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The Nature of Mathematics 

Both constructive intuition and the study of abstract 
structures characterize the growth of mathematics. 

Mina Rees 

Some of the most noted mathema- 
ticians and philosophers have addressed 
themselves to a discussion of the nature 
of mathematics, and I can hope to add 
very little to the ideas they have ex- 
pressed and the insights they have 
given; but I shall attempt to draw to- 
gether some of their ideas and to view 
the issues in the perspective that seems 
to me appropriate to the present state 
of mathematical scholarship, taking ac- 
count of the great increases that have 
been taking place in the body of mathe- 
matical learning, and of the changes in 
viewpoint toward the old and basic 
knowledge that grow out of deeper 
understandings brought about by gen- 
erations of mathematical research. 

In discussions of this subject we find 
a sharp difference in the views of able 
mathematicians. This reflects the con- 
cern of some that the trend toward 
abstraction has gone too far, and the 
insistence of others that this trend is 
the essence of the great vitality of 
present-day mathematics. On one thing, 
however, mathematicians would prob- 
ably agree: that there are and have 
been, at least since the time of Euclid, 
two antithetical forces at work in 
mathematics. These may be viewed in 
the great periods of mathematical de- 
velopment, one of them moving in the 
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what we are talking about or whether 
what we say is true." Of this view 
Marshall Stone has this to say (2): 
"A modern mathematician would pre- 
fer the positive characterization of his 
subject as the study of general abstract 
systems, each one of which is an edi- 
fice built of specified abstract elements 
and structured by the presence of ar- 
bitrary but unambiguously specified 
relations among them." Stone says in 
two other passages (3): "While several 
important changes have taken place 
since 1900 in our conception of mathe- 
matics or in our points of view con- 
cerning it, the one which truly involves 
a revolution in ideas is the discovery 
that mathematics is entirely independ- 
ent of the physical world . . . At the 
same time . . . mathematical systems 
can often usefully serve as models 
for portions of reality, thus providing 
the basis for a theoretical analysis of 
relations observed in the phenomenal 
world." "Indeed, it is becoming clearer 
and clearer every day that mathematics 
has to be regarded as the corner-stone 
of all scientific thinking and hence of 
the intricately articulated technological 
society we are busily engaged in 
building." 

In the history of mathematics the 
emphasis in research is sometimes on 
constructive intuition and the acquisi- 
tion of results without too much con- 
cern for the strict demands of logic, 
sometimes on the insights gained by 
the identification and study of abstract 
systems within a carefully designed 
logical framework. But over the years 
the body of mathematics moves for- 
ward inevitably with growth in both 
directions. An individual mathemati- 
cian chooses to work on one frontier 
or the other and the emphasis changes 
from one period to another, but math- 
ematics as a whole and the community 
of mathematicians have their obliga- 
tion to the total spectrum. For mathe- 
matics is the servant as well as the 
queen of the sciences, and she weaves 
a rich fabric of creative theory, which 
is often inspired by observations in 
the phenomenal world but is also in- 
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direction of "constructive invention, of 
directing and motivating intuition" (1), 
the other adhering to the ideal of pre- 
cision and rigorous proof that made its 
appearance in Greek mathematics and 
has been extensively developed during 
the 19th and 20th centuries. 

The first position, that the emphasis 
on abstraction has gone too far, is 
presented by Courant and Robbins in 
What Is Mathematics? though their 
position is modified by their recog- 
nition of the power of the axiomatic 
method and the deep insights it has 
made possible. They say, in part (1): 
"A serious threat to the very life of 
science is implied in the assertion that 
mathematics is nothing but a system of 
conclusions drawn from definitions and 
postulates that must be consistent but 
otherwise may be created by the free 
will of the mathematician. If this 
description were accurate, mathematics 
could not attract any intelligent person. 
It would be a game with definitions, 
rules and syllogisms, without motiva- 
tion or goal. The notion that the in- 
tellect can create meaningful postula- 
tional systems at its whim is a decep- 
tive half-truth. Only under the disci- 
pline of responsibility to the organic 
whole, only guided by intrinsic neces- 
sity, can the free mind achieve results 
of scientific value." 

The second point of view is repre- 
sented classically by Bertrand Russell's 
famous definition of mathematics as 
the "subject in which we do not know 



spired often by a creative insight that 
recognizes identical mathematical struc- 
tures in dissimilar realizations by 
stripping the realizations of their sub- 
stance and concerning itself only with 
undefined objects and the rules govern- 
ing their relations. 

