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CURRENT PROBLEMS IN RESEARCH 

Random Processes in Control 

and Communications 

The application of some very pure mathematies to some 

very practical problems has led to new insights. 

R. F. Drenick 

In the last 15 years or so, some re- 
markable changes have taken place in 
the kind of mathematics used in appli- 
cations and also iri the applications 
which utilize mathematics. A field in 
which this change is particularly strik- 

ing is that of communications and auto- 
matic control. The upheaval in the 

thinking of the engineers in this field 
is profound and apparently far from 
finished. They have had to adopt a new 

viewpoint and to learn to use a new set 
of mathematical tools. In return, they 
have succeeded in solving new prob- 
lems and in finding new and more 

elegant solutions for some old prob- 
lems. In some cases, areas have been 
uncovered whose existence was unsus- 

pected until a short time ago, and new 
realizations have been obtained which 
have excited attention and interest well 

beyond the immediate field of control 
and communications. 

An interesting feature of this up? 
heaval is that it draws heavily on what 
is often called "pure" mathematics, and 
sometimes called, also, "abstract" or 
"modern" or even "useless." In any 
case, this is certainly the kind of mathe? 
matics which was developed originally 
for its own intrinsic interest. Nothing 
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was further from the minds of the 

people who created it than the idea 
that it might ever be applied in prac- 
tice, least of all to something as worldly 
and practical as communications and 
control engineering. 

This article is a brief, sketchy (and 
therefore highly inaccurate) story of 
how theory and application got together 
in this field and of what came of the 
alliance. 

The "Signal Space* 

An engineer in the control or com? 
munications field deals fundamentally 
with two concepts, one which he calls 

signals and another which he calls trans- 
ducers. The first are variable voltages, 
or currents, or similar physical quanti- 
ties, such as, for instance, the current in 
some wire in a home television set. The 
second are devices which change the 
character of signals. The television set 
as a whole is such a transducer, and a 

relatively simple one at that. A digital 
computer is another and much more 

complicated one. 
What must an engineer do who has 

decided to reform and to start dealing 
with his problems in the "new and 
modern" way? The first thing he should 
do is to go and see a mathematician 
and explain his problems. It will then 

invariably develop that an altogether 
exasperating language barrier exists be- 

tween the two. What, the mathematician 
will ask blankly, is a signal? The engi? 
neer will then go to the blackboard and 

begin rhapsodizing on the subject. 
He will say that signals are in a way 

both the raw materials and the finished 

products of his technology. He is used 
to visualizing them as plots of some 

quantity?-voltage, say, versus time, as 
in Fig. \a. Sometimes he thinks of 
them in a more stylized form, as what 
he calls a sampled signal. In this form, 
shown in Fig. \b, the signal voltage is 

specified only at certain instants of 

time, called the sampling instants. This 
is much simpler than the complete 
version of Fig. \a and almost as good. 
In either version, the time marked t is 
the "present time" beyond which the 

signal has not yet progressed. The rest 
the engineer often calls the "past" or 
the "history" (and sometimes, some- 
what redundantly, the "past history") 
of the signal. He usually visualizes a 

history as very long, with its beginning 
way back in dim and unremembered 

ages, so that it can for practical pur- 
poses be taken to be infinitely long. 

In some applications, the signal volt? 

age can assume only a discrete number 
of values, as opposed to the preceding 
example where any voltage was pos- 
sible. Such a signal the engineer calls 

"quantized," and the allowed signal 
levels are the "quantum levels." These 
levels can be labeled with numbers, or 
with letters, as, for instance, the signal 
in Fig. 2 (which employs a six-letter 

alphabet). 
The engineer has now explained his 

mental picture of a signal, and he rests 
his case. The mathematician has begun 
to see the outlines of the problem. He 
tells the engineer that he strongly sus- 

pects a signal to be a case of what he 
and his colleagues call a random (or 
stochastic) process. (Now it is the 

engineer's turn to look blank.) The 
mathematician then calmly proceeds to 

give the engineer's mental picture its 
first severe jar by telling him that he 

ought to visualize a signal as a point 
in an infinite-dimensional space. Now, 
the engineer vaguely remembers from 
his college days that spaces come in 
various dimensions, usually one- or two- 
or three-dimensional. Four-dimensional 

spaces are rare but sometimes fashion- 
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Fig. 1. (a) Plot of signal voltage versus time; (b) plot of a sampled signal, in which the 
signal voltage is specified only at certain instants of time. 

