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CURRENT PROBLEMS IN RESEARCH 

Information 
Theory 

A brief survey is made of the recent developments 

and the current status of information theory. 

H. H. Goldstine 

It is with considerable diffidence that 
I attempt to discuss more or less au- 

thoritatively a subject that has been 
conceived and perfected by communica? 
tion engineers and that is both an inter? 

esting and a novel application of mathe? 
matics. In the dozen years since its 

inception by Shannon, information the? 

ory has reached a state of perfection 
and completeness in which it is likely 
to remain for some time. At least this 
is the impression I have received from 

talking with some men who are spe? 
cialists in this and related areas. This 
statement must, of course, be accepted 
with suitable caveats, since it sounds 
much like similar statements, made in 
the past by others, that later required 
extensive modification. But it does 
seem to me that an equilibrium has 
more or less been reached in the funda- 
mentals of the subject, so that the 
mathematician can reasonably under- 
take a survey of the situation. 

Entropy 

Before discussing the newest devel? 

opments, let me review briefly the ele? 
ments of information theory (7). This 

subject was initiated in a tentative way 
by various authors (2) in the 1920's 
and ultimately developed as a compre? 
hensive subject in 1948 by C. E. Shan? 
non (3) in a now classic paper in the 
Beil System Technical Journal. Since 
then there has been considerable ac? 

tivity in the field. But before discussing 
the more recent activity, let me sketch 
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some of Shannon's work. He started 
with the very plausible assumption that 
it is desirable to have a means of meas? 

uring the amount of information pres? 
ent; in a given situation. He was able 
to construct in most cases of impor? 
tance such a measure. Consider, for 
the sake of simplicity, an event chosen 
from a finite number of possible events. 
If all these events are a priori equiprob- 
able, then the number, n, of them can 
be used as a measure of the amount of 
information present. There are, how? 

ever, certain cogent reasons why it 
is better not to use n but to use, instead, 
the logarithm of n. To understand this 

reason, suppose one has two systems, 
one of which has m and the other n 

possible, equiprobable events. If one 
then considers the sum of the two sys? 
tems, the number of possible events is 
now mn. It would be desirable that the 
measure of information content be not 

multiplicative but additive. Thus, one 
desires 

/ (mn) = / (m) + / (n) 

and also if m > n, then in some sense 
the system with m events should con? 
tain more information than the one 
with n events; that is, 

f(m)>f (n) 

provided that m > n. It is an easy 
technical task to show that under these 
conditions 

/ (n) = C ln n 

for some positive constant C. Finally, 
it is customary to take the smallest non- 

zero amount of information as the unit 

of the system. But this smallest quan? 
tum is, of course, the binary digit, and 

thus 

/ (n) = log2 n 

In the case that not all events are 

equally probable, it is still possible to 

define a measure for the information 
content for the system. To do this, 

suppose that the events have proba- 
bilities p?, p2, . . . , pn; then the "en? 

tropy" or measure of information con? 

tent is by definition 

H = ? SViPi log2/?i 

Note that this measure is given in 

binary digits. By way of illustration, 
note that a decimal digit represents log2 
10 = 3.3 binary digits, and a letter from 

our alphabet, log2 26 = 4.7 binary digits. 
If the pi, p2, . . . , pn are all equal to 

\/n, then our last definition reduces 

to logs n, as it should. If Shannon's 
axioms are slightly modified one ob? 

tains the concepts of information intro? 
duced much earlier by Fisher (4), in 

1925; and if one makes the axioms 

slightly weaker, one obtains both their 

concepts, as well as other similar ones. 

This fact was shown in 1951 by Schut- 

zenberger (5). 
The introduction of the notion of an 

entropy into information theory estab- 
lishes a close connection between ther- 

modynamical systems and information- 
theoretical ones. This, according to 
von Neumann, is due to the fact that 
Boltzmann's definition of entropy is in 
terms of the number of a priori equi- 
probable states compatible with the 

macroscopic description of the state? 
that is, it corresponds to the amount of 

microscopic information missing in the 

macroscopic description. 

