
CURRENT PROBLEMS IN RESEARCH 

Linear Programming 
It is one of several mathematical approaches to 

problems of optimal choice under constraint. 

W. Allen Spivey 

The goal of maximizing or minimiz- 
ing an objective (say profits or costs), 
where the choice of means is not un- 
restricted but must be made under one 
or more constraints, is common to 
many different problems in the physical 
and social sciences, in industry, in agri- 
culture, and in national defense. When 
the objective can be approximated satis- 
factorily by a linear function and the 
constraints can be expressed as linear 
qualities or inequalities, the problem 
can then be treated mathematically as 
a problem in linear programming. 

Linear programming techniques, 
largely because of their relative sim- 
plicity and flexibility, have found in- 
creasingly wide application since sys- 
tematic development of the theory 
began in 1948 with the work of George 
Dantzig and his associates, who were 
working at that time on programming 
problems of the U.S. Air Force. By 
1955 there had been a remarkable de- 
velopment of the underlying mathe- 
matical theory (the work of A. W. 
Tucker, of Princeton University, in 
particular, and of a host of other bril- 
liant mathematicians). Moreover, with 
the parallel development of data-proc- 
essing and computer machines, it be- 
came possible to quickly solve large- 
scale linear programming problems, so 
that by 1960-only 12 years after the 
initial work-linear programming tech- 
niques had been successfully applied 
to the study of such diverse problems 
as production smoothing, traffic control 
at toll booths, investment scheduling in 
an electric-power industry, job assign- 
ment, transportation and warehousing 
of commodities, railway freight move- 
ments, blending of aviation gasoline, 
optimal crop rotation, Air Force con- 

tract bidding and the scheduling of air- 
craft maintenance, plastic limit analysis 
of structures, chemical composition at 
equilibrium, and many others. 

Geometrical Analogies 

Before considering some linear pro- 
gramming applications in detail, let us 
look at a simple-and suggestive- 
geometry. We begin with a two-dimen- 
sional plane and a given coordinate 
system (Fig. 1). Each point in the 
plane is then represented by an ordered 
pair of numbers, called its coordinates, 
and a point can be thought of as an 
end point of a vector having its initial 
point at the origin and the given point 
as end point. By analogy with the cor- 
responding operations on vectors, we 
define the sum of the points X [or (xi, 
X2)] and Y [or (y', Y2)] as 

X + Y = (x +yl,x, +y,) 

and multiplication of a point X by a 
real number or scalar k as 

kX = (kx,, kx2) 

Combining these two operations on 
points, a linear combination of points 
X1, X2, ... , X? is defined to be the 
point X*, where 

X* = ki Xt + k2 X9 + . . + k,l X 

In particular, if each of the scalars ki 
is nonnegative, it is called a nonnega- 
tive linear combination, and if, in addi- 
tion to each ki > 0, we have ki + k2 
+ ... +- k, = 1, it is a convex linear 
combination or, more briefly, a convex 
combination. Some examples will help 
to make this clear. Suppose X1 = (2, 
5), X, = (5, 3); then the set of all 
nonnegative linear combinations X* = 
kl Xi + k2 X2 consists of all the points 

in the cone-shaped region in Fig. 2 
(left), and the set of all convex com- 
binations of Xi and X2 is the set of 
points on the line segment joining the 
points X1 and X2 (Fig. 2, right). A 
particularly interesting feature of con- 
vex combinations is their "linear" prop- 
erty: the set of all convex combinations 
of two points fills out the line segment 
joining the points. To see this still more 
clearly, let X3 equal (6, 7) and con- 
sider the set of all convex combina- 
tions of the three points, X1, X:, and 
X3. This is the set of points in the 
triangle in Fig. 3 (all points on the 
bounding segments and in the interior). 
If ki equals 0 and k2 and k3 vary over 
all permissible values, we obtain all the 
points on the line segment joining XK 
and X3. Similar statements can be made 
concerning the line segments joining X1 
and X3 and joining X1 and X2. for 
choices of k2 = 0 and k: = 0, respec- 
tively. For each ki > 0, one can verify 
that the convex combination is a point 
in the interior of the 'triangle. 

