions of consistency 
and completeness clearly concerned 
the authors of Principia Mathematica, 
but the question of decision procedures 
seems not to have been treated to any 
serious extent by Russell and White- 
head. Nevertheless, this is an area of 
study which interested logicians as far 
back as the time of Leibniz. Indeed, 
Leibniz himself had a great dream: He 
dreamt that it might be possible to 
devise a systematic procedure for an- 
swering questions-not only mathe- 
matical questions but even questions 
of empirical science. Such a procedure 
was to obviate the need for inspiration 
and replace this with the automatic 
carrying out of routine procedure. Had 
Leibniz been conversant with today's 
high-speed computing machines he 
might have formulated his idea by as- 
serting the possibility that one could 
write a program of such breadth and 
inclusiveness that any scientific ques- 
tion whatever could be placed on tape 
and, after the machine had been set 
to work on it for some finite length of 
time, a definitive reply would be forth- 
coming. 

Logic after 1936 

Leibniz's idea lay dormant for a 
long time, but it was natural to revive 
it in connection with the formal de- 
ductive systems which were developed 
by mathematical logicians in the early 
part of this century. Since these lo- 
gicians had been interested in formu- 
lating mathematical ideas within a sym- 
bolic calculus and then manipulat- 
ing the symbols according to prede- 
termined rules in order to obtain 
further information about these mathe- 
matical concepts, it seemed natural to 
raise the question of whether one could 
not devise purely automatic rules of 
computation which would enable one to 
reach a decision as to the truth or fal- 
sity of any given sentence of the cal- 
culus. And while the area of empirical 
science was pretty well excluded from 
the consideration of 20th-century logi- 
cians seeking such decision procedures, 
it was perhaps not beyond the hope of 
some that a system as inclusive as that 

of the Principia could some day be 
brought within the scope of such a 
procedure. 

Efforts to find decision procedures 
for various fragments of the Principia 
were vigorous and many. The doctoral 
dissertation of Post, for example, con- 
tained some efforts in this direction, 
and further work was produced during 
the succeeding 15 years by logicians of 
many countries. Then in 1936 Alonzo 
Church, making use of the newly de- 
veloped notion of recursive function, 
was able to demonstrate that for a cer- 
tain fragment of mathematical lan- 
guage, in fact for that very first-order 
predicate logic which Gbdel, in 1930, 
had showed to be complete, no decision 
procedure was possible. And so with 
decision procedures, as with proofs of 
completeness and consistency, efforts 
to establish a close rapport between 
logic and mathematics came to an un- 
happy end. 

Well, I have brought you down to the 
year 1936. Probably most mathemati- 
cians have heard at least something of 
the development which I have sketched 
here. But somehow the education in 
logic of most mathematicians seems to 
have been terminated at about that 
point. The impression is fairly wide- 
spread that, with the discoveries of 
Godel and Church, the ambitious pro- 
gram of mathematical logicians in ef- 
fect ground to a halt, and that since 
then further work in logic has been a 
sort of helpless faltering by people, 
unwilling to accept the cruel facts of 
life, who are still seeking somehow to 
buttress the advancing frontiers of 
mathematical research by finding a 
nonexistent consistency proof. 

And yet this image is very far indeed 
from reality. For in 1936, just at the 
time when, many suppose, the demise 
of mathematical logic had been com- 
pleted, an international scholarly soci- 
ety known as the Association for Sym- 
bolic Logic was founded and began 
publication of the Journal of Symbolic 
Logic. In the ensuing 25 years this has 
greatly expanded to accommodate a 
growing volume of research. And at 
present there are four journals devoted 
exclusively to publishing material deal- 
ing with mathematical logic, while many 
articles on logic appear in a variety of 
mathematical journals of a less special- 
ized nature. 

In the space remaining I should like 
to mention very briefly some of the de- 
velopments in mathematical logic since 
1936. 
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Sets and Decision Methods 

I have found it convenient for this 
exposition to divide research in mathe- 
matical logic into seven principal areas. 
And first I shall mention the area deal- 
ing with the foundations of the theory 
of sets. 