Coding Theorem 

Shannon's theory is principally con? 
cerned with those problems of com? 
munications engineering that naturally 
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arise in the transmission of information 
over channels, and in particular over 

noisy ones?that is, ones where it is 
not certain that the information re? 
ceived is identical to that transmitted. 
It is clear that one can give an intui- 

tively reasonable notion of rate of trans? 
mission of information and also of the 

capacity of a channel. To do these 

things, consider an arbitrary time T 
and let N(T) be the number of dis? 
tinct messages of duration T; then 

[\og2N(T)]/T can be used to measure 
the rate of transmission of information, 
and the limit of this ratio, as T ap? 
proaches infinity (it exists under a wide 
class of conditions), measures the ca? 

pacity of the channel. Thus, in some 
sense the channel capacity is the maxi? 
mum rate at which it is possible to 
communicate information over the 
channel. 

One of Shannon's most remarkable 
results is the so-called coding theorem 
for noisy channels. This theorem, 
roughly speaking, guarantees that the 
channel capacity as just defined is 

preeisely the maximum rate at which 
it is possible to receive information with 

arbitrarily high reliability (Below I state 
this remarkable theorem preeisely). 
This is, in my opinion, one of the most 

surprising and important results in the 
entire theory. A priori, one might 
imagine that as the noise in a channel 

increases, the rate at which one can 
transmit information reliably down the 
channel would necessarily decrease to 
zero. 

To see why this theorem is so note- 

worthy, let us consider how one might 
go about ensuring reliable transmission 
in the presence of noise. The most ob? 
vious thing to do is to repeat the mes? 

sage enough times to guarantee reliable 

reception. It can be shown that the 

price paid by this method for a very 
high reliability is a vanishingly low rate 
of transmission. For example, one can 

repeat each digit an odd number of 
times and decide at the receiver, by a 

majority rule, what was transmitted. It is 
clear how the rate of transmission goes 
down, and it is not too difficult to esti? 
mate how the reliability goes up as the 
number of iterations increases. This 
and other naive attacks all seem to lead 
to the same predicament, and this is 
the reason why Shannon's result is both 
so beautiful and so unexpected. Un? 

fortunately, now, a dozen years after 
the discovery of the theorem, we still 
do not know how to achieve in general 
the result guaranteed by the theorem. 
This is not due to a desire for a result 
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of great mathematical generality or a 
desire for elegance. Even in the case 
of the simplest nontrivial channel it is 
not known in complete detail how to 

proceed. 
A little later we will return to this 

problem, which will lead us into that 
branch of information theory known 
as coding theory. Before proceeding, it 
is perhaps desirable to mention that 
Elias devised an iterated scheme of 

coding of considerable theoretical in? 
terest which achieves as high a degree 
of reliability as one desires and yet 
does not result in an arbitrarily low rate 
of transmission. It does not, it is true, 
achieve a rate of transmission equal 
to the channel capacity, but it has two 

interesting properties: for a fixed rate, 
the reliability can be increased at the 
cost of coding delay; for a fixed delay, 
the reliability can be increased at the 
cost of transmission rate. In a quite 
real sense Elias's scheme achieves its 

goal by introducing redundancy, much 
as natural language does (6). 

Probabilistic Logics 

Before going into more detail on 
modern developments and current sta? 
tus in information theory, I should like 
to discuss a different but closely related 

problem originally formulated in 1952 

by von Neumann in a series of lectures 
at California Institute of Technology 
(7) and later reconsidered by Shannon 
and E. F. Moore (8), in 1956. Here 
the problem is not how to transmit 
data down noisy channels in the pres? 
ence of noise but rather how to carry 
out logical functions in the presence of 
noise. That is, von Neumann inquired 
whether a reliable automaton could be 

designed in which logical elements 
could be used which were not perfect 
in the sense that each had a certain 

probability of malfunctioning. For his 

building blocks he used majority or- 

gans, whereas Moore and Shannon 
used relays. 

The result is most remarkable and 

very elegant: It is possible to organize 
components which are individually un- 
reliable into an automaton capable of 

arbitrarily high reliability. This is, to 

me, a result like Shannon's coding 
theorem for noisy channels in that it is, 
a priori, not obvious that the opposite 
is not true. Perhaps it is worth saying 
a few words to indicate how von Neu? 
mann achieved his result. He consid? 
ered a majority organ, which is a three- 

input, one-output device where the 

output is the majority of the inputs, 
Suppose that we have such a majority 
organ with probability e of being in 
error and with probabilities /i, /% fs 
that the input lines carry wrong signals. 
Then clearly e? + /i + /2 + fs is an up? 
per bound for the probability that the 

output line is in error. From this we 

might conclude that the entire program 
is hopeless. However, we can mani- 

festly obtain a much better upper bound 
under reasonable assumptions?namely, 
(i) the probabilities of error are inde? 

pendent, and (ii) under normal condi? 
tions all lines should be in the same 
state. Then the probability of at least 
two inputs being in error is clearly 
p = un (i - /.) + hh (l - /.) + 
/./. (i - a) + uuu = uu + a/. 
+ fifs ? 2/1/2/3. Thus, the probability 
Q of the output being in error is (1 ? e) 
P + e (1 - P) = e + (1 - 2e) P. 