Convex combinations can be used to 
define a concept of great importance 
in linear progralmming, that of a con- 
vex set. A set is said to be convex if, 
given any two points in the set, the line 
segment joining the points lies entirely 
inside the set. Since the line segment 
joining two points consists of the set of 
all convex combinations of the points, 
this can be stated as follows: a set is 
convex if, given any two points Xt, Xx 
in the set, the point ki X1 + k, X is is n 
the set for k, + k2 = 1, ki ? 0. Illus- 
trations of convex sets are shown in 
Fig. 4. Points in a convex set which 
are not convex combinations of two 
other points in the set are called 
extreme points of the set. In Fig. 4a 
the five corner points are extreme 
points; in Fig. 4b each point on the cir- 
cumference of the disk is an extrene 
point, and the set in Fig. 4c has no 
extreme points. 
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Fig. 1. The sum of two vectors. 
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Fig. 2. (Left) Set of all nonnegative linear combinations of two points. (Right) Set 
of all convex combinations of two points. 

Suppose we now consider the sel 
points (xi, x2) satisfying a linear 
equality-say, 

5x1 + 6x2 < 30 

The points whose coordinates sat 

inequality 1 are either on the line wh 
is the graph of the equation 5x1 + 
= 30 (the boundary of the set) or 
low it. The set defined by inequalit 
is called a half plane and is a spel 
case of a more general concept cal 
a half space. A half space in n-sp 
is the set of all points (xl, x2, ... 
whose coordinates satisfy a linear i 
quality of the form 

al xi + .. . - al,, xn < b 

The graph of the equation an xi 
... + ain xn = b is called a hyperpl 
in n-space (generalization of a strai 
line), and it is the boundary of the I 

space defined by inequality 2. 
Returning to the two-dimensional 

ample, suppose we determine the set 
points (xl, x2) satisfying inequality 
and also the inequalities 

3x1 + 2x2 _ 12 

X1 0 

X2 0 

Each of these inequalities defines a t 
plane, and the points whose coordina 

t of simultaneously satisfy inequality 1 
in- inequalities 3 to 5 lie in the comr 

part or intersection of the sets. Si 
it can be shown that a half space 

(1) convex set and that the intersectior 
isfy any collection of convex sets is a c 
iich vex set, the intersection shaded 
6x2 Fig. 5 is a convex set. 
be- A simple linear programming p] 
y I lem can now be formulated. Deterr 
cial the largest possible value of the lir 
lied function 
ace 

/(xi, x2) = x, + 5x2 
xn) 
ine- not for all real numbers xi and x2, 

for those satisfying the following 
quality constraints: 

(2) 
5x, + 6x2 ? 30 

+ 3x1 + 2x < 12 
ane 
oht 

ialf X2 0 

The set of points (xl, x2) satisfy 
ex- these inequalities, it has been obsern 
Of is the intersection of the sets defined 
1 the inequalities. This set is called 

feasible solution set of the linear r 
(3) gramming problem. Equation 6 defi 

the objective function of the probl 
it can be used to specify a family 
straight lines in the plane, each one 

ialf which is obtained by an appropr: 
ites selection of a value for f(xi, x2). 

(a) 

x,(6,7) 

Fig. 3. Set of all convex combinations of 
three points. 