As Von Neumann has said (4): 
"It is a relatively good approximation 
to truth ... .that mathematical ideas 
originate in empirics, although the 
genealogy is sometimes long and ob- 
scure. But, once they are conceived, 
the subject begins to live a peculiar 
life of its own and is better compared 
to a creative one, governed by almost 
entirely aesthetical motivations." 

Euclid and the Parallel Postulate 

With this introduction, it will be 
useful to consider briefly those episodes 
in the history of mathematics that play 
a decisive role in the development 
and understanding of this dichotomy. 
The Greeks made fundamental contri- 
butions in parts of mathematics other 
than geometry; in addition to Archi- 
medes's wide-ranging interest in ap- 
plications, I cite only Euclid in num- 
ber theory and Eudoxus in analysis. 
But the failure of the Greeks to de- 
velop adequate symbols with which to 
express many of their ideas made 
their treatment of these subjects cum- 
bersome. Through Euclid's Elements, 
however, they contributed to mathe- 
matics the ideal of the development 
of a body of knowledge proved by 
logical deduction on the basis of a 
limited number of axioms, a concept 
that has exercised enormous influence. 

One of the greatest of Euclid's con- 
tributions to geometry was his recog- 
nition that the parallel postulate could 
not be derived from the others. For 
2000 years after Euclid, the develop- 
ment of geometry is characterized by 
attempts to prove the parallel postu- 
late. At last, in the time of Gauss at 
the beginning of the 19th century, the 
problem was solved. And what a solu- 
tion! A geometry developed independ- 
ently in Germany by Gauss, in Hung- 
ary by the Bolyais, and in Russia by 
Lobatchevski in which this postulate 
does not hold, and in which the sum 
of the angles of a triangle is less than 
180 degrees. Interestingly enough, 
Gauss's impulse was to check to de- 
termine whether our physical world 
(and here he meant only the earth 
on which we live) was described by 
Euclidean or by this new non-Euclid- 
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ean geometry. He found that his in- 
struments were not good enough to 
discriminate; but it is of some interest 
to recall that the non-Euclidean ge- 
ometry developed later by Riemann, 
in which the sum of the angles of a 
triangle is greater than 180 degrees, 
was found by Einstein to provide a 
satisfactory framework within which 
to develop his ideas of the physical 
universe. In passing, it should be noted 
that the parallel postulate, unlike the 
others, deals with lines that cannot 
be described by finite considerations. 
Infinity early raised difficulties for 
mathematicians, and the subsequent 
development of our subject sees in- 
finity introducing new and exciting 
vistas, which, however, are recurrently 
accompanied by logical problems that 
have caused an upheaval in mathe- 
matical thought. 

The successful denial of the parallel 
postulate-the recognition that the 
assumption of a contradictory postu- 
late could be used as the basis for 
the description of a consistent ge- 
ometry, one which in fact proved later 
to be useful in describing the physical 
universe-opened up a whole new 
world to mathematicians. The require- 
ment that axioms be self-evident be- 
came meaningless, and in its stead 
were substituted the requirements of 
consistency and completeness. Explor- 
ation of this new-found freedom in 
the choice of axioms led to the de- 
velopment of many other kinds of ab- 
stract geometry, and, in algebra, there 
was a veritable feast of new ideas, as 
new number systems were explored 
by varying one axiom after another, 
or by recognizing, after the discovery 
of new systems, that their essential 
structure could be described in terms 
of an axiom system closely related to 
one that was well known but different 
from it in one or more of its axioms. 
The axiomatic method has provided 
deep insights into mathematics, dis- 
closing identities where none had been 
suspected. In the hands of mathema- 
ticians of genius this method has been 
used to strip away exterior details 
that seem to distinguish two subjects 
and to disclose an identical structure 
whose properties can be studied once 
for all and applied to the seperate 
subjects. Thus, if we consider three 
familiar ideas-the addition of real 
numbers, the multiplication of the num- 
bers in a finite number field, and the 
result of performing in succession two 
displacements in Euclidean space- 
and, for all three, study only the skel- 

eton remaining when each is thought 
of as a set of abstract elements with an 
appropriate law of combination, we 
quickly see that each can be described 
as a group. And properties of the three 
may be studied together by the axio- 
matic theory of groups. The nature 
of the elements is irrelevant to the 
study of the properties that follow 
from the axioms. 

