
Concerning iron transport in plant 
systems, however, this study shows 
that iron absorbed from a ferric chelate 
moves up the stem and is held in the 
exudate in other chelated forms, the 

principal one being iron malate. The 

presence of iron chelates in the exu- 
date of plants would account for the 

solubility of iron at the relatively high 
pH's of these systems and at the same 
time suggests that chelated iron is the 
form being translocated in intact plants. 
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with the aid of a number of assumptions 
of uncertain validity. 

Prigogine, Mazur and Defay (7) 
have provided the basis for a new ap- 
proach to the problem by demonstrating 
theoretically that, in any microscopic 
portion of a system at constant uniform 

temperature and pressure the diffusion 

affinity Ai of any molecular species i is 

Ai = -grad *,i (1) 

The electrochemical potential ,*i is 

* 'i = ' ~-8i + ziF = ti + ziFo (2) 

where Ai is the chemical potential, ,ti 
is the chemical potential in the absence 
of an electric field (hence, RT In fiCi), 
E is the electric field strength, 8 is the 
dielectric increment dD/dCi, zi is the 
electrochemical valence, F is the Fara- 

day, and () is the electric potential. 
Suppose that two parallel planes, lo- 

cated in a rectangular coordinate system 
at x = a and x = r, and normal to the 
x-axis, bound an aqueous system, made 

up of molecular species a,b,...i,j,....n, 
which is homogeneous with respect to 
the y- and z-axes. The flux of any con- 
stituent Ji across unit area oi any plane 
parallel to the bounding planes is 

J* = E LijA, (3) 

In this and subsequent equations, sym- 
bols in bold-face indicate vectorial com- 
ponents along the x-axis only, and the 
Lij are linear phenomenological coeffi- 
cients (8-10). In the steady state, 

x=-T j=n \ 

JXi = 1 E LjAj dx' (4) 

where X is the distance between a and 
77. The diffusion affinity A, will be a 
continuous function of x, hence the dif- 
fusion affinity Ajd across the system 
will be 

X dx (5 
Aj f Aj dx (5) 
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where ' is the electrical potential dif- 
ference between a and l. This relation 
will be valid for linear diffusion in any 
continuous aqueous system in which the 
linear phenomenological relations hold. 

Equation 12 may readily be extended 
to include discontinuities such as phase 
boundaries or membranes of infinitesi- 
mal thickness; finite membranes can be 
treated as aqueous systems. Assume that 
the planes at x = a and x = r are 

phase boundaries separating an internal 
phase from two infinite external phases 
I and II. Let Ji, L%i, and A,a represent 
the flux, linear coefficients, and diffusion 
affinities across a, and J3b and so on 
those for 7. Define another set of 
coefficients 

LattAi+ j ,A/+ A 
_(2 L~jaAj + 

: 

LtjAja 
+ 2. L~jAj~) 
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: (Aja + A" + A,v) : (Aja + A" + A,v) 

(13) (13) 

Then the flux from I to II becomes 

J. = (L"tz, u + ZiFE) (14) 

where At~ and E are now the differ- 
ences respectively in chemical and elec- 
trical potential between I and II, and 
these quantities can in general be meas- 
ured experimentally. 

In a more detailed paper, I have 
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carried out the full derivation of Eq. 14, 
and used the method of Staverman (8) 
to derive an equation relating electric 
current flux I to potential difference E 
for a membrane system in which active 
transport processes occur (10). This 
relation, which can now readily be 
shown to apply to any system of parallel 
phases and boundaries, is 

I = LEE + 2 t'j3AxU + J- zjFJj (15) 
i i 

Here LE is the electric permeability or 
conductance, t'j the reduced transfer- 
ence numbers (8), and JjA the active 
components of the flux. 

Equation 15 is now seen to be quite 
general, applicable to any system of 
parallel membranes and phases regard- 
less of the occurrence within the system 
of electric fields, fixed charges, polar- 
izable molecules, or active transport 
processes. The equation takes on clas- 
sical forms in simple cases. It reduces 
to Ohm's law when there are no chemi- 
cal potential differences or active trans- 
port processes. When no current flows, 
in the absence of active transport, and 
with the same uni-univalent electrolyte 
on both sides of the membrane, it yields 
the Nernst liquid junction potential 
equation (2). When the chemical and 
electrical potential differences are zero, 
in the presence of active transport, the 
current flux is equal to the active trans- 
port current, as Ussing has shown for 
frog skin (11). For the more compli- 
cated situation across the membrane of 
the nerve axon, Eq. 15 readily yields 
the Hodgkin and Huxley equation for 
the resting current-voltage relation when 
the net active transport current is zero 
(12). Equation 15 is not readily re- 
duced to the complex liquid junction 
equation of Planck (3), nor to the 
membrane equations of Teorell (4), 
Goldman (5), or Hodgkin and Katz 
(6). All of these use concentrations 
instead of chemical potentials, and the 
membrane equations utilize a number 
of assumptions about the membrane 
field and the concentration relations 
between the membrane and the external 
solutions. The constants in the resulting 
equations are consequently not com- 
parable to the constants in Eq. 15, 
which are directly and simply related 
to the phenomenological coefficients. 