and geometry for the problem appears in 
non Fig. 6, and the dashed lines represent 
ince graphs of Eq. 6 for f(xi, x2) equal to 
is a 12, 16, and 25. The maximization of 
i of Eq. 6 subject to the constraints can be 
:on- represented geometrically by moving 

in the straight line specified by Eq. 6 
across the feasible-solution set S until 

rob- we reach a point of S lying on the line 
line which is "most distant" from the origin. 
iear The coordinates of this point will yield 

a maximum value for f(xi, x2). From 
Fig. 6 it may be seen that the point (0, 

(6) 5) maximizes f(xi, x2), since the value 
but of f(xi, x2) can be made larger only 
ine- by moving the line still further from 

the origin, in which case it would no 
longer intersect the solution set. We 
have for this point 

max f(xl, x2) = f(0, 5) = 0 + 5(5) =25 

If, on the other hand, our objective had 
been to minimize f(xi, X2), we would 

ring have moved the line as far down as 
ved, possible, so that it would intersect S in 
Iby such a way as to give the smallest per- 
the missible value to f(xl, x2). In this case, 
)ro- the point would have been the origin 
ines itself, and minimum f(xl, x2) = f(0, 
em; 0) = 0. 

of A feasible solution which either max- 
of imizes or minimizes the linear function 

iate is said to be an optimal solution, and it 
A can be shown that if a linear program- 

(c) 

Fig. 4. a, All points on the boundary and in the interior-a convex set; b, all points on the circumference and in the interior- 
a convex set; c, all points in the interior, exclusive of the circumference-a convex set; d, not convex. 
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ming problem has an optimal solution, 
then the linear function assumes its 
greatest or least value over an extreme 
point of the solution set [the points 
(0, 5) and (0, 0) in the preceding ex- 
ample are extreme points of the solu- 
tion set]. This is an "economizing" 
result from the computational point of 
view, since we need not search for 
optimal solutions from among all points 
of the solution set but only among the 
extreme points (for some problems, 
however, the number of extreme points 
is quite large). 

These concepts can be readily gen- 
eralized to n-space. In a problem cor- 
responding to the maximization of Eq. 6 
we seek a point X -- (x, ..., xn) 
which will maximize the linear func- 
tion 

n 

f = Ci-x +... + CnX, = C Xi (7) 

j-l 

subject to 

a' Xl + a12X2 + .. + al,nX, ? bi 

a21zx + a22X2 + . . + a2 Xn < b2 

................. ......... (8) 

amixi + a2X2 + . . . + a ,,mnXn - br,, 

Xi > O(i = 1, .. n) 

where each inequality defines a half 
space in n-space and where the aij, cj, 
bi are assumed to be known. The inter- 
section of the half spaces, as before, 
is the convex set of feasible solutions, 
and Eq. 7 defines a family of hyper- 
planes in n-space. The maximization 
of Eq. 7 subject to inequalities 8 can 
be thought of as moving the hyperplane 
defined by Eq. 7 across the solution 
set S until a point in S most distant 
from the origin and lying in the hyper- 
plane is reached (if it exists). This 
point will yield a maximum for f and 
will be an optimal solution to the prob- 
lem. (Unfortunately, space does not 
permit consideration of the conditions 
under which feasible and optimal solu- 
tions always exist; extensive discussions 
of this can be found in Boulding and 
Spivey and in Gass.) 

Primal and Dual Problems 

Associated with every linear pro- 
gramming problem is a closely related 
problem-also of linear programming 
-called its dual. The original problem 
(a maximization problem in the illus- 
tration above) is called the primal, and 
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Fig. 5. Geometry of a convex set of 
points whose coordinates simultaneously 
satisfy inequalities 1, 3, 4, and 5. 

its dual is a minimization problem. 
Optimal solutions to both problems are 
intimately related, and if one is given, 
the other can easily be obtained. Spe- 
cifically, the dual of the maximization 
problem of Eq. 7 and of inequalities 8 
is the following problem. Minimize 

g = bll + .. .. bmnu,n = biui (9) 
= I- 

subject to 

ali1l + a21UO2 + . . . + a,mzli, Ci 

a12U1 + 0a222 + . .'. + a 2U1 - C2 

......................... (10) 
altut + a2u,2 +... +. a,,,,u, Cn 

ui 0i = 1, ... m) 

A comparison with the problem in 
Eq. 7 and in inequalities 8 shows that 
the coefficients of the variables in Eq. 9 
appear as constant terms on the right 
in inequalities 8 and that coefficients of 
the variables in Eq. 7 are the constant 
terms of the right in inequalities 10. 
The ui are called dual variables, and the 
reader acquainted with matrix algebra 
will observe that the matrix of the sys- 
tem of inequalities 10 is the transpose 
of the matrix of the system of inequal- 
ities 8. Since it can be shown that the 
dual of the dual problem is the original 
problem, either problem can be con- 
sidered the primal and the other the 
dual. 