To explain the connection of this 
field with logic it should be mentioned 
that those objects which Russell and 
Whitehead had called "propositional 
functions" are, in fact, largely indis- 
tinguishable from what are now called 
"sets" and "relations" by mathemati- 
cians. From a philosophical point of 
view there is perhaps still room for 
distinguishing these concepts from one 
another. But since, in fact, the treat- 
ment of propositional functions in Prin- 
cipia Mathematica is extensional (so 
that two functions which are true of ex- 
actly the same objects are never dis- 
tinguished), for mathematical purposes 
this system is identical to one which 
treats of sets and relations. 

Among systems of set theory which 
have been put forth by logicians as a 
basis for the development of mathe- 
matics, the principal ones are the theory 
of types used by Whitehead and Rus- 
sell themselves, subsequently amplified 
by L. Chwistek and F. Ramsey, and an 
alternative line of development initi- 
ated by E. Zermelo, to which important 
contributions were subsequently made 
by A. Fraenkel and T. Skolem. Still 
another system, having certain charac- 
teristics in common with each of these 
two principal forms, was advanced and 
has been studied by W. Quine and, to 
some extent, by J. B. Rosser. Of these 
systems the Zermelo-type system has 

probably received most attention, along 
with an important variant form sug- 
gested and developed by J. von Neu- 
mann, P. Bernays, and Godel. 

Among the significant efforts expend- 
ed on these systems were those directed 
toward establishing the status of propo- 
sitions such as the axiom of choice and 
the continuum hypothesis of Cantor. 
Here the names of Godel and A. Mo- 
stowski are especially prominent. 

Godel showed that a strong form of 
the axiom of choice and the generalized 
continuum hypothesis are simultaneous- 
ly consistent with the more elementary 
axioms of set theory-under the as- 

sumption that the latter are consistent 

by themselves. Mostowski showed that 
the axiom of choice is independent of 
the more elementary axioms of set the- 

ory, provided that a form of these ele- 

mentary axioms is selected which does 
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not exclude the existence of nondenu- 

merably many "Urelemente" (objects 
which are not sets). The independence 
of the axiom of choice from systems of 
axioms such as that used in Godel's 
consistency proof, and the independence 
of the continuum hypothesis in any 
known system of set theory, remain 
open questions. 

More recently the direction of re- 
search in the area of foundations of set 
theory seems to have shifted from that 
of formulating specific axiom systems 
and deriving theorems within them to 
consideration of the totality of differ- 
ent realizations of such axiom systems. 
It is perhaps J. Shepherdson who should 
be given credit for the decisive step in 
this shift of emphasis, although his 
work clearly owes much to Godel's. 
Subsequent work by Tarski, R. Vaught, 
and R. Montague has carried this de- 
velopment much further. 

An important tool in their work is 
the concept of the rank of a set, which 
may be defined inductively as the least 
ordinal number exceeding the rank of 
all elements of the set. This notion may 
be used to classify models of set theory 
according to the least ordinal number 
which is not the rank of some set of the 
model. Recently there have been some 

very interesting contributions by Azriel 
Levy to these studies. His efforts have 
been directed toward successively 
strengthening the axioms of set theory 
so as to penetrate increasingly far into 
the realm of the transfinite. 

A second area that I would delineate 
in contemporary logical research is that 
dealing with the decision problem. While 
it is true that the work of Church made 
it clear that there could be no universal 
decision procedure for mathematics, 
there has remained a strong interest in 
finding decision procedures for more 
modest portions of mathematical the- 

ory. Of special interest here is Tarski's 
decision method for elementary algebra 
and geometry, and an important exten- 
sion of it which was made by Abraham 
Robinson. Wanda Szmielew has also 

given an important decision procedure 
-namely, one for the so-called "ele- 
mentary theory" of Abelian groups. By 
contrast, the elementary theory of all 

groups was shown by Tarski to admit 
of no decision procedure. In fact, 
Szmielew and Tarski considered exactly 
the same set of sentences-roughly, all 
of those sentences which can be built 
up by the use of the group operation 
symbol, and variables ranging over the 
group elements, with the aid of the 

equality sign, as well as the usual log- 

ical connectives and quantifiers. If we 
ask whether any given sentence of this 
kind is true for all Abelian groups, it is 
possible to answer the question in an 
automatic way by using the method of 
Szmielew. But if we are interested in 
which of these sentences are true for 
all groups, then Tarski's proof shows 
that it is impossible to devise a machine 
method to separate the true from the 
false ones. 

