
Water Waves and Hydrons 
The term "hydron" is proposed for fictitious particles 

that travel with the group velocity of waves. 

J. L. Synge 

In modern physics the word wave 
has magic in it, but no one can say just 
what a wave is. Correction: everyone 
thinks that the only waves worthy of 
the name are those in which he is in- 
terested. Let us abandon such selfish 
views and cast a glance over those 
physical phenomena that are commonly 
called "wave phenomena." Here is a 
list of the most important. 

1) Water waves (surface gravity, 
capillary). 

2) Sound waves in air or other gases 
(including blast waves). 

3) Elastic waves (violin string, bell, 
earthquake). 

4) Electromagnetic waves (radio, 
television, radar, infrared, visible light, 
ultraviolet light, x-rays, gamma rays). 

5) Matter waves (of de Broglie, 
Schroedinger, Dirac). 

6) Gravitational waves. 
What is common to them all? Stu- 

dents are told that waves transmit 
energy without the transmission of mat- 
ter, and that is true of all the waves 
listed above, with a signal exception- 
matter waves. But there is a certain 
mystery about this transmission of en- 
ergy, because it is widely recognized 
that the energy which is transmitted 
travels, not with the speed of the waves, 
but with the group velocity. Further- 
more, when energy is emitted or ab- 
sorbed in microscopic quantities, this 
emission and absorption take place as if 
the energy traveled, not in waves, but 
in particles of energy. This concept of 
parcels of energy is clearest in the case 
of electromagnetic waves, and the word 
photon is now an accepted word and 
concept in physics; it was invented in 
1926 by G. N. Lewis, who wrote: "I 
therefore take the liberty of proposing 
for this hypothetical new atom, which 
is not light but plays an essential part 
in every process of radiation, the name 
photon." 

For fictitious particles carrying en- 
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ergy in elastic vibrations the word 
phonon is used, and the word graviton 
is ready for the description of the trans- 
mission of gravitational energy, al- 
though the corresponding physical phe- 
nomenon has yet to be observed. 

It may be noticed that in the list of 
wave phenomena the word ray occurs 
twice, in x-rays and gamma rays. If we 
regard this as a mere historical survival 
and speak instead of x-waves and gam- 
ma waves, as indeed we might, then the 
word ray disappears entirely from view; 
the ray is swallowed up in the wave. 
It would be wrong, however, to let the 
word ray disappear from physics, for 
the great antithesis of the century is 
better set out in the words wave and 
ray than in the more usual wave and 
particle. 

Nature Seen through Half-Shut Eyes 

A man who takes a magnifying glass 
into a picture gallery and examines the 
canvases at a distance of 3 inches may 
acquire much interesting information 
about the texture of paint, but he does 
not see the pictures. It is better to 
stand away. If trivial details still in- 
trude, it is better to half-shut the eyes. 
As a final step, it is well to shut the 
eyes completely and think about what 
has been seen. 

This has a moral for science, par- 
ticularly in an age when technical skill 
in observation is rapidly advancing. Had 
the accuracy of observation been greater 
in his day, Kepler would have found it 
harder to reach the conclusion that the 
planets pursue elliptical orbits round 
the sun. He did not have to half-shut 
his eyes; they were half-shut for him. 
But once a concept has been under- 
stood in simple terms, details provided 
by improved observation can be added 
without obliterating the central scheme. 

Each of the six types of waves listed 

possesses an elaborate mathematical 
theory, and there is little in common 
between these theories. In some, but 
not by any means in all, we find the 
classical wave equation 
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where k is some constant. But this 
equation is not really adequate to deal 
with dispersive waves. In fact, the more 
closely we examine these various wave 
phenomena, the more unlike one an- 
other they appear, until the only link 
between them seems to lie in the use of 
the word wave. To see the connection 
which justifies this common name, we 
must abandon the magnifying glass and 
look at the phenomena with half-shut 
eyes. To do this, we have to throw off 
our modern sophistication and look at 
things as they appeared to three great 
men of the past: Pierre de Fermat 
(1601-1665); Christian Huyghens 
(1629-1695); and William Rowan 
Hamilton (1805-1865). Historical ac- 
curacy about their work is of no impor- 
tance here, for all we seek from them 
is the blurred images of nature with 
which they worked. 