A number of interesting relationships 
exist between a primal problem and its 
dual. It can be proved, for example, 
that 

c=CXj in 1 

i= i i = 1 

that for optimal solutions (Xi*, .., 
Xn*) and (ul, . .. u,*), 

n m 

max f= CiX*= biu* =min g 
i=j1l i=1 

and that a necessary and sufficient con- 
dition that both primal and dual prob- 
lems have optimal solutions is that both 
problems have feasible solutions. Aside 
from their great theoretical importance, 
the intimate relationships between opti- 
mal solutions to the primal and dual 
problems can be utilized in many prac- 
tical ways. For example, since an op- 
timal solution to one can be obtained 
from an optimal solution to the other, 
we are free to solve the simpler of the 
two and utilize these relationships to 
determine an optimal solution to the 
other. 

Applications 

It will be well at this point to con- 
sider a few of the many applications of 
linear programming. 

Bid evaluation. Suppose there are 
n depots and m separate bidders. Each 
bidder wishes to produce an amount 
of a commodity not exceeding ai (i = 
1, ..., m), and the demands at the n 
depots are known to be the numbers 
bj (i = 1, ..., n). The cost of deliver- 
ing a unit of the commodity from the 
ith bidder to the jth depot is ci. If 
Xij denotes the quantity purchased from 
the ith manufacturer for shipment to 
the jth destination, then the problem 
is to minimize 

Cij Xij 

i, j 

subject to 

n 

L Xiv C a (i = I, * * .*, m,) 

jXi= j j (= 1 , .n) 

in 

1=1 

x, - 0(all i,j). 

Production smoothing. A commodity 
is to be produced, over a given number 
of time periods, which must satisfy 
certain requirements in each of the 
periods. The objective is to minimize 
total costs (consisting of costs of pro- 
duction and storage and costs of changes 
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Fig. 6. Geometry of the linear p 
ming problem defined by Eq. 6 
equalities 1, 3, 4, and 5. 

in the rate of production) subjec 
condition that shipping requiren 
met. Let T be the total number 
periods, let rt be the known s 
requirement at time period t, Ib 
the quantity produced in perioc 
let 

yt = Xt+i - Xt > 0 

be the increase in production at 
Then 

i 

t = O t=O 

equals total production from p 
to period i, and 

i 

t = E 

equals the total requirement fr 
riod 0 to period i, where we 
R0 as 0. The excess of accui 
production over accumulated : 
ments up to time period i is g 

ui = Uo + Xi -Ri ? O 

where Uo is a known consi 
excess of production at the I 
of the process. To get an e 

ta 
be 

x] 

Fig. 7. Graph of Eq. 17 and th 
points satisfying inequality 18. 
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for costs, let ci represent the cost of 
producing a unit in period i- 1 to i; 
di, the cost of storing each unit of 
excess ui for one period; and ei, the 
cost of increasing production rate one 

- f=25 unit time at period i. Total costs then 
are 

- f=16 
T 

f=12 T 
'?1 -=3 ,~(cixi + diui + eiYi) (12) 

i== 

and the linear programming problem is 
,rogram- 
and in- then to minimize Eq. 12 subject to 

i i 

EXt - rtO 0 
t= 1 t= 1. :t to the 

ients be Xi, Yi, u O 0 
of time for ui as defined in inequality 11. 
,hipping A transportation problem. There are 
et xt be m origins or supply centers and n des- 
i t, and tinations or markets to which a given 

