
Similarity and Dimensional 

Methods in Biology 

They promise to show quantitative similarities between 
biological organisms and models of biological systems 

Walter R. Stahl 

Comparison of a small leaf with a 
large one, or of a child with its parents, 
leaves the conviction that a "similarity" 
of some sort is present. It seems reason- 
able to suppose that an artificial kidney 
is in some sense physically similar to 
the natural organ. In order to define 
biological similarities in a meaningful 
way it is necessary to review the subject 
of dimensional analysis, which forms 
part of the basis for similarity theory. 

In the past the subject of dimensional 
analysis was obscured by certain meta- 
physical overtones; it is still passed over 
briefly in many technical courses. How- 
ever, a number of distinguished physical 
scientists such as Newton (1), Fourier 
(2), Lord Rayleigh (3), and P. W. 
Bridgman (4) recognized the impor- 
tance of similarity and dimensional 
methods. The basic concept of "simili- 
tude" was known to the ancient Greek 
mathematicians in connection with geo- 
metric problems and was noted by 
Galileo in 1638 (5), during a discussion 
of structural scale-up problems. 

During the last few decades dimen- 
sional and similarity analysis have been 
put on a perfectly firm mathematical 
footing. The method has been applied 
to all types of engineering problems 
(6), to theoretical hydrodynamics (7), 
to heat flow (8), to jet flows (9), to 
chemical engineering (10), to magneto- 
hydrodynamics (11), to rheology (12), 
to meteorology (13), and in numerous 
other situations. General discussions of 
the method are also given by Duncan 
(14), Focken (15), and others. From 
the mathematical viewpoint, similarity 
has been approached from several dif- 
ferent viewpoints: geometric transfor- 
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mations, group theory applied to equa- 
tions, and finally the algebra of the 
dimensional symbols (M, L, T, and 
so on). 

The geometric viewpoint is illustrated 
by the fact that two triangles are similar 
when there is a constant ratio relating 
their sides. In such triangles one may 
then define a scale ratio: 

1' =kl (1) 

where Z' is the new length, I is the 
original length, and kL is the numerical 
scaling coefficient. It can then be easily 
shown that kL is no other than the L 
symbol, which appears when one trans- 
forms each variable in an equation by 
some linear coefficient. The physical 
sense of this substitution is that the 
given equation must be invariant for 
arbitrary choice or change of scales of 
measurement. It would certainly not be 
desirable if Newton's laws held in 
English units but not in metric ones. 
The fact that physically meaningful 
equations must be dimensionally con- 
sistent was recognized in 1823 by 
Fourier, but is given surprisingly casual 
attention in most scientific curricula. A 
derivation of dimensionless numbers 
based on scale transformations is also 
provided by Decius (16). 

Substituting a transformed variable 
for the original one in an equation is a 
very general method which leads to the 
theory of groups connected with solu- 
tions of equations. The matter is a 
highly technical one, and limitations of 
space preclude its discussion here. Suf- 
fice it to say that work by mathemati- 
cians such as Birkhoff (7) has clearly 
demonstrated that dimensional analysis 
is a part of the general theory of in- 
variant parameters of equations. Spe- 
cifically, dimensional or ordinary simi- 

larity analysis deals only with simple 
linear expansion or contraction of basic 
axes. Very much more complex geo- 
metric transformations are possible. 
Similarity theory has also been given 
serious attention in the Soviet Union, 
particularly through the work of Kirpe- 
vich (8) and Sedov (9). Rather sur- 
prisingly, in the U.S.S.R. similarity 
analysis is often taught without recourse 
to dimensional symbols at all, with 
reference only to scaling coefficients 
such as the kL noted above. 

Still another approach to dimensional 
analysis has been the careful examina- 
tion of the way in which dimensional 
symbols such as M, L, and T are manip- 
ulated. In 1914 E. Buckingham (17) 
stated a basic theorem (the Buckingham 
pi theorem) to the effect that any equa- 
tion written in terms of dimensional 
variables and constants could be con- 
verted into one involving only dimen- 
sionless numbers. Lord Rayleigh (3) 
developed a systematic method for 
manipulating the exponents of the vari- 
ous dimensional entities, such as force 
(ML/T2), to yield dimensionless num- 
bers. I have stressed elsewhere (18) 
that the dimensional symbols are a 
simple but consistent mathematical 
structure, which may be identified tech- 
nically as an Abelian group. This group 
is interpreted as the one governing ordi- 
nary numbers used only for multiplica- 
tion or division, not for addition or 
subtraction. It is known (19) that the 
ancient Greeks distinguished natural 
numbers from numbers used only in 
ratios and observed that a "ratio num- 
ber" (Xoyos) could not be added in the 
usual way to get a meaningful result. 

The older metaphysical connotations 
of dimensional analysis have been com- 
pletely removed by modern understand- 
ing of similarity transformations. For 
example, it has become clear that there 
is nothing sacrosanct about any specific 
dimensional basis such as M, L, and T. 
One may use any elementary dimen- 
sions that are found to be genuinely 
independent of each other, and defin- 
able, in a given problem. 