able, and /i-dimensional ones are pos- 
sible if nearly inconceivable. Infinite- 
dimensional spaces, however, strike him 
as clearly preposterous. The mathe- 

matician, trying hard to hide his con- 

descension, reminds the engineer that 
the dimensionality of a space is always 
indicated by the number of coordinates 
needed to fix the location of a point in 

it. The engineer concedes. The history 
of a sampled signal trailing away into 
the dim dark past is specified (for all 

practical purposes) by infinitely many 
voltage samples. The engineer concedes 

again. Each one of these samples may 
be considered a coordinate; hence, the 

signal is specified by infinitely many 
coordinates and can be thought of as 

a point in an infinite-dimensional space. 

Q.E.D., concludes the mathematician. 

The engineer gives in. 
He does so reluctantly at first be- 

cause he knows only too well from 

bitter experience that infinities must be 

approached with the utmost tact and 

respect, and he feels decidedly uncom- 

fortable at first in his new "signal 

space." But he is soon engaged by the 

exhilarating simplicity of it. Every sig? 
nal which can possibly appear in, for 

instance, a television receiver, westerns, 

commercials, dramas, whodunits, quiz 
shows, experts' panels, puppet shows? 

each is reduced (perhaps quite appro- 

priately) to the insignificance of a point 
in a space. 
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Fig. 2. Plot of a "quantized" signal, in which a six-letter alphabet is used to label the 

signal levels. 

866 

Probability Measures 

However, the picture so far proposed 
by the mathematician lacks some im- 

portant ingredients. One of its defects 
is precisely the relative insignificance of 
the various points of the signal space. 
For realism, the picture should allow 
for the fact that some kinds of signals 
tend to come up more often than others. 
Whodunits are more likely to appear 
than dramas, and westerns more likely 
than either. 

The mathematician has just the right 
remedy for this difBculty: he proceeds 
to cover the whole signal space, with 
calm disregard for its magnitude, with 
what he calls a "probability measure." 
Like a tremendous blanket, this meas? 
ure covers every set of points in the 

space and assigns a certain weight to 

it?namely, the probability of its occur- 
rence. It assigns a definite probability 
to all westerns, and among these a 

definite, though smaller, probability to 
all psychological westerns, and a smaller 
one yet to all psychological westerns 

containing barroom brawls in which a 
chair is thrown through a great mirror. 

Probability measures come in many 
forms and textures. Some are nice and 

smooth, as blankets ought to be, but 
others are lumpy or full of holes (quan- 
tized signals, such as the one in Fig. 2, 
have measures that consist of nothing 
but lumps). There is one class of meas? 

ures, however, which are great favorites, 

partly because of their smoothness and 

partly because of several other engag- 
ing properties. These are the so-called 
"Gaussian" measures. They are straight- 
forward generalizations of the Gaussian, 
or normal, probability distribution 
which is widely used in statistics and 
which has the well-known beil shape 
shown in Fig. 3. In communications 

problems, this curve shows the proba? 
bility of occurrence of a single non- 

quantized signal voltage, plotted against 
that voltage itself. 