A result closely related to Tarski's 
is that of P. Novikov and W. Boone 
concerning the nonexistence of a deci- 
sion method which would enable one 
to solve the word problem for the the- 
ory of groups, a problem for which a 
solution had long been sought by alge- 
braists. In fact it is a simple matter to 
show that the Novikov-Boone result is 
equivalent to the nonexistence of a de- 
cision method for a certain subset of 
the sentences making up the elementary 
theory of groups-namely, all those 
sentences having a special, very simple, 
form. Hence, this result is stronger than 
Tarski's. 

Recursive Functions 

Now the key concept whose develop- 
ment was needed before negative solu- 
tions to decision problems could be 
achieved was the concept of a recursive 
function. Intuitively speaking this is 
simply a function from natural num- 
bers to natural numbers which has the 
property that there is an automatic 
method for computing its value for any 
given argument. A satisfactory and ex- 
plicit mathematical definition of this 
class of functions was first formulated 
by J. Herbrand and G6del. But it re- 
mained for S. C. Kleene to develop the 
concept to such an extent that it now 
underlies a very large and important 
part of logical research. 

Much of the work with recursive 
functions has been along the line of 

classifying sets and functions, a clas- 
sification similar to that involving pro- 
jective and analytic sets in descriptive 
set theory. Kleene himself, his students 
Addison and Spector, and other logi- 
cians, including Post, Mostowski, J. 
Shoenfield, and G. Kreisel, have con- 
tributed largely to this development. 
Also to be mentioned are the applica- 
tions which initially Kleene, and subse- 
quently others, have attempted to make 
of the concept of recursive function by 
way of explicating the notion of "con- 
structive" mathematical processes. In 
this connection several attempts have 
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been made to link the notion of recur- 
sive function with the mathematical 
viewpoint known as intuitionism, a rad- 
ical reinterpretation of mathematical 
language which was advanced by L. 
Brouwer and developed by A. Heyting. 

Algebra, Logic, and Models 

A fourth area of logical research 
deals with material which has recently 
been described as algebraic logic. This 
is actually a development which can be 
traced back to the very early work of 
Boole and Schroder. However, interest 
in the subject has shifted away from the 
formulation and derivation of algebraic 
equations which express laws of logic 
to the consideration of abstract struc- 
tures which are defined by means of 
such equations. Thus, the theory of 
Boolean algebras, of relation algebras, 
of cylindric and polyadric algebras have 
all successively received attention; M. 
Stone, Tarski, and P. Halmos are close- 
ly associated with the central develop- 
ment here. The algebraic structures 
studied in this domain may be associ- 
ated in a natural way with mathemat- 
ical theories, and this association per- 
mits the use of very strong algebraic 
methods in the metamathematical anal- 
ysis of these theories. 

A fifth area of modern logical re- 
search concerns the so-called theory of 
models. Here effort is directed toward 
correlating mathematical properties pos- 
sessed by a class of structures defined 
by means of given mathematical sen- 
tences with the structural properties of 
those sentences themselves. 

A very early example is Garrett Birk- 
hoff's result that, for a class of struc- 
tures to be definable by means of a set 
of equational identities, it is necessary 
and sufficient that it be closed under 
formation of substructures, direct prod- 
ucts, and homomorphic images. Char- 
acterizations of a similar nature were 
given for classes definable by universal 
elementary sentences (Tarski) and by 
any elementary sentences (J. Keisler). 

A related type of result is R. Lyn- 
don's theorem that any elementary sen- 
tence whose truth is preserved under 
passage from a model of the sentence 
to a homomorphic image of that model 
must be equivalent to a sentence which 
does not contain negation signs. In a 
different direction, E. Beth has shown 
that if a given set symbol or relation 
symbol is not definable in terms of the 
other symbols of an elementary axiom 
system, then there must exist two dis- 
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tinct models of these axioms which are 
alike in all respects except for the in- 
terpretation of the given symbol. (This 
proves the completeness of A. Padoa's 
method of demonstrating nondefinabil- 
ity.) A logical interpolation theorem of 
W. Craig's provides a close link for the 
results of Lyndon and Beth. 