Now, if all fi ^ /, then e + 3/ is always 
an upper bound for Q and e + (1 ? 2e) 
(3f - 2f) ^ e + 3f is a better one, 
since e + 3/2 < / is possible. (In 
fact, for / ^ e + 3e2, the two sides of 
the inequality are roughly equal.) If 
the conditions outlined above can al? 

ways be maintained, then errors can in? 
deed be kept under control. To do this 
without introducing a number of com? 

ponents that is increasing exponentially 
with the "logical depth" of the func? 
tion?that is, the number of elements 
such as relays, tubes, and transistors, 

arranged in cascade fashion?von 
Neumann resorted to a very elegant 
trick. This consisted of transmitting 
all messages over N lines in parallel. 
A fiducial level A < V2 is chosen be- 
forehand so that if AN lines, or less, all 

are stimulated, it is decreed that this is 
the one type message, say a 0, and if 

(1 ? A) iV or more are stimulated, 
then it is the other type, say a 1. Any 
other number is considered a malfunc- 
tion of the system. Space does not 
allow me to go into details beyond 
noting the main result, which is roughly 
this: the probability of a malfunction 
is approximately 

(6.4/y/N) lO-8'6N/10'm 

where N is the number of lines in a 

bundle. 
The drawback both in von Neu- 

mann's and in Moore-Shannon's work 

lies not in the concept or in any lack 

of beauty and depth of the analysis; in 

fact, on the contrary, these papers are 

both brilliant. The difficulty is that to 

achieve an arbitrarily low probability 
of a malfunction one must increase the 

size of the assemblage beyond bounds. 
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Coding Theory 

Before going on to my main task of 

reporting on the current status of in? 
formation theory, I think it would be 
desirable to say a few words on coding 
theory. I alluded most briefly to this 

topic in discussing Shannon's coding 
theorem for noisy channels. Recall 
that this theorem guarantees the exist? 
ence of a coding of the input informa? 
tion and a decoding of the output in? 
formation from the channel with an 

arbitrarily low probability of error, pro? 
vided that the entropy of the informa? 
tion per unit of time is less than the 
channel capacity; for the entropy per 
unit of time in excess of the capacity, 
it is impossible. Now the essential task 
of coding theory is to discover these 

codings and decodings. This is one of 
the most important present-day areas of 
interest in the subject. Perhaps it 
would be well to say a few words on 
this topic, which received its initial im- 

petus in a now classic paper by Ham- 

ming (9) in the 1950 Beil System 
Technical Journal. Since then a great 
many others have been instrumental in 

carrying forward the development of 
the theory (see references). It is not 
out of place, however, to mention 

Slepian (10), Bose and Ray-Chaudhuri 
(11), and Elias (6) as four of the 
leaders in the field. 

To discuss coding one must realize 
that to achieve any sort of reliability 
one must introduce redundancy. In 

general, the problem faced by the coder 
is how to introduce redundancy into 
the system as efficiently as possible. In 
the next few paragraphs I describe 

briefly and geometrically some facts 
related to coding theory. 

Let us consider all possible sequences 
of n binary digits. There are 2* of 

these, and they form the vertices of the 
unit cube in an n-dimensional space. 
A code then consists of a designation 
of some subset of these vertices, and 
the received message is a transforma? 
tion of this set into another set of these 
vertices. That is, it is a mapping of 
vertices onto vertices. If there is no 
error in reception, then the transforma? 
tion is the identity, whereas if one 
error is introduced, the transformation 
carries a vertex into one an edge away; 
if r errors occur, the transformed point 
is r edges away. 

It is not difficult to see that the 
transformed points are most probably 
near the input point and least probably 
far away. This suggests the means of 

decoding: one can associate with each 
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vertex a set of vertices which are in an 
obvious sense quite close to the given 
vertex; the decoding consists of syste- 
matically classifying all these "closest" 

neighbors as being identical with the 

given vertex. These decoding schemes 
are called "maximum likelihood detec? 
tors." Two very important notions in 
this subject are group and parity check 
codes. Slepian showed them to be 

equivalent. The set of all binary se- 

quences of length n form a group un? 
der addition modulo 2?the addition is 
element by element. (For this group 
the zero element is of course the se? 

quence of all zeros.) Then a group 
code is any subset of this group that 
forms a subgroup. 

