
sical double-shock methods as were 
used in the studies reported, interpreta- 
tions regarding a final role for the cau- 
date are necessarily limited. Answers to 
such questions of function must await 
more extensive behavioral studies under 
conditions in which complex interac- 
tions of excitatory and inhibitory re- 
sponses can take place and give a nat- 
ural modulation of afferent information 
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taining to the existence of merrillite are 
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neglected, since they usually occur in 
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The names apatite, chlorapatite, and 
merrillite have been assigned to ma- 
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P205 (1). Their identification was made 
from chemical analyses on concentrates 
of the phosphate mineral obtained from 

kilogram amounts of the New Con- 
cord and Allegan chondrites. Since the 

reported optical properties of merril- 
lite are similar to those of whitlockite, 
I suspected that these two minerals 
could be the same. 

Recognition of a phosphate mineral 
in meteorites is ordinarily based on 
-examination of prepared thin rock 
sections under the petrographic micro- 

scope; this limits any additional work 
on the few grains that may be present. 
I have found it possible to recognize 
phosphate grains in etched polished 
sections of meteorites. Powders scraped 
from these grains can then be identified 
by x-ray methods (2). Powder patterns 
of whitlockite have been obtained from 
the following chondrites: Pantar, Plain- 
view, Allegan, Waconda, Harrison- 
ville, Holbrook, Harleton, New Con- 
cord, and Arriba. Chlorapatite patterns 
have also been obtained from the last 
three stones and only chlorapatite from 
the Ness County chondrite. 

The terrestrial occurrence of whit- 
lockite was first described by Frondel 
(3) as a late hydrothermal mineral in 

granite pegmatites from the Palermo 

quarry in New Hampshire. The ana- 

lyzed material was essentially Ca3(PO4)2 
with some magnesium and iron replac- 
ing the calcium. The x-ray pattern was 

distinctly different from that of apatite 
and was shown to be identical to the 

low-temperature polymorph of artificial 

anhydrous tricalcium phosphate, p Ca3 

(P04) . 

Powder data (Table 1) for whit- 
lockite from the Palermo pegmatite 
quarry in New Hampshire (4) and 
from the Allegan chondrite are com- 

pared with synthetic , Ca3(PO4)2. The 
main difference between the natural- 

occurring mineral and the pure com- 

pound is in the interplanar spacings, 
which undoubtedly reflect the substitu- 
tion of sodium, magnesium, and iron for 
calcium. Ando has observed this effect 
when magnesium substitutes for cal- 
cium in synthetic preparations (5). A 

powder pattern from a preparation of 

composition 0.3 MgO * 2.6 CaO 0.1 
Na2O - PoO5 sintered in air at 1350?C 
is identical to that of whitlockite. It 
should be noted that special x-ray tech- 

niques are required because the amount 
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as indicated. The patterns of whitlockite 
from all meteorites studied are identi- 
cal in spacings and relative intensities 
and most probably indicate a uniformity 
of composition. The chlorapatite pat- 
terns from all the meteorites are alike. 
Calculated cell constants for the New 
Concord chlorapatite are ao = 9.55 _+ 
0.02 A, Co = 6.81 ? 0.01 A, in agree- 
ment with results reported for a ter- 
restrial sample (6). 

The results of a semiquantitative 
spectroscopic analysis, made with the 
copper spark method, for microgram 
amounts of whitlockite from the Al- 
legan, Waconda, and Holbrook chon- 
drites are presented in Table 2. Al- 
though phosphorus was detected micro- 
chemically, it was not possible to de- 
tect it spectroscopically. A blank of 
reagent grade tricalcium phosphate 

Table 1. X-ray powder diffraction data, No- 
relco powder camera (diameter 11.45 cm), 
CuKaIs2, Ni filter. Abbreviations: I, inten- 
sity; S, strong; W, weak; F, faint; V, very; 
M, moderate (ly). 
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Whitlockite Whitlockite 