One can ask next what the joint 
Gaussian probability of occurrence of 

the voltages in two adjacent signal 

samples looks like, and the answer is, a 

two-dimensional beil shape like the one 
in Fig. 4. It, too, is a concept much 
used in statistics. The exact shape of 

the beil varies from case to case. Typi- 

cally, it is elliptical. It can be circular, 

however, as in Fig. 4, and this is a 

particularly useful case?namely, one 

in which the two adjacent signal volt? 

ages are statistically independent. 
One can now go on to three-dimen- 

sional beil shapes and four-dimensional 
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Fig. 3. Plot of the Gaussian probability distribution for a single nonquantized signal 
voltage. 

ones, and so on. The Gaussian proba? 
bility measure is, in a way, an infinite- 
dimensional bell shape. It, too, can be 

elliptical or circular, and in the latter 
case all signal voltages are statistically 
independent. Engineers have come to 
call this the "white" case (for a reason 
which would be hard to explain here 
and which is not very good anyway). 

Gaussian measures in general, and 
white ones in particular (Gaussian and 

otherwise), will figure prominently in 
our story. 

Borel Fields 

The idea of a probability measure 

usually fits rather nicely into the intui- 
tive notion an engineer has of a signal 
space, and there is usually little trouble 
in persuading him to adopt it. Little 
does he know that he has let himself 
be talked into an upheaval in his way 
of thinking. 

The cue he missed lies in the word 
set, which was slipped in unobtrusively 
at the start of the preceding section. 
As it happens, single points in signal 
spaces are usually quite uninteresting. 
A point is, for instance, a very long 
television program, specified to the 
minute detail of every one of its signal- 
voltage samples. Two such programs 
which are exact copies of each other 
except for a small difference in one of 
their signal voltages are two different 
points in signal space. It is clear that 
a single point is too insignificant an 
item to have any appreciable proba? 
bility of occurrence. It is only sets of 
many points that are worth talking 
about. 

As far as the engineer is concerned, 
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this means that he must learn to think 
in terms of point sets in signal space. 
This will be a new and possibly trau- 
matic experience for him. The mathe? 
matician will tell him that sets can be 

operated on by forming unions be- 
tween pairs of sets, and also intersec- 

tions, and that in fact not only pairs 
but finitely and infinitely many sets can 
be involved in these operations. 

The mathematician will further re- 
veal that he and his colleagues like to 
work with families of sets, which they 
call Borel fields. These families are so 

large to begin with that the forming of 
unions and intersections, no matter how 
often it is repeated, can never produce 
extrafamilial offspring. This is a safety 
precaution rather than some form of 
mathematical morality, for it allows the 

mathematician to perform set opera- 
tions ad infinitum without having to 

worry about straying outside the family. 
To a mathematician, it is the com- 

bination of the three concepts?the 
signal space, the probability measure, 
and the Borel field?which makes up 
what he calls a "random process." Thus, 
if the measure is Gaussian, he will 

speak of a Gaussian random process, 
and if the sample voltages are statisti- 

cally independent, he will often call it 
a white random process. The engineer, 
by now totally overwhelmed by the 
flood of new concepts, can think of no 
reason for not doing the same. He now 
calls his signals random processes, and 
is proud of them. 

The feeling of comfort and together- 
ness, however, which pervades a mathe? 
matician when he is working in Borel 
fields usually fails to envelop the engi? 
neer. On the contrary, he finds Borel 
fields irritatingly useless and completely 
unmanageable. They have turned his 
neat signal space into a nightmare of 

blobs, called sets, which are continu- 

ously and uncontrollably splitting up 
and melting together again. The solid 

ground to which he is accustomed, and 
on which he is widely known to have 
both feet, has been replaced with some 

shifty quicksand-like material. Borel 

fields, he feels, may be all right for 
mathematicians but they definitely are 
not the stuff on which to build a 

technology. 
On closer inspection, however, they 

often reveal some surprising structure 
which is as permanent and firm as 
structures can be. This comes from the 

Fig. 4. Plot of the joint Gaussian probability distribution for nonquantized signal volt? 
ages in two adjacent signal samples. 
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fact that a Borel field consists of sets 
which consist of histories which, in 

turn, consist of many samples. It is 
these samples which are in the end re- 

sponsible for the structure. Every his? 

tory contains a most recent sample, 
which is the most recent event in the 

past of that particular signal. Events 
such as this one, skimmed collectively 
from all signals in the space, form a 

layer of sets which lies across the Borel 
field of all histories like a thin sediment 

deposited by time on a huge bed of 
earlier ones. A similar layer, just be- 
neath the most recent one, corresponds 
to the sample immediately prior to the 
most recent one; and so on. What re- 
sults from this is a distinct stratification 
of the Borel field into infinitely many 
layers, one layer per sample of history. 