Dimensionless Numbers or 

Similarity Criteria 

The term dimensionless number is 
probably an unfortunate one, since care- 
ful examination suggests that any ordi- 
nary real number is dimensionless. An 
alternative designation, used with in- 
creasing frequency by contemporary 
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writers such as Johnstone and Thring 
(10) and the Soviet school, is criterion 
of similarity. The kL coefficient given 
earlier is an elementary nondimensional 
ratio or criterion of similarity, which 
defines the geometric relations of the 
two triangles. 

In principle, a dimensionless ratio of 
any physical entities whatever may be 
formed and called a criterion of simi- 
larity. Some 50 to 60 such terms are 
now in use in the physical sciences. The 
best known is no doubt the Reynolds 
number 

vLp/n (2) 

in which, v is the velocity (L/T), L is 
the characteristic length, p is the density 
(M/L3), and r is the viscosity (MILT). 
The Reynolds number can be inter- 
preted as the ratio of inertial to viscous 
forces in a fluid. High values of this 
ratio indicate that turbulence is likely 
to occur. Typically the Reynolds num- 
ber is used to design a model which will 
be physically similar to the full-scale 
prototype. By this is meant that if the 
model is geometrically similar to the 
prototype, constancy of the Reynolds 
number will assure a predictable pro- 
portionality between inertial and viscous 
forces. 

Nondimensional combinations of var- 
iables are very useful for the efficient 
analysis of experimental results and the 
design of models. Quite generally a 
model must be physically similar to the 
prototype, and such similarity is pre- 
cisely defined by constancy of certain 
dimensionless criteria of similarity. Al- 
ternatively, the specific criteria of simi- 
larity may be combined in equations 
with constant coefficients, to give a still 
more complex type of similarity defini- 
tion. The choice of efficient dimension- 
less numbers for a given system is not 
simple and requires much experience. 
They may be obtained from study of 
governing differential equations for the 
system (when these are known), from 
direct manipulation of the dimensional 
variables, or from insight into the physi- 
cal nature of the problem. There is 
every reason to suppose that numerous 
dimensionless numbers or similarity 
criteria will be useful in biology. Else- 
where I have given an extended discus- 
sion of such parameters (18, 20) and 
have also listed a number of unfamiliar 
"dimensions," such as areal growth rate 
(L2/ T); change of volume with fre- 
quency, as in the lung or heart (L'T); 
acceleration of mass growth rate 
(M/T2); and others. 
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Biological Similarity 

The concept of biological similarity 
is certainly not new. It was given seri- 
ous attention by D'Arcy Thompson, 
who remarked (21, p. 1032): "In a 
very large part of morphology, our 
essential task lies in the comparison of 
related forms rather than in the precise 
definition of each structure." Papers on 
biological similitude first appeared some 
three decades ago (22). N. Rashevsky 
(23) used the method of "dimensional 
proportionality" in analyses of the vas- 
cular system, of skeletal size, and so on. 
Gunther and Guerra (24, 25) discuss 
biological similarity but start with the 
assumption that a single scaling law or 
similarity criterion will govern all the 
variables found in biological systems. 
Similarity reasoning is used in the major 
works on bioenergetics by Brody (26) 
and Kleiber (27). The latter author 
points out that thermal similarity of 
animals was investigated in 1888 by 
von Hoesslin; he also offers a number of 
germane criticisms of oversimplified 
models in biomathematics. 

Use of dimensionless numbers for 
making models of the mammalian coch- 
lea is considered by von Bekesy (28), 
Tonndorf (29) and others. Nondimen- 
sional terms and ratios appear in a great 
many physiochemical and physiological 
analyses. However, there do not seem 
to have been any prior discussions of 
biological similarity which take advan- 
tage of the full resources of the modern 
dimensional technique. By this is meant 
use of multiple similarity criteria com- 
bined in functional equations to define 
classes of physiological systems. In 
earlier works (18, 20, 30, 31) I have 
provided a preliminary listing of bio- 

logical "dimensions" and dimensionless 
numbers. Illustrations have been given 
of the way in which sets of nondimen- 
sional criteria are chosen for a given 
problem. The comparative neglect of 

similarity methods is indicated by the 
fact that dimensionless numbers are not 
mentioned in a recent volume on bio- 

logical analogues and models (32) or 
in a symposium on "bionics" (33). 

A review of Soviet publications dur- 
ing the last 8 years (34), also reveals 
no general or systematic applications of 

biological similarity principles, even 

though similarity methods are being 
given much attention in technology. 
D'Arcy Thompson has apparently not 
been translated into Russian, and very 
little attention has been devoted to the 

biological form determination problem. 

One of the most important but least 
appreciated attributes of the similarity 
method is that it is very concrete and 
nonhypothetical. Possible nondimen- 
sional combinations of variables or 
dimensional constants are accepted only 
when experimental data prove that they 
are invariant properties of the system 
under study. Relationships between such 
parameters are also deduced by direct 
experimental investigations. When di- 
mensionless ratios are derived from 
differential equations it is quite fair to 
say that confirmation of the relative 
invariance of the given ratios suggests 
that the analysis was correct. Many 
times similarity criteria are obtained 
from oversimplified, idealized models, 
but it is then found that they continue 
to be applicable to very complex situa- 
tions, where a full analysis is impossible. 
Exactly this kind of situation obtains, 
for example, in the mammalian circu- 
latory tree. 