(homogeneous) commodity is to be 
shipped. The ith origin has an amount 
si of the commodity (i = 1, ..., m), 

time t. and the requirements are such that the 
jth destination is to receive the amount 
ri (j = 1, . . ., n). Let Xij be the quan- 
tity of the commodity that is to be 
shipped from origin i to destination j, 
and let cij be the cost of shipping one 

eriod 0 unit of the commodity from origin i to 
destination j. Total shipping cost is then 

cijxij (13) 
i, j 

*om pe- if we also require that destination de- 
> define mands be fulfilled from supplies avail- 
mulated able at the origins, then the constraints 
require- become 
iven by 

Xi; =S(i =1,...m) (14) 
(11) ) 

nt, the 
?-,ginningExj = rj (J= 1, .x. ., n) (15) 

pression 
xi,j 0 (all i, j) (16) 

where si, ri, and ci are given nonnega- 
ftive integers and supply is assumed to 

be equal to demand, E rj = - si. The 
problem is to minimize Eq. 13 subject 
to Eqs. 14 and 15 and inequality 16. 

This problem was first proposed by 
Hitchcock, a physicist, in 1941, and 
independently by the Russian mathe- 
matician Kantorovich (1942) and by 
Koopmans (1944). With the develop- 

Y ment of linear programming the mathe- 
matical properties of the problem were 
worked out (it was seen to be a prob- 

b,0) lem in linear programming), a general 
e set of statement of this class of problems was 

developed, and general conditions for 

Table 1. Optimal assignment problem (see text). 
[After Koopmans and Beckmann] 

Job productivity 
Worker 

No. 1 No. 2 No. 3 No. 4 

1 25 20 5 19 
2 18 3 0 12 
3 22 4 2 12 
4 16 7 -2 10 

the existence of solutions came to be 
known. 

An optimal assignment problem. This 
is a special case of the transportation 
problem and can be obtained from it 
by letting si = rj = I and m = n. 
There are n jobs to be done and n 
workers to fill them. The "value" (de- 
termined perhaps by a psychological 
test) or cost of having worker i per- 
form job j is assumed to be known, 
and the problem is to determine an as- 
signment of the n workers to n jobs 
which maximizes total value or mini- 
mizes total cost. Suppose the value of 
worker i in job j is as shown in Table 1. 
Italics indicate an optimal assignment 
(worker 2 to job 1, worker 1 to job 2, 
and so on), and it is interesting to ob- 
serve that an optimal assignment in 
this case is not one in which each 
worker is assigned to the job which 
"he can do best" (where he has the 
highest value). Worker 1 is most pro- 
ductive in job 1, but this is not in the 
optimal assignment, whereas worker 2, 
on the other hand, is least efficient at 
job 3, yet this does appear in the opti- 
mal assignment. 

The mathematics of programming 
problems has undergone further exten- 
sions and refinements, primarily in the 
directions of nonlinear, dynamic, and 
stochastic (or probabilistic) program- 
ming. A nonlinear programming prob- 
lem is one in which either the objective 
function or at least one of the con- 
straints has a nonlinear term; a dy- 
namic programming problem is one in 
which time plays an explicit and funda- 
mental role; and a stochastic problem 
is one in which at least one of the 
following in Eq. 7 and in inequality 8 
is a random variable: aij, bi, or cj. The 
existence of a nonlinearity, a time di- 
mension, or a random influence usually 
creates difficult theoretical and compu- 
tational problems-much more difficult 
than those in linear programming- 
and only a few special classes of these 
problems can be solved at the present 
time (although approximation methods 
are available for some nonlinear prob- 
lems). Space does not permit an ex- 
amination of these problems, but a 
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simple example illustrating the kind of optimal solution can be any point in 
difficulties that arise is easily con- the feasible set. Clearly, more power- 
structed. Consider the nonlinear pro- ful analytical methods are needed to 
gramming problem of maximizing the deal with such problems. 
function At the present time, research in many 

aspects of mathematical programming 
f=c+ [- (x-a)2- (y-b)2]- (17) is continuing at a rapid rate, and the 

greatest prospects for widening the 
subject to areas of application still more appear 