From Fermat we learn to think about 
a moving particle, its path determined 

by a principle of least time, 8fn ds = 0, 
where a "refractive index" n is sup- 
posed known as a function of position, 
and possibly of direction also. The his- 
tory of the moving particle may be 
called a "ray"; no waves appear. 
Huyghens, on the other hand, described 
how waves propagate by means of 
secondary wavelets; rays do not appear. 
Hamilton wove these two concepts into 
a single mathematical theory, in which 
one can start from rays and evolve the 
waves, or vice versa. 

Hamilton was a mathematician rather 
than a physicist, and one might say that 
he viewed nature through half-shut eyes. 
But there is nothing blurred about his 
mathematics, and, if we can suppress 
the archaic physics in his work and 
treat it as a mathematical structure, we 
find in it the goal we are seeking, the 
link between the several types of waves 
which seem so different to the special- 
ists who work with them. 

Of course, a price must be paid for 
myopic vision. In applying Hamiltonian 
methods we shall make mistakes in the 
sense that we shall say things about 
nature which are not true. But, on the 
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other hand, we find ourselves able to 
answer many questions otherwise un- 
answerable by virtue of their apparent 
complexity, and, if the answers are not 
quite correct, it is better to have an 
answer which is at least qualitatively 
right than no answer at all. 

Hamiltonian theory is like an oracle. 
Some questions about waves it will not 
answer at all, for its vocabulary is 
limited, and questions do not make 
sense to it unless they refer to fre- 
quency and wavelength (or wave num- 
bers). If a question is put in such 
terms, the rough-and-ready rule for 
assessing the reliability of the oracle's 
answer is this: it is likely to be good 
physically if the wavelengths involved 
are small compared with other relevant 
lengths, or if the frequency is high 
relative to other relevant frequencies. 

Optics and Water Waves 

Of all the phenomena under con- 
sideration, optics has been the most 
studied throughout the history of phys- 
ics. The crude facts of optics are 
known to the man in the street, and 
he thinks in terms of rays of light 
(Fermat). To explain interference sim- 
ply, the construction of Huyghens is 
invoked. The next step is to Maxwell's 
equations, and somewhere in between 
we cross a barrier separating "geo- 
metrical optics" from "physical optics." 
The student who crosses this barrier is 
supposed not to look back at the toys 
of his intellectual childhood, but he gets 
two rude shocks. First, if called upon 
to design an optical instrument, he finds 
it quite impossible to solve Maxwell's 
equations for this purpose, and he must 
fall back on the elementary methods of 
geometrical optics. Secondly, in deal- 
ing with photons in cases of small illu- 
mination he finds himself thinking of 
them as particles in quite an elemen- 
tary way. In fact, the Maxwellian 
facade promises more than it can ac- 
tually achieve, and in ninety-nine cases 
out of a hundred the method actually 
used is the method of geometrical 
optics. 

There are no elementary students of 
water waves. In fact, there are very 
few students of water waves at all in 
comparison with the numbers interested 
in other types of waves. The reason is 
not far to seek. Ordinary differential 
equations are much easier to deal with 
than partial differential equations. 
Hence, particles are easier to deal with 
than continua. Optics started with par- 

14 

ticles of light, the easy way, and only 
came gradually to "waves in the ether." 
But on water it is waves that we see, 
not particles carrying energy. Thus, in- 
evitably water had to be treated as a 
continuum. Partial differential equa- 
tions had to be written down as a start- 
ing point, and the sophistication of this 
approach separated the theory from the 
simple phenomena, observed by the 
man on the beach, of waves rolling in 
from the ocean. It seems that only re- 
cently has it been realized that water 
waves can, with fair accuracy, be 
treated as light waves are usually treated 
-by the so-called methods of geo- 
metrical optics (1). 

It is a psychological mistake, I think, 
to call this the method of "geometrical 
optics," because one is then in danger 
of reading into it optical shades of 
meaning. In ordinary optics dispersion 
plays a very minor role; in a vacuum 
the speed of light is rigorously inde- 
pendent of wavelength, and in ordinary 
transparent media the dependence is 
slight, so that the correction of chro- 
matic aberration involves only small 
changes in design. But in water waves 
(and in de Broglie waves, too) disper- 
sion is a major effect and its neglect 
would be ruinous. Hence I suggest 
that, in referring to that method which 
links all waves together, we should 
speak of the "Hamiltonian method," 
even though the applications lie far 
outside those contemplated by Hamil- 
ton and the method itself is somewhat 
generalized (2). 