Discussion of Tables 

Table 1 lists biological similarity cri- 
teria which are shown to be independent 
of the mass of the animal (only mam- 
malian data are used). The data in 
Tables 1 and 2 are based on the so- 
called allometric equation of Huxley 
(35): 

Di =kM' (3) 

where Di is a variable such as pulse rate, 
blood volume, or liver mass; M is the 
mass of the animal; and k and n are 
numerical coefficients. Experience has 
shown that this power law fits a remark- 
ably wide range of biological data. 
There are good theoretical justifications 
for Eq. 3, but space limitations pre- 
clude discussion of its derivation. 

The values in Tables 1 and 2 are 
taken directly from Adolph (36), Brody 
(26), and Gunther and Guerra (24). 
Combining known allometric values to 

give derived relationships was proposed 
by all of these authors, but they failed 
to generalize the method. It must be 
stressed that a dimensional constant may 
also be an invariant property of a 

system, as in the case of the velocity 
of light or the charge-to-mass ratio of 
an electron. However, in biology the 
dimensional constants are very much 
more limited in scope and serve to char- 
acterize systems of limited range. A 
few constants seem to be of very gen- 
eral applicability, such as the heat out- 

put, which is known to scale as M?'4 
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Table 1. Mammalian similarity criteria. 

Numerical Residual mass Item Composition* Dimensionality* Allometric ratio form* N 
alu Residual m 

value: exponent 

1. Air flow X breath time GvT/V 4.7 X 10-5 M0-28 X 120 M0-74 0.45 0.03 
Lung vol. (M/p) 1.24 X 10-2 MO99 

2. Air flow Gv/G'v 120 Mo074 32 0.01 
Oxygen flow 3.8 M073 

3. Tidal vol. X pulse time (V/T)/(V/T)' 0.62 X 10-2 M-01 X 1.19 X 10-5 Mo27 0.24 0.02 
Heart vol. X breath time 0.66 X 10-2 MO.98 X 4.7 X 10-5 M0.28 

4. Oxygen flow X pulse time GvT/V 3.8 M0-73 X 1.2 X 10-5 Mo-27 0.00083 0.01 
Blood vol. 5.5X 10-2 M0.99 

5. Oxygen flow Gv/G'v 3.8 M.73 2.2 0.04 
Renal inulin clearance? 1.74 M0?77 

6. Water input flow Gv/G'v 0.010 MO88 1.5 0.06 
Urine output flow 0.0064 M.82 

7. Renal Diodrast clearance? Gv/G'v 2.14 MO.9 214 0.01 
Water input flow 0.010 M0o88 

8. Equivalent organismal vol.|1 V/V' 1.00 Ml.0 161 0.01 
Tidal lung vol. 0.0062 M ~.0 

9. Equivalent lung vol.H V/V' 0.0124 M0?99 2.0 0.02 
Tidal lung vol. 0.0062 Ml -0 

10. Tidal lung vol. V/V' 0.0062 Mii01 0.94 0.03 
Heart vol. II 0.0066 M0-98 

11. Total hemoglobin mass M/M' 0.013 M?-99 1.05 0.00 
Mass of lungs 0.0124 M099 

12. Mass of blood M/M' 0.055 M099 8.3 0.01 
Mass of heart 0.0066 M098 

13. Mass of blood M/M' 5.5 X 10-2 M0o99 4.4 0.00 
Mass of lungs 1.24 X 10-2 M0O99 

14. Mass of gut MIM' 0.112 X MO094 1.37 0.07 
Mass of liver 0.82 X M?.87 

15. Mass of kidneys M/M' 0.0212 MO85 0.26 0.02 
Mass of liver 0.082 MO87 

16. Mass of gut M/M' 0. 112 MO 94 510 0.02 
Mass of thyroid 2.2 X 10-4 MO?92 

17. Mass of kidneys M/M' 0.0212 M0.85 19 0.05 
Mass of adrenals 0.0011 M0.80 

18. Mass of hemoglobin M/M' 0.013 M0-99 0.24 0.00 
Mass of blood 0.055 M0?99 

19. Vol. body water V/V' 40 7.4?1 
Vol. blood 5.4 

20. Nitrogen excretion rate GM/GM' 7.4 X 10-5 MO 74 43 0.00 
Sulfur excretion rate 1.7 X 10-6 M074 

21. Breath time TIT' 4.7 X 10-5 M28 3.9 0.01 
Pulse time 1.2X 10-5 MO27 

22. Gut beat time T/T' 9.3 X 10~ Mo31 7.7 0.04 
Pulse time 1.2 X 10-5 MO027 

23. Time for 50% growth TIT' 4.29 X M o25 0.3 0.01 
Time for 98% growth 14.7 X M0 26 

24. Lifetime TIT' 8.85 X 103 M029 2 X 108 0.01 
Breath time 4.7 X 10-5 M28 

25. Oxygen flow X breath time GvT/V 3.8 M0-73 X 4.7 X 10-5 M-28 1.8 X 10-4 0.01 
(M/p) 1.0 Ml oo 

* M = mass of organism; p = density; Gv = L3/T, air or blood; V = L3; G,m = M/T. The gram-cubic centimeter-hour system of Adolph is used except in items 23 and 24, where mass of animal is in kilograms and time is in months or hours. 
: Numerical values for animals under basal laboratory conditions. Deviation from these values by a factor of 2 to 3 is possible for other situations. ? Renal clearance given as a flow with units of L3/T. 