The group is an example of one of 
the three basic mathematical structures 
that we now recognize. It is one kind 
of so-called "algebraic" structure. The 
other two basic structures are called 
"ordered" and "topological," and each 
can be described abstractly, the first 
concerning itself with a generalization 
of the usual "less than or equal to" 
relation, the second with the notion 
of continuity. Modern mathematics 
is increasingly concerned with systems 
that satisfy at once the axioms for two 
different kinds of structure. An ex- 
ample of this is given by the complex 
numbers. When at the beginning of 
the 19th century the great discovery 
was made that complex numbers 
could be represented geometrically in 
the Euclidean plane (a familiar topo- 
logical space), all the available in- 
sights about the plane could be used 
to gain familiarity with the nature of 
complex numbers. 

Many systems, such as the complex 
numbers, can be characterized by a 
conjunction of the properties of two of 
the three kinds of basic structure. And 
there are many contemporary mathe- 
maticians who are interested in the 
study of known mathematical systems 
in terms of algebras, ordered systems, 
and topological spaces. 

From Euclid to Gauss 

In moving into a discussion of the 
axiomatic inethod, I omitted any men- 
tion of the great eras of mathematical 
development from the time of Euclid 
to the time of Gauss. But it was in 
this intervening period that a domain 
wide-flung and vastly influential was 
conquered by mathematicians whose 
driving force was intuition and con- 
struction, who ignored the axiomatic 
approach of the Greeks and made 
brilliant leaps on the basis of intuition, 
analogy, and guesswork. One need 
only mention the names of Descartes, 
Fermat, Pascal, Newton, Leibnitz, and 
Euler to indicate the vast scientific 
territories that were conquered in the 
16th and 17th centuries. Analytic ge- 
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ometry, many facets of analysis and 
number theory, probability theory, and 
the calculus were initially developed in 
these centuries (5). And later centuries 
have seen this kind of mathematical 
discovery continue and expand. It is 
of interest that the contemporary 
French mathematician Hadamard takes 
the position that "the object of mathe- 
matical rigor is to sanction and legiti- 
mize the conquests of intuition." As 
we emphasize the deductive structure 
of our science and of acceptable proof, 
let us not lose sight of the fact that 
many of the most significant results 
that we prove were arrived at by guess- 
work, by intuition, by brilliant insight. 

Role of the Unsolved Problem 

The role of the mathematical con- 
jecture, of the unsolved problem in the 
development of mathematical ideas, 
should be pursued further. In periods 
of great mathematical activity there 
has always been a lively interchange 
among mathematicians. The long at- 
tempt to prove the parallel postulate 
and the revolutionary impact of the 
discovery that it was independent of 
the others have already been men- 
tioned. Other great problems whose 
solutions were decisive milestones in 
the history of mathematics are well 
known. The early assumption that all 
ratios of lines are rational was dis- 
proved when the Pythagoreans estab- 
lished that the ratio of the diagonal 
of a square to its side is irrational, or, 
as we would say, that the square root 
of 2 is irrational. With this discovery 
the Pythagoreans introduced some of 
the basic problems of modern mathe- 
matical analysis-the concept of the 
infinite, of limits and continuity. The 
pursuit of nonalgebraic irrationals has 
been carried on for centuries; many 
aspects of the treatment of the infinite 
remain unresolved. 

Another famous unsolved problem 
is the one usually referred to as Fer- 
mat's last theorem. Actually Fermat, 
who was a mathematical genius of the 
17th century although he was profes- 
sionally a lawyer and public official, 
had an intriguing way of announcing 
his results without stating his full 
proof, particularly in the theory of 
numbers. Fermat's last theorem is 
stated on a margin of his copy of the 
second book of Diophantus' Arith- 
metica, where he wrote, after noting 
the solution in integers of the familiar 
equation x2 + y' = a2, "On the con- 
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trary it is impossible to separate a 
cube into two cubes, a fourth power 
into fourth powers, or, generally, any 
power above the second into two 
powers of the same degree. (In other 
words, the equation x" + y- = a" has 
no solution in integers if n is greater 
than 2). I have discovered a truly 
marvelous demonstration which this 
margin is too narrow to contain." 

This is the famous last theorem 
which he stated in 1637. Mathema- 
ticians have been at work on this prob- 
lem ever since that time. The attempts 
have not been successful, but they 
have led to important advances in 
mathematical knowledge. It was his 
work on this theorem that led Kummer 
in the 19th century to the introduction 
of ideals, with the consequent re- 
establishment for algebraic integers 
of the fundamental theorem of arith- 
metic, the theorem that assures the 
unique factorization of integers into 
primes, without which our concept of 
integer sits most uncomfortably. The 
extension of Kummer's work by De- 
dekind and Kronecker has been central 
to the development of modern algebra. 
Nowadays we are apt to read in the 
newspaper about the solution of a 
famous unsolved mathematical prob- 
lem. For example, the New York 
Times of 27 April 1959 carried an 
editorial called "The mathematical 
age" that began: "Mathematicians 
made news twice last week as the 
solution of two historic problems was 
announced at a meeting in this city. 
For most of us, no doubt, the subjects 
of these two problems, automorphic 
finite groups and Latin squares, are 
rather remote. But we are willing to 
take the word of professional mathe- 
maticians that two important new steps 
have been taken across the mathemat- 
ical frontiers." 