These codes are of especial interest 
and permit easy definition of the 
"closest neighbors" of a vertex. They 
are known to be equivalent to parity 
check codes. Such codes are defined 

by assigning some digits in a sequence 
to be for information and keeping the 

remaining ones as check digits. 
Another development in coding theory 

of a quite interesting nature is that con? 
cerned with correcting bursts of errors. 
The basic assumption made in this anal? 

ysis is that in data transmission the 
noise on the channel is not randomly 
distributed but occurs in bursts. The 

problem of course is to construct codes 
which make it safe to transmit infor? 
mation in the presence of such noise 
bursts. 

New Directions 

Having said all these more or less 

preliminary things, I now turn more 

explicity to the modern developments 
and attempt to indicate, in a brief way, 
the course the subject has had. Once 

again it is worth remarking that such 
a survey as this necessarily ignores some 
work and also gives emphasis to other 

developments in a highly subjective 
fashion; it is to be hoped that time will 
show that the choices made are wise 
ones. 

From 1948 until perhaps 1954 or 

1955, men working in information 

theory were primarily interested in un? 

derstanding and consolidating the pio- 
neering results of Shannon. In some 
sense this period was more or less 
at an end by 1954-1955, when Fein- 
stein (12) first established Shannon's 

conjectured theorem on transmission 
down noisy channels, and when Slepian 
introduced the notion of group codes. 
Not unnaturally, one of the main direc- 

tions of post-1955 information theory 
has been to consolidate the subject more 
and more closely into the fold of "con? 
ventional mathematics." 

One of the important directions of 
research in information theory has 
arisen from the esthetic desires of the 
mathematician to reformulate results 
from science and engineering into 

"polite" mathematical language. This 
was done in a notable way with the 

coding theorem of Shannon by the late 
A. Khinchin (13), and the result was 
a most remarkable and unexpected limit 
theorem in probability. In the simplest 
case the theorem is concerned with two 
sets of sequences of binary digits?the 
emitted and the received symbols?and 
with a non-negative function of two 

binary digits. (This function enables 
one to construct various conditional 

probabilities that arise.) Then the for? 
mulation of the coding theorem of 
Wolfowitz (14) ensures the existence 
of a positive channel capacity C such 
that for every a between 0 and 1, (i) 
there exists a positive constant k such 
that for every n there is a code with 

probability of error less than a and 

length at least 

2?c?k i/#r 

and (ii) there exists a positive constant 
kf such that for every n there does not 
exist a code with probability of error 
less than a and length in excess of 

2?C -j- k' \/~n 

The notion of the length of a code 
is not quite a self-evident one, and it 

might be well to explain in detail its 

meaning, particularly since this helps to 
illuminate the significance of the theo? 
rem. To do this, we will consider se? 

quences u = (xi, xs, . . . , xn), each of n 

binary digits. Now the channel down 
which each digit is transmitted carries 
out a chance experiment on each of 
these digits in turn. The experiment is 
such that its outcome, when performed 
on Xi, is 1 with probability pi and 0 
with probability 1 ? pt. The sequence 
v (u) = [y? (u), y* (u), . . . , yn (u)] 
of outcomes is again a sequence of 

binary digits. A sequence v of n binary 
digits is a possible received sequence in 

case, for some transmitted sequence u, 
the probability of v being v (u) is not 
zero. 

We can now follow Wolfowitz and 
define a code of length N correspond? 
ing to a positive number a as a set 

[(Wi, Ai), (w2, A*), . . ., (Un, An)] 
where each m (i = 1, 2, . . ., N) is a 
transmitted sequence, where each A* 
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(i == 1, 2, . . ., Af) is itself a collection 
of sequences of n binary digits, where 
the probability that v (%) is in A{ 
must not be less than 1 ? a for i = 1, 
2, . . ., AT, and finally where the A19 
A2, . . ., AN are disjoint. For such 
codes the z-th word in a message is 
taken to be u%\ the recipient of a mes? 

sage now decodes in this manner: if 
he receives any sequence in As, he inter- 

prets this to mean that Uj was trans? 
mitted. In case the sequence is not in 
the union of A19 A2, . . ., AN, the re? 
sult is completely ambiguous. Thus, 
the probability that a word can be cor? 

rectly received is not less than 1 ? a. 
The ratio (log2 N)/n is called the rate 
of transmission. 