I1 Unity density assumed to relate organismal mass and volume. 
IT Human data; allometric data are needed but not readily available on numerous values of this type. 
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in nearly all organisms (37). Addi- 
tional allometric studies may reveal that 
in some cases the values listed in Tables 
1 and 2 require modification, or that 
specific similarity criteria are applicable 
only to limited groups of rather closely 
related organisms and not, for example, 
to all mammals. 

Certain items in Tables 1 and 2 call 
for comment. In Table 1, item No. 1 
might have contained the tidal (single 
breath) lung volume rather than the 
whole lung volume. Substitution of 
item No. 9 in No. 1 gives this result 
and yields a numerical value close to 
unity; this was to have been expected 
and shows that the method gives reason- 
able results. Item No. 3 is best under- 
stood as the ratio of air to blood flow 
at the lung interface. Heart volume, 
rather than stroke volume, is used in 
this term because of lack of adequate 
allometric data on stroke volume. The 
actual ratio of total air flow to blood 
flow appears to be 0.8-2.5 and depends 
somewhat on the physiological state of 

the animal. Item No. 5 is understand- 
able if one assumes that every oxygen 
molecule taken into the body will result 
in an obligatory excretion of protons 
by the kidneys. Alternatively, renal flow 
is simply a constant fraction of cardiac 
output, which relates to air flow. 

Considerable variation, by a factor of 
at least 100 percent, is to be expected 
in the listed values. For example, the 
value shown for item No. 6 certainly 
is not correct for humans in many con- 
ditions, for desert animals, and so on; 
most of the allometric data are obtained 
with animals in basal condition or under 
anesthesia. It should also be noted that 
a residual mass exponent above 0.03 
may introduce a substantial error in 
values for the larger animals. Thus, 
item No. 14 can only be considered 
suggestive. The characteristic times 
given in Nos. 23, 24, and 25 do not 
apply at all well to primates, which live 
some 2 to 3 times longer than would 
be expected on the basis of mass. Item 
No. 25 implies in a very general sense 

that mammals tend to breathe a con- 
stant number of breaths in their normal 
lifetime. This certainly should not be 
taken to mean that athletes or singers. 
will have a shortened life expectancy- 
numerous complicating factors enter in. 

In Table 2 some of the relations are 
known, such as those of Nos. 1 and 4, 
but others are new. They may be more 
or less incidental, but they are none- 
theless independent of the mass of the 
animal. The velocities given in items 
6 through 9 are especially interesting. 
Gunther and Guerra also noted the con- 
stancy of air flow velocity. The values 
are derived on the assumption that 
organismal lengths scale approximately 
as the cube root of mass-which Brody 
has demonstrated to be reasonable. 
However, velocities obtained in this way 
are hypothetical averages. For humans, 
23 centimeters per second is a very 
reasonable velocity for the lower aorta, 
but detailed independent allometric data 
on velocities are needed. Ratios of 
velocities constitute further dimension- 

Table 2. Dimensional constants deduced from allometric values. 

Item Composition* Dimensionality* Allometric ratio form* Numerical Resi value exponent 

1. Urine output flow Gv/M 0.0064 M0-82 0.3 cm3/g-hr 0.03 
Mass of kidneys 0.0212 MO-Ss (0.3 hr-0? 

2. Hippurate clearance GvIM 5.4 M0.80 4.9 //g-hr 0.00 
Mass of adrenal gland 0.0011 M0.80 

3. Urine output flow Gv/M 6.4 X 10-3 Mo-82 64 cm3/g-hr 0.02 
Mass body cytochromes 1.0 X 10-4 MO-84 

4. Oxygen flow GV/GM 3.8 M0O74 5.1 1/g 0.00 

Nitrogen excretion 7.4 X 10-s Mo074 (6.4 l/l)|| 

5. Nitrogen excretion GM/M 7.4 X 10-5 MO-74 0.57 hr-1 0.02 
Mass of pituitary 13 X 10-5 MO-76 

6. Urea clearance?[ Gv/A 1.59 Mo.72 1.59 cm/sec** 0.05 

Equivalent area (M/p)0-67? 1.0 MO-67 

7. Oxygen flow Gv/A 3.8 M0O73 3.8 cm/sec** 0.06 

Equivalent area (M/p)0.67? 1.0 MO.67 

8. Equivalent radius (M/p)0-33? L/T 1.0 MO-33 23 cm/sec?? 0.06 
Pulse time 1.2 X 10-5 M0O27 

9. Equiv. radius lung (MLU/p')O-33 L/T (3 X 0.0124 MO-99)0'33 7.9 cm/secl 11 0.05 
Breath time 0.25 X 4.7 X 10-5 M0-28 

10. Blood flow Gv/A 0.033 Mo074 24 cm/sec 0.02 

Aortic area (rat) 1.4 X 10-3 MO-72 

11. Heat production GH/Gv 70.5 X M0O73 4.9 kg-cal// 0.00 

Oxygen flow 14.4 X M? 73 

12. Basal power X lifetime GHT/M 70.5 M0-73 X 365 X 7.52 MO-29 1.9 X 105 kg-cal/kg 0.02 

Mass 1.0 M -0 

* M = mass of organism; p = MIL3; p' = estimated lung density; Gv = L3/T; G,u = MIT; A = L2; Gil = heat/T. Units are in the gram-cubic centimeter-hour system of 
Adolph, except in items 11 and 12, where kilograms, days or years, and kilogram-calories are used. 