A sixth area which can be discerned 
in recent work on logic concerns the 
theory of proof. This is perhaps the 
oldest and most basic portion of logic, 
a search for systematic rules of proof, 
or deduction, by means of which the 
consequences of any propositions could 
be identified. In recent work, however, 
logicians have begun to depart in rad- 
ical ways from the type of systems for 
which rules of proof were originally 
sought. For example, several attempts 
have been made to provide rules of 
proof for languages containing infinitely 
long formulas, such as sentences with 
infinitely many disjunctions, conjunc- 
tions, and quantified variables. Tarski, 
Scott, C. Karp, W. Hanf, and others 
have participated in such efforts. Curi- 
ously enough, while this direction of 
research seems at first very far removed 
from ordinary mathematics, one of the 
important results was used by Tarski to 
solve a problem, concerning the exist- 
ence of measures on certain very large 
spaces, which had remained unsolved 
for many years. 

The last area of logical research I 
should like to bring to your attention 
is a kind of converse study to what we 
have called algebraic logic. In the latter 
we are interested in applying methods 
of algebra to a system of logic. But 
there are also studies in which results 
and methods of logic are used to estab- 
lish theorems of modern algebra. The 
first to have made such applications 
seems to have been the Russian mathe- 
matician A. Malcev, who in 1941 in- 
dicated how the completeness theorem 
for first-order logic could be used to 
obtain a result on groups. Subsequently 
the same technique was used by Tarski 
to construct various non-Archimedean 
ordered fields. Perhaps the best-known 
name in this area is that of Abraham 
Robinson, who formerly was associated 
with the University of Toronto in 
Canada. Among his contributions was 
the application of logical methods and 
results to improve a solution, given in 
1926 by E. Artin, to Hilbert's 17th 
problem (17th of the famous list of 
problems presented in his address to the 
International Congress of Mathemati- 
cians in 1900). Robinson showed that 
when a real polynomial which takes 

only nonnegative values is represented 
as a sum of squares of rational func- 
tions, the number of terms needed for 
the representation depends only on the 
degree and number of variables of the 
given polynomial, and that it is inde- 
pendent of the particular coefficients. 

Russell's Thesis in Perspective 

I hope that this very brief sketch of 
some of the areas of contemporary log- 
ical research will give some idea of the 
ways in which logicians have reacted to 
the theorems of Godel and Church 
which, in the period 1931 to 1936, dealt 
so harshly with earlier hopes. Speaking 
generally, one could describe this reac- 
tion as compounded of an acceptance 
of the impossibility of realizing the 
original hopes for mathematical logic, 
a relativization of the original program 
of seeking completeness and consistency 
proofs and decision methods, an incor- 
poration of the new methods and con- 
structs which appeared in the impossi- 
bility proofs, and the development of 
quite new interests suggested by gen- 
eralization of early results. 

Now with this background, let us 
return to Russell's thesis that all of 
mathematics can be reduced to logic. I 
would say that if logic is understood 
clearly to contain the theory of sets 
(and this seems to be a fair account of 
what Russell had in mind), then most 
mathematicians would accept without 
question the thesis that the basic con- 
cepts of all mathematics can be ex- 
pressed in terms of logic. They would 
agree, too, that the theorems of all 
branches of mathematics can be de- 
rived from principles of set theory, al- 
though they would recognize that no 
fixed system of axioms for set theory 
is adequate to comprehend all of those 
principles which would be regarded as 
"mathematically correct." 

But perhaps of greater significance 
is the consensus of mathematicians that 
there is much more to their field than 
is indicated by such a reduction of 
mathematics to logic and set theory. 
The fact that certain concepts are se- 
lected for investigation, from among 
all logically possible notions definable 
in set theory, is of the essence. A true 
understanding of mathematics must in- 
volve an explanation of which set-theory 
notions have "mathematical content," 
and this question is manifestly not re- 
ducible to a problem of logic, however 
broadly conceived. 

Logic, rather than being all of math- 
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ematics, seems to be but one branch. 
But it is a vigorous and growing branch, 
and there is reason to hope that it may 
in time provide an element of unity to 
oppose the fragmentation which seems 
to beset contemporary mathematics- 
and indeed every branch of scholarship. 
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I first met Arthur Compton in 1924, 
in William Duane's x-ray research lab- 
oratory at Harvard University. Comp- 
ton had come on a visit to attempt to 
discover why Duane and his associates 
could not confirm his discovery of the 
change of wavelength of x-rays on scat- 
tering, now known as the Compton 
effect. I do not know what Compton 
had been doing just before he arrived, 
but his appearance late that afternoon 
was completely nontypical. He was di- 
sheveled, unshaven, and obviously over- 
tired. He returned to the laboratory 
the following morning looking like him- 
self-a well-groomed, energetic, and 
clear-thinking physicist. 