The Hamiltonian Method 

I have referred above to the relative 
difficulty of dealing with partial differen- 
tial equations in comparison with ordi- 
nary differential equations. If we ex- 
amine carefully any type of wave 
phenomenon we find partial differen- 
tial equations. The Hamiltonian method 
is essentially a process of cheating by 
which we substitute ordinary differen- 
tial equations. We excuse this cheat 
by saying that, under certain circum- 
stances, it is only a very little cheat. 
(Reflect, if you wear glasses, that a 
thoroughly honest optician would not 
have them ready yet-he would still be 
trying to solve Maxwell's equations!) 

What follows applies in principle to 
all the wave phenomena listed earlier, 
but for notational reasons I must con- 
centrate on water waves. All physical 
phenomena take place in four-dimen- 
sional space-time, and that is true of 

water waves. But we shall regard water 
waves as an up-and-down disturbance 
of a plane surface, and so we can get 
on with only two dimensions of space. 
We speak of a three-dimensional space- 
time, in which we have coordinates 
Xt, X2 (rectangular Cartesian coordi- 
nates in the undisturbed surface) and 
X3 (the time). 

We start with the simplest type of 
waves, waves with parallel straight 
crests, all of the same height. The 
vertical disturbance 4 of the surface 
can then be written 

a cos (4.1) 
where a is a constant amplitude and 
P is the phase angle, which may be 

written 

? = xylI + x2y2 + x3sy + e (4.2) 

where the three y's are constants and 
e is another constant. We recognize at 
once that yi and y2 are wave numbers, 
connected with the wave-length X by 

yi2 + y2 = (27l/X)2 (4.3a) 

and y3 is the circular frequency, con- 
nected with the ordinary frequency v by 

ys = 2,rv (4.3b) 

The wave speed (or phase speed) is 

W = Xv = y3/y 

y2 = yi2 + y22 (4.4) 

There is no cheat here. The next step 
is an appeal to sophisticated hydro- 
dynamics. We find, for example, that 
there is a formula for wave speed in 
terms of wavelength for water of given 
constant depth; equivalently, in the 
foregoing notation it reads 

= y2 - gy tanh hy = 0 (4.5) 

g being the acceleration of gravity and 
h the constant depth; 0 is merely a 
symbol for the expression written here. 
Still no cheat. We note further that, 
from its definition, A has partial de- 
rivatives as follows: 

a /ax, = yr (4.6) 

the subscript r, here and later, taking 
the values 1, 2, 3. We may now, if we 
like, substitute for the y's in Eq. 4.5 
the partial derivatives of 1f, and so ob- 
tain for f a partial-differential equa- 
tion. (This is, in fact, the famous 
Hamilton-Jacobi equation of dynamics, 
in disguise.) 

All this is symbol-juggling in prepa- 
ration for the cheat, which comes now. 
We take another look at Eq. 4.5 and 
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recognize h as the constant depth of 
the water. But suppose we are inter- 
ested, as we well may be, in water of 
variable depth. Then h is not a con- 
stant but a function of xl and X2, and 
we no longer have any right to accept 
Eq. 4.5 as a valid equation connecting 
frequency, wavelength, and variable 
depth, because it was given to us only 
for constant depth. But this is what we 
do, muttering something about the 

depth changing only slowly with change 
of position. It is better not to mutter 

anything but to live dangerously, ac- 

cepting Eq. 4.5 with h variable; accept- 
ing, too, all the foregoing formulas with 
one modification in interpretation-the 
y's are no longer constants, as they 
were, but variables (conscience mutters 

"slowly changing"). 
When, previously, we thought of sub- 

stituting in Eq. 4.5 from Eq. 4.6, it 
was in the nature of a joke; we did not 
have to find the phase angle, for it was 

given by Eq. 4.2, in which the y's were 
regarded as given constants. But this 
substitution is no longer a joke: it gives 
the formidable-looking partial differen- 
tial equation 

a - X ,, ax-, )+ax1 \ X1/2 

tanh , h(x,X2) a[( + (>) ]" a3 gLT \ ax/ 
=0 (4.7) 

To find the phase angle over the sur- 
face of the water and at all times, this 
equation must be solved. If it is solved, 
then we have the waves; they are given 
by equations 

= const. (4.8) 

These are curves on the water surface, 
the crests being J = 0, 27r, 47r, ... 
since phase angle must change by 27r 
on passing from crest to crest. 