? Reduced to volumetric ratio by taking an equivalent volume of tissue with unit density. 
I| Uses equivalent volume of nitrogen. 

? Density assumed to be unity. 
** Equivalent transport velocities. 
? ? Estimated blood flow rate, at specific region of vascular tree not identified. 
l Equivalent air flow rate in lung, with an estimated lung density p' of 0.33, flow in ? cycle. 
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less parameters of great interest for cor- 
relating the overall design of the respir- 
atory and circulatory systems. 

Item 12 in Table 2 gives a basic 
constant for energy from oxygen in 
mammals given a typical diet; the 
numerical value is consistent with well- 
known nutritional data. Item 13 is 
especially interesting because it implies 
that every kilogram of mammalian tis- 
sue takes part in the generation of a 
certain fixed quantity of energy in the 
lifetime of the animal. The same ob- 
servation is made by Brody. For pri- 
mates, which live longer than one would 
expect on the basis of mass, the energy 
production per kilogram rises propor- 
tionately. Energy per mass is commonly 
interpreted as a "potential" in physics. 
It is tempting to suppose that proto- 
plasm has a certain energetic potential, 
which is used in part for overcoming 
gravity as long as the animal is alive, 
but care is always needed in making 
such generalizations from physical 
situations. 

Nonmammalian Values 

A considerable number of allometric 
data have been collected on inverte- 
brates, microorganisms, plants, and so 
on. Space limitations preclude a full 
presentation, but I will give two ex- 
amples. Some older data of Bjerknes 
(cited in 25) on characteristics of birds 
include allometric values for wing-tip 
velocity v, wing length L, and beating 
frequency f. These values may be com- 
bined to give: 

v 5.1 M?-01 : 35 M?'6? (4) Lf 0.03 Mo'39 x 48 M- 3.5 M (4) 

It is notable, first of all, that wing-tip 
velocity (presumably obtained by photo- 
graphic measurement) is an approxi- 
mately invariant property for ordinary 
birds. The value of the final ratio indi- 
cates a geometric similarity in the wing 
structure, with a constant relationship 
of wing length and stroke length. The 
(v/fL) combination is quite well known 
in engineering under the names homo- 
chronism or Strouhal number and has 
been of use in the analysis of vibration 
patterns and other dynamics problems. 
This term is also called the "advance 
ratio" in marine hydrodynamics (14). 
Very recent analysis of known allo- 
metric data for birds suggests that at 
least three other similarity criteria used 
for characterization of marine propellers 
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and of aircraft are useful invariants for 
the study of bird dynamics. 

A rather novel example is available 
from the plant kingdom. Turrell (38) 
has reported on citrus trees observed 
over a 26-year period. He gives allo- 
metric data (using the height of the 
tree rather than the mass) on crown 
surface and volume, total leaf volume, 
trunk radius, leaf length, and so on. 
Most of the exponents are not obviously 
those of area or mass (L2 or L3), but 
certain combinations of variables do 
yield invariants, as in Tables 1 and 2. 
For example, if S is the crown area 
per volume ratio (LV/L3) and Lh is the 
height of the tree, it is found that S 
times Lh is dinaensionless and nearly 
independent of tree height. This par- 
ticular combination L x (A/V) has 
also been encountered in chemical engi- 
neering (see 10), where it is used to 
describe flow patterns in granular solids 
and other complex situations. In the 
present case the grouping relates to the 
crown pattern of the tree and shows 
that area per volume is inversely pro- 
portional to distance from the ground 
(or start of radial branching), a result 
which appears reasonable. Allometric 
studies in which length rather than mass 
is used as the primary variable make it 
possible to analyze very complex geo- 
metric similarities. 

Similarity of Growth Patterns 

Growth is one of the most character- 
istic features of organisms, and it is 
desirable to define similarity criteria for 
growth. Such criteria have been used 
by D'Arcy Thompson and Julian Hux- 
ley (35), though they were not recog- 
nized as dimensionless numbers. The 
most typical ratio is: 

[(dNJ/Nj) /dT]/[(dN2/N2)/dT] (5) 

in which N1 and N2 are usually lengths, 
but may be other variables. Huxley 
called this ratio the "relative growth 
potential" and followed changes of its 
value in different parts of the lobster 
and other animals. D'Arcy Thompson's 
analysis of logarithmic growth spirals 
reveals that any such spiral may be 
described by Eq. 5 if tangential growth 
is called N1 and radial growth is called 
N2. 

Another useful growth criterion is 

[(dNi/N,)/dT]/K1 (6) 

where K1 is a time constant, such as 

a metabolic time. By use of data from 
H. D. Landahl (39) it has been shown 
(30) that very simple expressions for 
tissue regeneration may be obtained 
with this term. For example, a time- 
specific growth rate is found to be 
directly proportional to the amount of 
the structure that is missing, relative 
to final size. 