The situation was rather tense, with 
peculiar overtones. Compton was not 
the first to perform experiments which 
indicated that scattered x-rays and 
gamma rays were more absorbable- 
that is, of longer wavelength-than 
their primaries. As far back as 1912 
Sadler and Mesham had observed such 
an effect in x-rays scattered from car- 
bon, and Compton himself, in 1921, 
had followed others in experiments 
showing the softening of gamma rays 
on scattering. But, as has several times 
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happened in physics, the experiment, 
the interpretation, and the audience 
were not simultaneously ready, and 
these prior results attracted little atten- 
tion. Compton, however, had never 
completely laid aside those gamma-ray 
experiments he performed in Ruther- 
ford's laboratory, and he turned them 
over and over in his mind, finally reach- 
ing an interpretation based on the trans- 
fer of momentum from light quanta to 
free electrons. Again the "interpreta- 
tion" was not new; the idea of photons 
or light quanta had long been in the 
minds of many physicists. Some had 
even worked out Compton's equations 
for the conservation of energy and 
momentum in the photon-electron col- 
lision, ending with the wry remark that 
this would be a beautifully simple the- 
ory of scattering but was of course un- 
tenable because everyone knew that 
scattered light and x-rays were un- 
changed in wavelength and coherent 
with the primary radiation. Compton 
solved the equations independently, 
however, and was the first to publish 
the results. 

It took Compton to correlate theory 
and experiment and finally to clinch the 

happened in physics, the experiment, 
the interpretation, and the audience 
were not simultaneously ready, and 
these prior results attracted little atten- 
tion. Compton, however, had never 
completely laid aside those gamma-ray 
experiments he performed in Ruther- 
ford's laboratory, and he turned them 
over and over in his mind, finally reach- 
ing an interpretation based on the trans- 
fer of momentum from light quanta to 
free electrons. Again the "interpreta- 
tion" was not new; the idea of photons 
or light quanta had long been in the 
minds of many physicists. Some had 
even worked out Compton's equations 
for the conservation of energy and 
momentum in the photon-electron col- 
lision, ending with the wry remark that 
this would be a beautifully simple the- 
ory of scattering but was of course un- 
tenable because everyone knew that 
scattered light and x-rays were un- 
changed in wavelength and coherent 
with the primary radiation. Compton 
solved the equations independently, 
however, and was the first to publish 
the results. 

It took Compton to correlate theory 
and experiment and finally to clinch the 

matter with a demonstration in which 
the change in wavelength was precisely 
measured with a crystal spectrometer 
and shown to be h/ mc or 0.024 ang- 
strom units at 90 degrees, as the calcu- 
lation had predicted. The audience was 
ready, because the apparent conflict be- 
tween the corpuscular and the wave 
theories of light was in every physicist's 
mind. A Nobel-prize discovery had been 
made. 

But here at Harvard in 1924, in the 
laboratory of a highly respected in- 
vestigator of x-rays, the crystal spec- 
trometer measurements seemed to give 
different results. The scattered radiation 
showed, as Compton had found, part 
of the radiation to be shifted to longer 
wavelengths, but Duane interpreted this 
as "tertiary radiation," of the brems- 
strahlung type, caused by the decelera- 
tion of photoelectrons ejected from the 
scatterer by the primary radiation. Ac- 
tually, the shift at 90 degrees, from 
carbon, of the K x-rays of molybdenum 
could be quantitatively accounted for 
by the energy loss in the ejection of 
carbon K-electrons. The crucial tests 
of the angular dependence of the shift, 
and of its independence of the atomic 
number of the scatterer, had not been 
decisively performed at Harvard. 

A peculiar overtone to the situation 
was Duane's great resistance to accept- 
ing a photon theory of scattering. It 
was Duane and Hunt who, a few years 
previously, had quantitatively estab- 
lished the relation between the electron 
kinetic energy and the maximum fre- 
quency of the bremsstrahlung, which, 
in those pre-wavemechanical days, was 
considered one of the strongest evid- 
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