(x-a) 2 +(y-b)2 ? I (18) to lie in the further development of the 
theory of dynamic and stochastic pro- 

The graph of Eq. 17 is taken to be the gramming, and, of course, in the con- 
half-sphere with center at the point tinuing development of conputer tech- 
(a, b, c), and the set of points satisfy- nology. Since difcuit and unsolved 
ing inequality 18 lie either on the cir- problems are found to be perennially 
cumference or in the interior of a cir- attractive to mathenaticians, it is emi- 
cle in the x, y plane with center at the nently reasonable to be optimistic about 
point (a, b, 0). The problem is shown the future development of the mathe- 
in Fig. 7, and the maximum value of matics of optimal choice under condi- 
f is assumed over the point (a, b, 0), tions of constraint. 
which is an interior point of the feasi- 
ble solution set. This illustrates a basic BRbiography 
difficulty in nonlinear programming c. E. Bishop, R. A. King, J. G. Sutherland, 
problems: it is not possible to confine "Programming resource use and capital invest- ment in agriculture," Management Sci. 3, 173 
one's attention, as in the linear case, to (1957). 
extreme points of the solution set nor K. Boulding and W. A. Spivey, Linear Program- 

extm ph suio n st n o minsng and the Theory of the Firsm (Macmillan, 
even to points on the boundary, for an New York, 1960). 
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News and Comment News and Comment 

The Fallout Booklet: It Did Not 
Aim for a Passionate Response; 
Decline of the Test Ban 

The promised civil defense booklet 
is now generally available, and despite 
its weaknesses, indeed partly because 
of them, it may turn out to be general- 
ly acceptable. 

The pamphlet has been criticized by 
supporters of civil defense for being 
written in too pedestrian a way to get 
its message across to the general pub- 
lic as clearly as might have been done, 
and by opponents of the program for 
not making clear enough the real 
meaning of a nuclear attack. 

Both criticisms are valid enough in 
the view of Administration officials- 
it is easy to see how the pamphlet 
could have been written in a way cal- 
culated to arouse more enthusiastic 
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preparation by the public, although 
hard to see how this could have been 
done without, for example, giving the 
impression that war soon is likely if 
not inevitable, or that the whole busi- 
ness would be a grand adventure to 
be looked forward to by every red- 
blooded citizen, or both. On the other 
side, the pamphlet could have given a 
more graphic account of what a nuclear 
war would be like, but at the risk of 
making people feel there is really not 
much point in doing anything. 

The pamphlet is therefore aimed at 
a very modest goal, but one achieve- 
able, the Administration hopes, with- 
out either misleading or terrifying the 
public. This involves winning public 
support for the Administration's pro- 
gram of marking and provisioning 
shelter areas in existing buildings, en- 
couraging the preparation of more 
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elaborate shelter areas in new build- 
ings, encouraging (but not urging) the 
preparation of modest home shelters, 
and perhaps most important, giving the 
public some elementary information 
about what it should do if an attack 
should come. 

The whole program is on a modest 
scale-about equal to next year's 
federal budget for health research, 
and less than 1/50 of the defense 
budget. The pamphlet, and the pro- 
gram generally, is based on the prob- 
ability that the nation could emerge 
in significantly less bad shape if modest 
precautions were taken before an at- 
tack and if the citizens were supplied 
with a general idea of how to behave. 
The Administration's defense against 
its critics is principally to argue that 
among a range of alternatives, all of 
which are far from satisfactory, the 
best that can be done is to choose 
the least unsatisfactory. 

Advertising of Shelters 

An important sidelight on the shelter 
question is the advertising for fallout 
shelters, which has generally tended to 
give an impression quite different from 
what Civil Defense officials have been 
giving. Very often the shelters have 
been advertised as sort of homey play- 
rooms in peacetime, which would pro- 
vide nearly complete protection in the 
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