When growth is expressed in terms 
of nondimensional criteria it becomes 
possible to include it directly in equa- 
tions with geometric shape factors and 
physical similarity criteria. For ex- 
ample, a relative growth ratio may be 
related to a diffusion-versus-transport 
criterion, a concentration-to-synthesis 
term, relative flow velocities, energy 
ratios, growth in other directions, and 
many other possible parameters. It has 
also become evident that the volumetric 
proliferation rate at a point may be a 
useful parameter for tissue growth. 
Studies on tensor formulations of volu- 
metric growth along different axes are 
now being made. 

In the analysis of growth and related 
matters it has become clear that two 
principles play a key role in biological 
analysis: conservation of volume and 
synchronism of times. While many 
properties are conserved in an adult 
organism, volume is of special impor- 
tance because of the circulatory system 
and general semifluid state of proto- 
plasm. The idea is certainly not a new 
one, since it occurs in venerable physio- 
logical concepts such as the Fick prin- 
ciple of circulation, but it does deserve 
more stress. Synchronism of times in 
the organism is also quite obvious, since 
corresponding processes are expected 
to occur in corresponding times. It 
appears that the time scale is uniformly 
that of M0A2 to M0'3 in mammals and 
probably in many other organisms. 
Study of "residence" versus "flow" and 
"diffusion" or "reaction" times has 
proved helpful in chemical engineering, 
and the same principles apply to bio- 
logical systems. 

Models of Biological Systems 

It is well known that the Reynolds 
number is useful in making models of 
hydrodynamic systems. One may there- 
fore ask whether biological similarity 
criteria can facilitate the design of bio- 
logical models. There appears to be 
little question that they will help to 
some extent, but on the other hand 
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biological systems are hard to model 
except in a limited way. For example, 
the simple plastic tube of the artificial 
kidney can hardly be compared with 
the complete microscopic nephron. 
Nonetheless, it is informative to review 
dimensionless numbers which may char- 
acterize natural and artificial kidneys. 
Only a brief discussion will be given in 
this article; a more complete list of 
criteria is available elsewhere (31). 

A similarity criterion which is already 
in wide use is the renal clearance (see 
40). This may be easily understood as 
the ratio of material brought into the 
kidney to that removed, in a single pass 
of blood: 

GvCN/GN (7) 

where Gv is the volumetric flow, CN is 
the concentration, and GN is the excre- 
tion rate (N/T). Sometimes a ratio of 
two such variables may be used also. 
The basic flow pattern in a tube is 
effectively described by the criterion: 

Gv/Avj (8) 

where Gv equals L3/ T, A equals L2, and 
vj equals L/ T. The linear flow rate may 
then be compared to an apparent re- 
action velocity or membrane transport 
coefficient having the dimensions of a 
velocity: 

Vj/Vr (9) 

This type of ratio is well known from 
chemical engineering, as discussed in 
the next section, and fits in with other 
velocity ratios discussed previously. Al- 
ternatively, one may use a ratio of the 
flux through the sides of the tube to 
the flux in the forward direction. Such 
fluxes relate to flow transport and lateral 
diffusion, which may lead to the ratio: 

D/vr,.Lr (10) 

where D is the diffusivity (LV T), vr 
is the transport coefficient, and L, is the 
radius. This similarity criterion is well 
known in heat engineering as the Nus- 
selt number and compares diffusion and 
membrane transport mechanisms. A 
recent analysis of renal function by 
Bergmann and Dikstein (41) uses ratio 
10 centrally in its results, as do many 
other studies, such as those reviewed 
by Defares (42). 

Derivation of dimensionless numbers 
and similarity criteria is not a substitute 
for analysis by differential equations, 
but it often helps to show what prop- 
erties are most important and invariant 
in related structures. 
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As a final example, the following 
combination is useful in analyzing the 
blood outflow from the aorta into the 
peripheral vascular tree: 

(RpCv)/T (11) 

where RF is the ratio of pressure to flow 
rate (M/L4T), Cv is the ratio of dis- 
tensibility or volume to pressure 
(L4T2VM), and T is the pulse time. 
This term appeared in prior studies of 
the cardiovascular system (42) but 
does not seem to have been recognized 
as a similarity criterion. It indicates 
that the time required for ejection from 
the distended aorta will correspond to 
the time required for flow into the 
vascular tree. A numerical value of 
1 to 2 was obtained for this criterion 
from human cardiac catheterization data 
of Roston (43; see also 18, 20). Meas- 
urement of Rp and Cv in humans during 
life presents many problems, but the 
foregoing results are heartening. This 
term may be used with other dimension- 
less numbers for the circulatory system. 
For example, the ratio of diastolic 
pressure to pulse or total pressure is 
known to relate to an exponential func- 
tion of the criterion in ratio 11. An 
analysis of data by Crosfill and Widdi- 
combe (44) reveals that this term is 
also a useful invariant for comparison 
of respiratory systems. A residual mass 
exponent of not over 0.08 and possibly 
of zero value has been obtained from 
the published comparative values. 

