Alteration of Mutation Frequency by Treatment with Actinomycin D

Abstract. The frequency of lethal mutations occurring in Drosophila melanogaster was reduced by approximately one-half when irradiated males were treated with actinomycin D, which also inhibited the appearance of melanotic atypical growths in the strain used for the study.

In the course of investigations on alteration of mutations, actinomycin D was administered to a strain of Drosophila developing tumors, and mutation frequency and tumor incidence were determined after irradiation. The st sr e^s ro ca; tu 36^a strain, which has an unusually constant but low incidence of tumors due to multiple recessive genes, was used in these studies. Preliminary tests on sex ratios in individual matings were used to reduce the likelihood of antecedent lethal mutations. One-half of the males raised on medium containing antibiotic in 1×10^{-3} -percent concentration were irradiated with 3000 r [6 ma, 100 kv (peak), 1.0 mm of Al, 15 cm] at the age of 3 days. The $sc^{s_1} B InS w^a sc^s$ inversion and sequential matings of the Muller 5 type were utilized to detect lethal mutations on the X chromosome (Table 1). Semilethals

Table	1.	Effect	of	actinomycin	D	on	mutation
rate in	D	rosoph	ila.				

Treatment	Chromosomes tested	Lethal mutations			
	(No.)	No.	- %		
Control Actinomycin D Irradiation	1375 978	2 1	0.14 0.10		
(3000 r) Irradiation (3000 r) plus	1168	67	5.73		
actinomycin I	952	31	3.25		

and visibles are not included in the tabulations. Determinations of tumor incidence in P_2 and F_1 generations (1) were also recorded and are presented in Tables 2 and 3. Untreated cultures and cultures treated with actinomycin D alone and irradiation alone were also studied in a similar manner.

The usual frequency of mutation was found in the control cultures (two lethals among 1375 chromosomes tested), and no significant difference was encountered when actinomycin D was added to the medium. However, the frequency with irradiation, 5.73 percent, was reduced to 3.25 percent when actinomycin D was present in irradiated cultures. In the P2 generation, any tumors formed had regressed, leaving a pigmented residue before irradiation, so that no difference was expected between irradiated and nonirradiated cultures. The presence of actinomycin D resulted in significant reduction (p < .05) in tumor incidence in each group, however. In the F₁ generation, the antibiotic alone and irradiation alone reduced the number of tumors as compared to the control group. Irradiation did not reduce the number of tumors by a significant additional amount when used as a supplement to treatment with actinomycin D.

The current studies show a reduction in the number of atypical growths in Drosophila after treatment with actinomycin D, but inhibition of tumors by both the antibiotic and irradiation suggests that in neither case is this effect mediated through the mechanism of mutation. Actinomycin D undoubtedly reduces the number of lethal mutations occurring after x-irradiation (p < .05). Whether a similar reduction in the frequency of natural mutations can be demonstrated by extending the scope

Table 2. Effect of actinomycin D on incidence of tumors in Drosophila.

E i	Males			Females			Total		
Ireatment	Tumors	Total	%	Tumors	Total	%	Tumors	Total	%
Control	133	1644	8.1	127	1520	8.4	260	3164	8.2
Actinomycin D	20	514	3.9	24	493	4.9	44	1007	4.4
Irradiation (3000 r) Irradiation (3000 r) plus	88	971	9.1	79	1069	7.4	167	2040	8.2
actinomycin D	22	502	4.4	11	505	2.3	33	1007	3.3

Table 3. Effect of actinomycin D and irradiation on incidence of tumors in Drosophila.