Palermo 
quarry 

d (A) I 

8.05 W 
6.45 MW 
5.155 M 
4.33 VVW 
4.04 MW 
3.505 VVW 
3.418 M 
3.33 VW 
3.175 MS 
3.08 F 
2.98 W 
2.858 S 
2.73 MW 
2.688 F 
2.646 F 
2.583 MS 
2.54 VW 
2.495 VW 
2.383 W 
2.358 F 
2.24 W 
2.18 VW 
2.14 W 
2.082 F 
2.04 F 
2.018 W 
1.98 VW 
1.916 MW 
1.88 W 
1.862 W 
1.815 F 
1.795 F 
1.78 F 
1.758 W 
1.712 MW 
1.692 VW 
1.67 VW 
1.65 VVW 
1.622 WW 
1.61 VVWW 
1.588 VVW 
1.54 MW 
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Allegan 
chondrite 

d (A) I 

8.02 VVW 
6.45 VW 
5.18 W 
4.355 F 
4.04 VVW 

3.43 W 
3.34 F 
3.185 W 

2.99 VVW 
2.852 M 
2.732 VVW 
2.688 F 

2.583 W 
2.525 F 
2.502 F 
2.392 F 
2.358 F 
2.24 F 
2.178 VVW 
2.141 VW 

2.048 F 
2.012 F 
1.996 F 
1.917 VW 
1.877 dbl. 

F 
1.813 F 

1.762 F 
1.710 VW 
1.695 F 
1.67 F 
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Synthetic 
a Ca.3(PO)2* 

d (A) I 

8.19 M 
6.51 MS 
5.25 S 
4.40 W 
4.11 MS 
3.83 VW 
3.47 S 

3.22 VS 

3.03 W 
2.90 VS 
2.83 W 
2.73 W 
2.61 VS 
2.54 MW 

2.42 MW 

2.27 M 
2.21 M 
2.17 M 
2.09 M 

2.04 M 
2.01 M 
1.95 S 
1.93 S 

1.85 M 
1.82 M 

1.79 M 
1.74 VS 
1.70 W 
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2.54 MW 
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2.09 M 

2.04 M 
2.01 M 
1.95 S 
1.93 S 

1.85 M 
1.82 M 

1.79 M 
1.74 VS 
1.70 W 

1.65 MW 
1.610 F 
1.590 F 1.61 M 
1.539 VVW 1.56 S 

1.65 MW 
1.610 F 
1.590 F 1.61 M 
1.539 VVW 1.56 S 

* Spacings calculated from 0 values of Bredig 
et al. (9). 
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Table 2. Spectroscopic analysis of whitlockite 
in chondrites. In the third column heading, 
M stands for the metal indicated at the left 
of the various values. 

Metal Micrograms Moles M,O in 3 MOoP.,O,P0 

Allegan 
Mg 0.06 0.2 
Fe .08 .2 
Ca .8 2.5 
Na .04 .1 

Waconda 
Mg 0.025 0.3 
Fe .02 .1 
Ca .35 2.5 
Na .012 .1 

Holbrook 
Mg 0.07 0.4 
Fe .05 .1 
Ca .7 2.4 
Na .028 .1 

* 0.01 ,ug of silicon was reported in this analysis 
and is believed to represent a silicate contami- 
nation. The silicon, together with amounts of 
Mg and Fe corresponding to an olivine com- 
position of forsterite75, are omitted. 

with a calcium content of 0.8 p/g, suc- 
cessfully detected, was also below the 
limit of detection for phosphorus. As- 