Chemical and Thermodynamic 

Similarity 

Scaling up of chemical reaction sys- 
tems has been the subject of a number 
of studies in chemical engineering. Re- 
views are available by Johnstone and 
Thring (10) and by Klinkenberger and 
Mooy (45); there are also pertinent 
Soviet volumes by Reznyakov (46) and 
D'yakonov (47). Thermodynamic simi- 
larity is specifically reviewed by Perel'- 
shtein (48). Several dozen chemical 
similarity criteria have been listed. 
Among the oldest, one of the so-called 
Damkohler numbers, is 

SNA/CND (12) 

where SN equals N/L3T, CN equals 
N/IL3 D equals L'/T (diffusivity), and 
A equals L2. This term is useful for 
comparing a synthesis rate with a diffu- 
sion rate in a given area. It can probably 
be applied directly to diffusion in cells, 

capillaries, and lung alveoli. The War- 
burg criterion for diffusion into tissue 
slices is identical in form with ratio 12. 

General scaling laws have been for- 
mulated for various types of chemical 
plants and processes. It is usually im- 
possible to state general scaling condi- 
tions unless many variables are held 
constant; commonly these include tem- 
perature, pressure, certain concentra- 
tions and viscosity. Systems with iden- 
tical physical parameters are said to be 
homologous. It is known (10) that the 
basic scaling conditions for homologous 
heterogeneous reaction systems (reac- 
tions occurring on areas rather than 
uniformly in a volume) are: 

Vr vJ = inv. and J =: inv. (13) 

where Vr is an apparent reaction veloc- 
ity, Vj is a linear flow rate, and JH is 
heat loss per unit area and unit time. 
Commonly, the first condition simply 
reduces to invariance of flow velocity. 

It is interesting to note that these 
conditions appear to be precisely those 
which apply for the scaling up of mam- 
mals. The approximate constancy of 
metabolic rate per area has been recog- 
nized since as early as 1839 (see 27), 
but a better fit is obtained with a mass 
exponent of 0.73 to 0.75, rather than 
0.67. In mammals the heat loss can be 
combined with an oxygen flux and the 
dimensional constant given in item No. 
12 of Table 2 to yield a nondimensional 
criterion. Applicability of the velocity 
ratio is suggested by entries 6 to 10 
in Table 2, but invariance of blood flow 
at corresponding points should be con- 
firmed experimentally. Invariance of 
blood flow velocity was proposed earlier 
on the basis of scaling relationships for 
cardiac output and aortic area. Invari- 
ance of velocity ratios is also a condi- 
tion for similarity of free flames, as 
noted in Johnstone and Thring (10) 
and in Reznyakov (46). 

Space limitations do not allow an 
adequate discussion of thermodynamic 
similarity, but it may at least be noted 
that dimensional considerations have 
helped clarify (20) the differences and 
parallels between "information" and 
entropy, the operational definition of 
biological "forces," and particularly the 
concepts of biological "energy" and 
"potential." It appears that one may 
speak of "biologically available energy" 
for energy that is made available with- 
out disruption of the biochemical-organ- 
ismal system. This can be compared 
with chemical free energy or isotherm- 
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ally available energy. Chemical free 
energy in food may be further classified 
as "digestible" energy, "metabolizable" 
energy, and so on. It appears very use- 
ful to define such entities by stating the 
process through which they are ob- 
tained. Biological potential, on the other 
hand, is well described as energy per 
biological unit such as a cell, an organ- 
ism, or a gene. Energy ratios, such as 
the Arrhenius ratio (AE/RO) are typi- 
cal of thermodynamic similarity. Ex- 
amples of comparable biological criteria 
include the energetic efficiency values 
for biomass generation or physical 
work, and the ratio of basal to maximal 
energy output of a mammal, as dis- 
cussed in Kleiber (27). 

Conclusions 

The scale-up capability of biological 
organisms is quite remarkable by com- 
parison with any known engineering 
accomplishments. For example, the 
heart of a mouse weighs about 0.1 
gram, while that of a whale may weigh 
150 kilograms, and yet the two resemble 
each other strongly and clearly perform 
the same physical functions. Such very 
extensive dilatation of the system is 
possible only when a number of factors 
are rigidly controlled, as is known to 
be the case in the mammalian system 
(factors such as pressures, concentra- 
tions, pH, types of reactions, viscosity, 
membrane coefficients, density, and 
diffusivity). 

A very interesting prospect for the 
future is that similarity criteria will 
make possible a quantitative compara- 
tive physiology and also genetic tracing 
of certain organ systems. In pioneer- 
ing work beginning in 1922, E. W. 
Sinnott (49) showed that the geometric 
form ratio for the gourd fruit was con- 
trolled genetically. It appears reason- 
able to suppose that the numerical value 
of any biological similarity criteria is 
determined genetically and may be fol- 
lowed in phylogenesis. Presumably 
genes carry hereditary information in 
dimensionless form and it is converted 
into dimensional variables, such as 
blood pressure, by mechanisms which 
are not completely understood at this 
time. 

Metaphysical connotations should not 
be attached to similarity criteria. They 
are obtained by a well-defined and 
deductive method, not by mystical reve- 
lation. Examination of books such as 
20 JULY 1962 

those of Duncan, of Langhaar, and of 
Sedov immediately reveals that dimen- 
sional methods are as complex as any 
of those widely used in engineering, but 
they have been little taught in uni- 
versities. 