Rays and Hydrons 

What has just been described is only 
a first step in the Hamiltonian method. 
By cheating a little we have obtained a 

partial differential equation (Eq. 4.7) 
for the phase angle. The next step is 
honest and purely mathematical. It 
consists in solving Eq. 4.7, or any such 
equation involving only first derivatives, 
given suitable initial data such as the 
phase for all times on a given curve. 
Pursuing the method (3), we find that 
all we need to do is to solve a certain 
set of ordinary differential equations, 
which are in fact of the Hamiltonian 
form familiar in dynamics (4): 

dx,/dwi =f aQ/Oy, 
dy,/dw = - OQ/Oax (5.1) 

(r = 1, 2, 3). If h were a constant, 
then 0 would not depend on the x's 
at all and the y's would all be con- 
stants. The solutions of Eq. 5.1 would 
then be straight lines in space-time- 
that is, the histories of "particles" mov- 
ing with constant velocities. 

In Hamiltonian language, the space- 
time curves satisfying Eq. 5.1 are rays, 
and it is at this precise point that that 
word enters the Hamiltonian theory of 
water waves. Those who have used 
what is essentially this method have 
been a little timid about nomenclature, 
preferring the word orthogonal to ray, 
and indeed the rays are generally, but 
not always, at right angles to the 
waves. But ray is undoubtedly the 
proper word, forced on us if we seek a 
common ray-wave basis for the discus- 
sion of all types of waves. 

It must be emphasized that a ray is 
not a curve drawn on the surface of the 
water; it is a space-time curve, and so 
represents the history of a moving 
"particle," quite fictitious if you like. 
On examining the speed at which these 
fictitious particles move (this speed is 
contained in Eqs. 5.1), we find that it 
is precisely that speed commonly re- 
ferred to as the group velocity. Now 
the group velocity, which differs from 
the phase velocity in a dispersive me- 
dium, has long been recognized as the 
speed at which energy is transmitted. 
We have words for these fictitious par- 
ticles: for elastic waves, the phonon; 
for electromagnetic waves, the photon; 
for matter waves, the electron (or what- 

ever particle is involved); for gravita- 
tional waves, the graviton. 

Why should the water wave be a 
Cinderella among waves? If all wave 
types can be subsumed under one 
Hamiltonian formulation, then for each 
type there should be an appropriate 
name for that fictitious particle which 
travels with the ray (or group) velocity. 
In fact, you cannot discuss a thing 
without calling it by a name, and any- 
one who delves into the Hamiltonian 
theory of water waves will recognize 
this necessity. Accordingly, I venture 
to suggest the name "hydron" for such 
fictitious particles associated with water 
waves. This name was evolved in dis- 
cussion with W. F. C. Purser, who has 
been working with me on this Hamil- 
tonian theory and has contributed to 
the clarification of basic ideas (5). 

Epilogue 

Do hydrons really exist? As part of 
a mathematical scheme for the discus- 
sion of idealized water waves, they 
certainly do exist, but it is hardly likely 
that anyone will succeed in catching 
one in a bottle on the seashore. Never- 
theless, the concept and the word may 
possibly be of some service in discuss- 
ing how ocean waves carry energy. 
When a roller breaks on a beach it 
causes the beach to vibrate and warms 
it up a little, and we may say without 
laughter that the energy is carried away 
by phonons and photons. Is it not 
pleasant to be able to say that the 
breaking of a wave is a conversion of 
hydrons into phonons and photons? 

References and Notes 

1. W. H. Munk and M. A. Traylor, J. Geol. 55, 
1 (1947); "Breakers and Surf, Principles in 
Forecasting," U.S. Navy Hydrographic Office 
Publ. No. 234 (1958); J. B. Keller, J. Fluid 
Mechanics 4, 607 (1958); for other refer- 
ences, see J. J. Stoker, Water Waves (Inter- 
science, New York, 1957), p. 133. 

2. See J. L. Synge, in Handbuch der Physik, S. 
Fliigge, Ed. (Springer, Berlin, 1960), vol. 3, 
pt. 1, p. 109, where, however, the approach is 
oriented toward classical dynamics rather more 
than is desirable in the present connection. 

3. J. L. Synge, ibid., p. 124. 
4. Here w is a parameter; it is not the time x3. 
5. W. F. C. Purser and J. L. Synge, Nature 

194, 268 (1962). 

5 OCTOBER 1962 15 