One of the most famous sets of 
mathematical problems was formulated 
by David Hilbert, the eminent German 
mathematician who died in the 1940's. 
In his lecture at the International Con- 
gress of Mathematicians held in Paris 
in 1900 he described his now famous 
problems. Before stating his problems, 
Hilbert had this to say (6): "The 
great significance of specific problems 
for the advancement of mathematics 
in general, and the substantial role that 
such problems play in the work of the 
individual mathematician are unde- 
niable. As long as a branch of science 
has an abundance of problems, it is 
full of life; the lack of problems indi- 
cates atrophy or the cessation of in- 

dependent development. As with every 
human enterprise, so mathematical re- 
search needs problems. Through the 
solution of problems, the ability of 
the researcher is strengthened. He finds 
new methods and new points of view; 
he discovers wider and clearer hori- 
zens." 

Search for Consistency 

One of the problems that Hilbert 
enunciated on this occasion was dis- 
posed of in 1931 by Kurt Godel, now 
at the Institute for Advanced Study 
at Princeton. Godel's paper has been 
called one of the century's main con- 
tributions to science, and something 
should be said of it. But first, let me 
put this problem of Hilbert in its set- 
ting. The 19th century saw a great 
surge forward in mathematical re- 
search. Gauss, one of the giants of all 
mathematical history, began to change 
the whole appearance of mathematics. 
A fertile intuition, and inspired mathe- 
matical inventiveness, combined with 
a concern for rigor, made Gauss's 
contributions to mathematics of first 
importance in all the branches of 
mathematics studied in his time- 
in arithmetic or number theory (which 
he called the Queen of Mathematics), 
in geometry, in analysis, in algebra. 
Indeed, Gauss's work is an ornament 
of the whole of mathematics. In the 
19th century mathematics moved on 
many fronts, but one, in particular, 
was to introduce problems that have 
even now not been solved. At the end 
of the 19th century George Cantor 
introduced the notion of sets, a power- 
ful new tool which, however, in its 
20th-century development has brought 
with it paradoxes and so-called antin- 
omies that have undermined the confi- 
dence of mathematicians in classical 
logical processes as they affect the in- 
finite. A series of paradoxes produced 
by the type of reasoning used by Cantor 
in his theory of infinite sets led to a 
critical examination of all mathemat- 
ical reasoning. Whitehead and Russell, 
at the beginning of the 20th century, 
tried to show that, by proper methods, 
we can avoid the set-theoretic contra- 
dictions, and that all of mathematics 
can be derived from logic. In this they 
failed, but their work has had tremen- 
dous influence. At about the same time 
the intuitionists, of whom the Dutch 
mathematician Brouwer was a leader, 
tried to avoid the contradictions intro- 
duced by the use of classical logic by 
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insisting that all proofs be constructive, 
that we avoid the law of the Excluded 
Middle. This law is the basis for the 
method of proof, familiar in high school 
geometry, that begins by assuming that 
the desired result is not so and shows 
that this assumption leads to a contra- 
diction. The new methods avoided log- 
ical paradoxes, to be sure, but a great 
portion of the mathematical results that 
had been found during the preceding 
centuries could not be proved by the 
new constructive methods. Hilbert, who 
had achieved eminence through the as- 
tonishing variety of his contributions to 
many fields of mathematics, including 
algebra, analytic number theory, anal- 
ysis, and the foundations of geometry, 
himself began the search for a rigorous 
proof of the consistency and complete- 
ness of one substantial part of mathe- 
matics such as arithmetic. He sought to 
show that no two theorems deducible 
from the postulates can be mutually 
contradictory, and that every theorem 
of the system is deducible from the 

postulates. In 1931 Godel proved that 
Hilbert's search was hopeless-that it 
is impossible, within a system broad 

enough to encompass ordinary arith- 
metic, ever to prove the consistency of 
the system in question, and that there 
is always a proposition of arithmetic 
which can be formulated within the sys- 
tem that can neither be proved nor dis- 

proved by a finite number of logical 
deductions made in accordance with 
the procedures of the system. 