An outstanding feature of dimension- 
less similarity criteria is that they are 
convenient and embody natural physi- 
cal properties of the system under study. 
They rely on internal rather than im- 
posed standards of measurement. It has 
been said, for example, that when meas- 
ured by his own forearm every man is 
of the same size as every other. 

Dimensional methods naturally tend 
to find a place in biomedical engineer- 
ing. There will probably be a useful 
exchange of experience on similarity 
methods between engineering practice 
and biomedical work. The ability of 
mammals to scale up (from mouse to 
whale) by a factor of over 2 million 
in mass and 100 in length is remarkable 
and thought-provoking for the engineer- 
ing analyst. It also seems conceivable 
that similarity and scale-up methods 
will be useful in biomass production 
studies in agriculture, in certain aspects 
of clinical physiology, in construction 
of biological models, in analysis of 
developmental patterns and in a number 
of other areas. 

The work reviewed in this article 
(50) is in some respects an attempt to 
apply modern similarity and dimen- 
sional methods to the viewpoints ex- 
pressed by D'Arcy Thompson in his 
monumental work Growth and Form. 
D'Arcy Thompson always held that in 
analyzing biological systems one should 
use clearly defined physical mechanisms, 
without recourse to unproven "vital- 
istic" energies or agencies. The out- 
look of this article is well summarized 
in his words: "The study of form may 
be descriptive merely, or it may become 
analytical. We begin by describing the 
shape of an object in simple words of 
common speech. We end by defining it 
in the precise language of mathematics, 
and the one method tends to follow 
the other in strict scientific continuity." 
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News and Comment News and Comment 

Space Program: Congress Passes It 

Unanimously, But NASA Wonders 
About Durability of Support 

The Senate, without asking any seri- 
ous questions, gave its unanimous en- 
dorsement last week to the Administra- 
tion's space program. 

The action followed a similar display 
of unanimity in the House, where even 
H. R. Gross, the Iowa Republican who 
thinks budgets are for cutting, grudg- 
ingly went along with a $2 billion in- 
crease in NASA's budget, bringing it 
to $3.7 billion. Gross did add that "it 
would be my hope that if and when we 
do get to the moon we will find a gold- 
mine up there because we will certainly 
need it." But neither he nor any of his 
colleagues on the floor showed an in- 
clination to debate NASA's activities. 
In the Senate, William Proxmire, Dem- 
ocrat of Wisconsin, tried to stir up 
some debate about the space program, 
but the response was minimal. Two 
amendments offered by Proxmire-call- 
ing for a study of the space program's 
manpower situation and for more com- 
petition in space contracts-were 
promptly overwhelmed. The Senate 
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then went on to give NASA virtually 
everything it requested. As in the 
House, a few items were shaved, but 
the effect will not extend to any ac- 
tivities that NASA deems even moder- 
ately important. If it changes its mind, 
it has assurances that both houses will 
review the cuts with sympathy. 

Having scored a pair of shutouts on 
Capitol Hill-as it has in every post- 
Sputnik year-the space program would 
seem to have no political clouds in its 
future. But among persons associated 
with the program, in and out of Con- 
gress, more and more thought is being 
given to the question of the substance 
and durability of public and, ultimately, 
congressional support for the national 
space effort. 

When portrayed in terms of compe- 
tition with the Soviets, the space effort 
is assured of public and congressional 
support, especially since the mortifica- 
tion caused by Sputnik is embedded in 
the American mind. But the Adminis- 
tration is eager to convince the public 
that space developments are valuable 
in themselves and deserve to be sup- 
ported at a high level of expenditure, 
regardless of what the Soviets are up to. 
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tion caused by Sputnik is embedded in 
the American mind. But the Adminis- 
tration is eager to convince the public 
that space developments are valuable 
in themselves and deserve to be sup- 
ported at a high level of expenditure, 
regardless of what the Soviets are up to. 

Just what the future holds in the East- 
West space competition is something 
of which no one can be certain; the 
Administration, however, wishes to 
make certain that in the unlikely event 
of a decline in the cold war motivation, 
the public will be sufficiently enamored 
of space activities to give support to the 
continuance of a large-scale program. 

Toward this end, the Administration 
has gone to great lengths to depict the 
space program as a great national un- 
dertaking that is leading to readily dis- 
cernible benefits such as weather fore- 
casting and satellite communications; 
indirect benefits, including technologies 
adaptable to nonspace activities; and, 
finally, a grand adventure in which all 
citizens can vicariously participate. 

The difficulties involved in winning 
support for the program outside of a 
cold-war context are enormous, how- 
ever, because, while the bill grows big- 
ger each year, the benefits that are 
easily visible to the general public are 
few in number. The success of Telstar 
last week helps convince every televi- 
sion viewer that he has something to 
gain from space research, but such 
easily recognizable dividends from space 
are actually few in number. 

One result is that the Administration 
and its space lieutenants in Congress 
have undertaken a campaign to con- 
vince the public that the "fallout" (or, 
as it is more discreetly referred to, the 
"spin-off") from space research is of 
such great value in nonspace fields as 
to justify whatever expenditures may 
be involved. Pronouncements to this 
effect are becoming fairly commonplace 
and sometimes are of a euphoric char- 
acter that suggests a bit too much 
protesting. (One entry in this educa- 
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