Males			Females			Total		
Fumors	Total	%	Tumors	Total	%	Tumors	Total	%
387	6110	6.3	378	6217	5.38	765	12357	6.2
34	1762	1.9	34	1731	1.96	68	3593	1.9
119	4474	2.7	145	4416	3.24	264	8890	3.0
29	1113	2.6	20	1115	1.79	49	2228	2.2
	Tumors 387 34 119 29	Males Fumors Total 387 6110 34 1762 119 4474 29 1113	Males Fumors Total % 387 6110 6.3 34 1762 1.9 119 4474 2.7 29 1113 2.6	Males Tumors Fumors Total % Tumors 387 6110 6.3 378 34 1762 1.9 34 119 4474 2.7 145 29 1113 2.6 20	Males Females Fumors Total % Tumors Total 387 6110 6.3 378 6217 34 1762 1.9 34 1731 119 4474 2.7 145 4416 29 1113 2.6 20 1115	Males Females Fumors Total % Tumors Total % 387 6110 6.3 378 6217 5.38 34 1762 1.9 34 1731 1.96 119 4474 2.7 145 4416 3.24 29 1113 2.6 20 1115 1.79	Males Females Fumors Total % Tumors Total % Tumors 387 6110 6.3 378 6217 5.38 765 34 1762 1.9 34 1731 1.96 68 119 4474 2.7 145 4416 3.24 264 29 1113 2.6 20 1115 1.79 49	Males Females Total Fumors Total % Tumors Total 387 6110 6.3 378 6217 5.38 765 12357 34 1762 1.9 34 1731 1.96 68 3593 119 4474 2.7 145 4416 3.24 264 8890 29 1113 2.6 20 1115 1.79 49 2228

of the tests remains to be seen. Although the mechanism (2) is obscure at present, the implications of the effective reduction of irradiation-induced mutation in metazoa by an agent which can be administered in therapeutic dosage would seem of some interest (3). WALTER J. BURDETTE

Department of Surgery and Laboratory of Clinical Biology, University of Utah College of Medicine, Salt Lake City

References and Notes

- 1. W. J. Burdette, Cancer Research 11, 552
- W. J. Burdette, Cancer Research 11, 552 (1951).
 L. S. Altenburg, Proc. Natl. Acad. Sci. U.S. 40, 1037 (1954); T. Chang, F. D. Wilson, W. S. Stone, *ibid.* 45, 1397 (1959); F. H. Dickey, G. H. Cleland, C. Lotz, *ibid.* 35, 581 (1949); A. Hollaender, D. Billen, C. O. Doudney, Radiation Research 3, 235 (1955); V. J. Horgan and J. S. Philpot, Radiobiol. Symposium, Proc., Liège, 1954 (1955); R. F. Kimball, N. Gaither, S. M. Wilson, Radiation Research 7, 490 (1959); R. Latarjet, Ciba Foundation Symposium, 1056 (1957); W. L. Russell, L. B. Russell, E. M. Kelly, Science 127, 1546 (1958); G. Scholes and J. Weiss, Radiation Research, Suppl. 1, 177 (1959); 2. L. S. 121, 1346 (1956); G. Scholes and J. Weiss, Radiation Research, Suppl. 1, 1177 (1959);
 G. Scholes, J. Weiss, C. M. Wheeler, Nature 178, 157 (1956); F. H. Sobels, Intern. J. Radiation Biol. 2, 68 (1960); W. S. Stone, O. Wyss, F. Haas, Proc. Natl. Acad. Sci. U.S. **33**, 59 (1947); M. Westergaard, *Experientia* **13**, 224 (1957). 3.
- This work was aided by a grant from the U.S. Public Health Service, Department of Health, Education, and Welfare.

29 August 1960

Modification of Cortically Induced Responses in Brain Stem by Shift of Attention in Monkeys

Abstract. The long-latency electrical response of the brain stem evoked by stimulation of the cortex of freely moving monkeys is modified by a change of attention. The modification may be either suppression or augmentation, according to the background activity prior to the shift of attention.

In conscious cats the size of sensory evoked potentials is modified as far down as second-order sensory neurons according to the state of attentiveness of the animal (1). This phenomenon is interpreted as due to inhibitory influences descending through the reticular core. While it is obvious that the focusing of attention requires a selective facilitation of certain sensory input above other sensory afferents, it is not clear whether a similar mechanism applies to the situation where a corticifugal impulse is interacting with sensory afferents, or vice versa.

In this study of the central biological action of urine extracts from schizophrenic subjects (2), a number of Macaca monkeys with a system of 42 to 50 permanently implanted electrodes were used (3). In these animals which were kept from over 6 months to 2

SCIENCE, VOL. 133