The hazards in using much of classi- 
cal mathematics have never been re- 
moved. But there are certain results 
and concepts that mathematicians feel 
must be kept, either, as R. L. Wilder 

says (7), "for application to physical 
problems or, at the other extreme, for 
the building up of mathematical theory 
itself . .. We find that in order to study 
the properties [of these concepts]- 
which is . . . necessary in order to im- 

prove their utility as mathematical tools 
-we have to augment the older meth- 
ods of proof with new methods. And at 
this point the old bugaboo of the math- 
ematician rears its ugly head-the fear 
that the new methods may introduce 
contradictions. Here is where the math- 
ematical logician gets to work . . . 
whenever we find that new concepts 
and methods engender inconsistency, 
we shall, if the concepts seem to make 
for progress, try to patch up our meth- 
ods before we reject the concepts." The 
late E. H. Moore is quoted as having 
said, "Sufficient unto the day is the 

rigor thereof." 
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Language of the Sciences 

Standards of logic change as mathe- 
matical research progresses, and we are 
bound by the standards of our time. It 
is in the study of the properties of new 
concepts, in the deeper understanding 
and mastery of older concepts, in the 
development of technical facility in han- 
dling those that have been solidified 
into theories that the enrichment of 
mathematics as the language of the 
sciences lies. Such understanding and 
mastery constitute the distinctive con- 
tribution that the mathematician brings 
to the increasingly many fields of phys- 
ical and social science and engineering 
in which mathematics is being used, 
and this mastery must include the abil- 
ity to recognize a mathematical concept 
in a concrete situation and trim it of its 
attributes so that it may be studied with 
mathematical techniques. For mathe- 
matical concepts and techniques, de- 
rived solely because of their interest 
and quite independently of possible use, 
have repeatedly proved their usefulness. 
There is, for example, the application 
of matrix theory to quantum mechanics, 
of topological results to nonlinear me- 
chanics; there is the use by Einstein in 
the general theory of relativity of the 

concepts developed by Riemann in his 
treatment of non-Euclidean geometry; 
and there are other instances too nu- 
merous to mention. The fact is that 
there is no field of mathematics clearly 
marked as the only one appropriate for 

applications, and it is true that the most 

unexpected applications of seemingly 
abstract and remote fields have been 
found and are being found repeatedly. 
Moreover, problems arising in the nat- 
ural and social sciences continue to en- 
rich the fabric of mathematics. Seem- 

ingly all mathematics is the language 
of science. The critical facility, for 

conversing in this language, is the abil- 

ity to think of the problem, which is 

usually presented in many frills like a 

lady in her Easter finery, in mathemat- 
ical form, to "construct the mathe- 
matical model," as we say. Once the 

trimmings have been removed, the ma- 

chinery of mathematics comes into 

play. This makes it possible to derive 
mathematical theorems, results that can 
be translated back into the original nat- 
ural situation, so that their predictions 
can be checked against experience. The 
final test of the suitability of the model 
is this checking against the real world. 

When the same procedure is used to 

study purely mathematical problems, 
the jump to the theorems is often made 

by intuition, by analogy, by guess, with- 
out the process of abstraction and 
model building. In practical problems 
it is when such an intuitive guess can- 
not be made by the engineer or physi- 
cist that the mathematician is consulted. 

And now, as I conclude, let me state 
the major positions that seem to me to 
emerge from considerations such as 
those I have set forth. They are these: 

-That mathematics is a language 
which must be learned and that the ar- 
senal of techniques of mathematics 
must be mastered if we are to speak 
this language. 

-That mathematics grows by the ad- 
dition of new theorems, and that the 
discovery of new theorems is made 
sometimes by insights furnished by in- 
tuition, sometimes by insights provided 
by abstraction and the identification of 
patterns. 

-That the proofs of theorems rely 
on the logic of their day, but that math- 
ematicians are constantly concerned to 
find the logic that makes the proofs of 
needed theorems adequate. 

-That mathematics is both induc- 
tive and deductive, needing, like poetry, 
persons who are creative and have a 
sense of the beautiful for its surest 
progress. 

-That many of the problems of 
mathematics come from mathematics 
itself, but that many more, at least in 
their earliest genesis, come from the 
realities of the world in which we live. 

-That realms conquered by mathe- 
matics solely because of their intrinsic 
interest to mathematicians have provid- 
ed in the past, and continue to provide, 
parts of the conceptual framework in 
which other scientists view their worlds. 

-That the process of abstraction and 
axiomatization has provided simplifica- 
tion and a deep understanding of the 

body of mathematical results and a 

powerful tool for conquering new math- 
ematical worlds. 
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