The study of this theorem of Shan? 
non's has led researchers in two gen? 
eral directions. One group has worked 
on simplifying the proof of the theo? 
rem and casting the result itself into a 
more general probabilistic setting. The 

proofs depend upon combinatorial theo? 
rems and are now quite elementary in 
nature. The other group has been con? 
cerned with generalizing the theorem by 
relaxing the requirements of the hy? 
potheses. The original theorem was 
concerned with discrete channels with? 
out memory?that is, discrete channels 
where no prior transmission can effect 
a subsequent one. Subsequent re- 
searches have been in the direction of 

relaxing these restrictions to include 
channels with finite memory; channels 
with a continuum of received symbols 
instead of the 0, 1 of a binary chan? 

nel; channels with the channel prob? 
ability function not completely known 
to the receiver, to the sender, or to 
either of them; and so on. Work in 
this direction has been done by Fein- 
stein (12), Wolfowitz (14), Blackwell, 
Breiman, and Thomasian (15), McMil- 
lan (16), and others. Apparently, part 
2 of the theorem has been the subject 
of much interest since the surprise oc- 

casioned by the possibility of coding at 
a rate (log2N)/n less than C perhaps 
made some people assume without 

proof the impossibility of coding at a 

higher rate. The net result of these two 
lines of work has been to produce a 
much more elegant theorem than that 

originally formulated, set in a more 
abstract and general milieu, with a con- 

siderably simpler proof than it origi? 
nally had. 

The second broad line of research in 

information theory has been in the 

field of coding itself. Suppose the total 
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number of words in the sender's?and 
the receiver's?dictionary is N. These 
words may be enumerated as 1, 2, . . ., 
N, and then if there were no noise on 
the channel, they could be coded for 
transmission down a binary channel 
into sequences of length n = log2 N. 
If this were done, then the rate of 
transmission would be 1, which is the 

optimal value. However, when there 
is noise on the channel, redundancy 
must be introduced?that is, n must be 
chosen to be greater than log2 N, and 
the rate of transmission drops. How 

large n must be depends of course upon 
the channel capacity. In general it is 
clear that n must be large enough so 
that all words in coded form are quite 
different, to enable the receiver to dis? 

tinguish them unambiguously. 
As I mentioned above, instead of at- 

tempting optimal codings, workers in 

the field have devoted their efforts to 

constructing codes which are guaran? 
teed to be safe against various types of 

disturbances. For example, Hamming 
in his original paper exhibited a code 
that can detect two errors and correct 

one of them. Recently Bose and a 

student, Ray-Chaudhuri, using theory 
of finite fields, gave a constructive 
method for finding a *-error correcting 
code for messages of length n = 2m 
? 1, using at most mt parity symbols. 

Bursts of errors are a frequent source 

of difficulty, and codes to combat this 

type of noise burst have been devised 

by Abramson (77), Fire (18), Meggitt 
(19), Muller (20), and others. These 

codes correct errors when they occur in 

adjacent positions. 
They are all examples of Slepian 

group codes. Other particularly inter? 

esting types of such codes are the so- 

called cyclic ones?that is, ones where 

cyclic permutations of code words are 

again code words. Such codes have 

been studied by W. W. Peterson (21), 
Melas (22), Meggitt (19), Elspas (23), 
and Abramson. Most codes that have 

been discussed here are in fact of this 

kind. They permit relatively easy encod- 

ing and decoding. In these cases one 

does not need large dictionaries but can 

encode or decode by analytical means. 

There was a period in which inter? 

est in codes dropped off, but with the 

advent of ever-larger computers there 

has been a substantial revival of inter? 

est in the subject. An interesting study 
would be that of contrast ing the eco? 

nomics of establishing additional trans- 

atlantic or continental communication 

lines with the economics of installing 

very large computers to act as coders 

and decoders for messages. (Of course, 
the need for very large and very fast 

computers arises from the fact that the 

coding and decoding involve problems 
either of very large tables or of very 

rapid analytical calculations.) As far 

as I know, no such study has as yet 
been made. 