In a previous report, I have noted 
the fact that for several types of bio- 
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In a previous report, I have noted 
the fact that for several types of bio- 
logical membrane system, the resting 
current-voltage relation is linear, as 
Eq. 15 predicts (10). The equation is 
derived from thermodynamic considera- 
tions, and consequently is not related 
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to any mechanism of active transport; 
it cannot, therefore, be used by itself 
to test the validity of any such mecha- 
nism. It is not applicable in conditions 
which depart from the steady state, as 
in the excited nerve membrane. It 
should, however, have considerable 
value in the experimental study of dif- 
fusion, liquid junction potentials, and 
the important related phenomena in 

living membranes. 
BRADLEY T. SCHEER 

Department of Biology, 
University of Oregon, Eugene 
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Temporal Discrimination in Pigeons 

Abstract. Pigeons trained to peck a 
lighted key were presented with a key 
that was alternately dark and lighted. 
The key was dark for intervals of from 
3 to 30 seconds. Pecking of the lighted 
key was reinforced only after the short- 
est or, in a second experiment, the long- 
est interval that the key was dark. The 
pigeons were able to discriminate the 
duration of the dark interval. 

Previous studies (1) have shown that 

organisms can discriminate the dura- 
tion of a stimulus. In a fixed-interval 
schedule of reinforcement (2), for ex- 

ample, a response is reinforced only 
after a fixed interval of time has elapsed 
since the previous reinforcement. The 

frequency of responding generally in- 
creases throughout the interval between 
two reinforcements, indicating that the 
organisms are to some extent sensitive 
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and generalization (4). In the standard 
procedure as applied to pigeons, several 
different stimuli, lights of different 
wavelength, for example, are succes- 
sively presented to the pigeon. Pecks 
are reinforced with food in the presence 
of one wavelength and not in the pres- 
ence of the other wavelengths. The fre- 
quency of pecking plotted against wave- 
length reveals both discrimination of 
the wavelength associated with rein- 
forcement and generalization to wave- 
lengths adjacent to it on the continuum. 
This procedure was modified in our 
work to accommodate a peculiarity of 
the continuum of duration, namely, that 
the duration of a stimulus does not 
have a single, unchanging value until 
the stimulus has terminated. Accord- 
ingly, in order precisely to define the 
durations to which our pigeons re- 
sponded, we exposed them to various 
durations of a stimulus and allowed 
them to peck after, rather than during, 
the presentation of each duration. 
Pecking was reinforced after one dura- 
tion and was not reinforced after the 
other durations. 

The experiments were conducted in 
a standard pigeon chamber containing 
a feeder for delivering grain to the 

pigeon and a circular plastic key that 
could be illuminated with orange light. 
For observing the birds, there was dim 
overhead illumination throughout each 
session. The pigeons were maintained 
at 80 percent of free-feeding weight 
and had previously been trained to 

peck a lighted key. 
In each daily session, intervals of 

various durations during which the key 
was dark were each followed by a 30- 
second interval during which the key 
was lighted. The dark-key intervals 

ranged from 3 to 30 seconds in steps 
of 3 seconds. They were presented in 
an irregular order (5). Each duration 
occurred 12 times per session. In the 
first experiment, pecks on the lighted 
key were reinforced only after a dark- 

key interval of 3 seconds, and were not 
reinforced after longer dark-key inter- 
vals. In the second experiment, pecks 
on the lighted key were reinforced only 
after a dark-key interval of 30 seconds, 
and were not reinforced after shorter 

dark-key intervals. Reinforcement was 
a presentation of grain for 3 seconds, 
according to a variable-interval sched- 
ule with an average interreinforcement 
interval of 20 seconds. 
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a presentation of grain for 3 seconds, 
according to a variable-interval sched- 
ule with an average interreinforcement 
interval of 20 seconds. 

Figure 1 shows the results of the two 

experiments for each of four pigeons. 
The median number of pecks on the 

lighted key during the last five sessions 
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