suming the sum of the metal oxides 
exist in the ratio of 3 moles per mole 
of P20., as in isostructural 3 Ca3(PO4)3, 
an approximate formula for whitlockite 
in these meteorites is 0.3 MgO * 2.5 
CaO * 0.1 FeO - 0.1 Na2oO * P20,,. The 
formula agrees fairly well for that of 
terrestrial whitlockite from Palermo 
quarry, except for the Na2O reported 
by Frondel, and is consistent with some 
studies of binary phosphate systems 
made by Ando. He found that a max- 
imum of about 0.4 mole MgO could 
substitute for CaO in /3 Ca3(P04)2 in 
the system 3 MgO * PoO5 - 3 CaO ? 
P205.. The amount of MgO in substitu- 
tion depends on the temperature of 
formation and the rate of cooling in 
a relatively insensitive manner. In the 
system Ca.(PO4)2 - CaNaPO4, Ando 
found that the /3 Can(POt)2 structure 
can accommodate 0.1 mole of Na2O 
but that samples with 0.3 or 0.2 moles 
of Na2O per mole of P205, yield x-ray 
diffraction patterns of /3 CaNaPOt and 
/3 Ca.,(PO).)2. The latter structure does 
not form when Na20 is equal to or ex- 
ceeds 0.4 mole. 

In the chondrites studied, whitlockite 
occurs as xenomorphic grains 0.1 to 
0.6 mm in diameter, and is generally 
found in the silicate matrix of the 
meteorite. It adjoins the grain edges of 
silicates, iron-nickel, troilite, ilmenite, 
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In the chondrites studied, whitlockite 
occurs as xenomorphic grains 0.1 to 
0.6 mm in diameter, and is generally 
found in the silicate matrix of the 
meteorite. It adjoins the grain edges of 
silicates, iron-nickel, troilite, ilmenite, 
magnetite, and chromite. Inclusions of 
these minerals are common. Only in 
the Plainview chondrite, was whitlockite 
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magnetite, and chromite. Inclusions of 
these minerals are common. Only in 
the Plainview chondrite, was whitlockite 
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observed inside a chondrule. Since the 
formation of chondrules is not well 
understood, the significance of this ob- 
servation is not readily apparent. The 
optical properties for meteoritic whit- 
lockite are similar to those found by 
Frondel but generally have slightly 
smaller refractive indices: N = 1.624 ? 

0.002. The birefringence is very weak, 
about 0.002. The grains are clear and 
colorless with a vitreous luster. Prelim- 
inary surveys made on etched polished 
sections indicate the mineral occupies 
from 0.1 to 0.2 percent of the volume 
of the stone. Harrisonville contains the 
highest concentration, about 1 percent 
of the volume. 

In those chondrites where whitlockite 
and chlorapatite coexist, they occur 
as monomineralic grains dispersed 
throughout the matrix of the stone. 
This mutual association is consistent 
with the phase diagram of the binary 
system CaCl-Ca.(PO-) 2 (7). The sep- 
aration suggests slow cooling of a melt 
accompanied by crystal fractionation. 
On the other hand, both phosphate 
minerals appear as interstitial fillings 
in the silicate matrix, are without crys- 
tal form, and contain inclusions of most 
of the other minerals present in the 
stone. 

The evidence presented here sug- 
gests that the previously recognized 
meteoritic mineral merrillite is actually 
whitlockite. In addition, the formula 
for merrillite (3 CaO * Na2O * P205) 

is in disagreement with the findings of 
Franck, Bredig, and Frank (8), who 
report that the only ternary compound 
found in the system CaO-Na^O-P205 
is 2 CaO * Na2O * P205, which is stable 
up to 1450?C even in the presence of 
free CaO. 

The high temperature form, a Cas 
(PO.)2, is not known to occur naturally 
but can exist as a metastable com- 
pound at room temperature owing to 
the sluggish inversion at 1185?C; how- 
ever, substitution of 0.1 mole of mag- 
nesia for lime prevents the /3-a transi- 
tion even up to 1450?C, as shown by 
Ando. The presence of whitlockite in 
meteorites cannot be regarded as con- 
clusive evidence for a temperature of 
formation of less than 1450?C. Addi- 
tional studies on synthetic preparations 
of compositions in the neighborhood 
of meteoritic whitlockite are needed. 
The stability of the mineral phosphates 
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tional studies on synthetic preparations 
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of meteoritic whitlockite are needed. 
The stability of the mineral phosphates 
in contact with the associated min- 
erals at elevated temperatures may af- 
fect our ideas concerning the origin 

in contact with the associated min- 
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