A third line of research is that of 

Elias (24), to which I have alluded 

above, in which he has shown that any 

attempt to subject to the methods of 

information theory the von Neumann 

or Shannon-Moore approach to com? 

puters and automata either is impossi? 
ble or will require at the least a very 

deep and penetrating analysis. His 

result, while a negative one, is none- 

theless a landmark in the field. It indi? 

cates clearly that no coding theorem- 

like result can be expected except 

perhaps at a quite profound and as yet 
unknown level of understanding and 

sophistication. 
Finally, a fourth line of research has 

been that of applying information theo? 

ry to other disciplines. In general, most 

of these efforts have consisted of ap? 

plying the concept of entropy to differ? 

ent situations. One of the most notable 

of these applications has been that of 

a U.S.S.R. school under the leadership 
of one of the great Russian probabilists, 

Kolmogoroff. He has enthusiastically 

promoted the role of entropy in prob? 

ability theory. The most striking re? 

sults have been achieved not in the field 

of information theory but, remarkably 

enough, in ergodic theory. This sub? 

ject grew out of studies of analytical 

dynamics by G. D. Birkhoff (25) and 

von Neumann (26) over 30 years ago. 
Von Neumann had brought this subject 
to some state of completeness but had 

left a number of famous unsolved prob? 
lems. Kolmogoroff and two of his stu? 

dents, Sinai and Rohlin (27), within the 

last several years have solved many of 

these problems quite simply by intro? 

ducing the notion of entropy into the 

subject and showing that it is still an? 

other invariant. Work on seeing if still 

other invariants exist continues. Hal- 

mos and Kakutani are two of the key 

figures in this field in the United States 

today. 
Last year Linnik (28) established 

the central limit theorem of probability 
under Lindberg's condition, using no? 

tions of information theory. Also Gel? 

fand (29), Yaglom, and other Russian 
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mathematicians have been applying en- 

tropy definitions to ever more general 
classes of stochastic processes and ob? 

taining limit theorems on'sums of inde? 

pendent random variables. This work 

really is much closer to probability 
theory than to information theory. 

The concepts and results of informa? 
tion theory, together with those of 
Fourier series theory, have now become 
the basic themes of most work in com? 
munication theory today. 

The only other applications I shall 
mention are two attributable to Man- 
delbrot (30). One lies in the field of 
statistical thermodynamics; in it he ex- 

ploited a suggestion of Szilard's to ap? 
ply various statistical concepts to ther? 

modynamics. The other lies in the 
field of linguistics and concerns, in 

particular, stochastic properties of lan? 

guage. Mandelbrot considered dis- 
course as a sequence of letters and 
words with various Markoff-type chain 

relationships between them. This leads 
to some quite unusual theorems in 

probability that have received empirical 
verification. 

There have also been applications of 
information theory to biology, psychol? 
ogy, science, and statistics, but space 

does not permit me to go into these. 

Fortunately, however, books are avail? 

able on these subjects, by Attneave 

(31), Brillouin (32), Kullback (33), 
and Quastler (34). 
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Chromosome 
Cytology 

and 

Evolution in Primates 

Study of chromosomes adds to our knowledge 

of evolutionary relationships among primates. 

E. H. Y. Chu and M. A Bender 

Since the chromosomes of higher or? 

ganisms are characteristic of a species, 
they are of obvious value in taxonomic 
and evolutionary studies. The chromo? 
somes of members of a given species 
are usually the same in number and 

form, but those of members of different 

species are frequently different. Thus 
the karyotype?the number of chromo- 
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somes, their lengths, their relative arm 

lengths, and other features?is a valu? 
able morphological character, particu? 
larly because of its intimate association 
with the genetic makeup of the species. 

Although the evolution of the pri? 
mates has been a subject of great inter? 
est to biologists, it is only relatively 
recently that any attempt has been 

made to determine the interrelationships 
of these animals by comparative studies 
of their chromosomes. The main rea? 
son for this situation has probably been 
that technical difficulties are involved. 
Since most mammalian species possess 
a large number of small chromosomes, 
counting and observing individual 
chromosomes are very difficult. The re? 
cent development of techniques for the 
culture of diploid somatic cells, as well 
as the improvement of cytological pro? 
cedures, has made it possible to deter? 
mine not only the chromosome numbers 
but also the morphology of the chromo? 
somes of a great variety of animals 
which have not been previously studied. 
These technical advances led to the dis? 

covery by Tjio and Levan (1) of the 
correct chromosome number of man, 
and stimulated a great many descriptive 
and experimental studies of mammal? 

ian, and especially human, cytogenetics. 
The karyotypes of relatively few pri? 

mates other than man have been deter- 
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