The mathematician, or engineer, can 
now engage in what can only be called 
"mathematical archeology." An arche- 

ologist digging into the site of some 
ancient dwelling place often removes 

layer after layer of successive cultures, 
each layer telling through its artifacts 
and ashes some of the history of the 
locale. Similarly, the mathematician 
can peel layer after layer from his 
Borel fields and work deeper and deep- 
er into the history buried in the signal 
space. Archeologist and mathematician 
alike must work carefully to be sure 
not to disturb an earlier layer when- 
ever they remove a later one. To 
the mathematician, this means that he 
must make sure of the statistical inde- 

pendence of a layer before he dare re? 

move it. Other than that, however, he 

has few troubles. He need not worry 
about sandstorms, theft, or local revolu- 
tions. He can dig without obstacle 
further and further into the past, until 
in the limit he comes to the beginning 
of time. 

At this point, however, there is an 

awesome surprise awaiting him. He ex- 

pects, no doubt, that when he reaches 

it, history will be exhausted, the Borel 

fields will be empty. But this need not 

be so. It can happen, and often does 

happen, that there remains a residual 

Borel field, remote and unapproachable, 
which has some almost apocalyptic 

properties. It is quite unlike the layers 
that he has removed previously. The 

signals which issue from it are perfectly 
predictable. If they ever existed at all, 

they continue to exist and evolve in 

a precise and foreordained fashion 

through all the layers of history up to 

the present and on into the future. 

Nothing that can happen in the course 
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of history can in any way affect them. 
Once sounded, they ring forever true. 
This prehistoric Borel field is often 
called the "remote past" of a random 

process. 

Transducers 

Engineer and mathematician have 
now come to see eye to eye on the sub- 

ject of signals, the raw materials and 
finished products of the technology. 
They must next get together on the 
machines that work on the materials. 
As we have said earlier, these are the 

transducers; they are the devices which 
convert one signal into another. 

A transducer, the engineer will ex- 

plain, has one signal going into it, 
called the input, and another one com- 

ing out of it, called the output. (Some? 
times there are more than one of 

either.) Each possible input is a point 
in a signal space, which is now, under- 

standably, called the input space; the 

outputs are points in an output space. 
Many transducers have two outstand- 

ing properties. (i) They are "retro- 

spective" (also called "causal"). That 

is, the present output cannot depend on 
the future of the input. This is quite an 
essential property. It says in effect that 
no physical device can respond to a 
stimulus that has yet to be applied. 
(ii) They are one-one, which means 
that every point (signal) in input space 
corresponds to one and only one point 
(signal) in output space. This is not 

really as essential a property as the 
first and is actually violated quite often 
in practice. 

To the mathematician, a transducer 
is a transformation and a rather special 
one at that. It transforms input space 
into output space and, in the process, 
transforms the probability measure and 

the Borel field of input histories into 
their counterparts for the output. He 
can truly say that much is known in 

the mathematical theory of transforma- 

tions, but he will also have to concede 

that much more could be known. 
Great favorites among engineers are 

the so-called linear transducers, more 

often referred to as "linear filters." 

They are the easiest to design and the 

cheapest to build, relatively speaking, 
and the control and communications 

systems now in existence use them 

lavishly. Linear filters have the pleasant 
theoretical property that the sum of 

two input signals generates the sum of 

the corresponding output signals. This 

is called the superposition principle. It 

may not seem essential, but the fact 
is that it makes linear filters particu- 
larly easy to deal with. The standard 

procedure used by engineers for analyz- 
ing filters consists of resolving the in- 

put signal into many sine waves and 

tracing it through the filter, sine wave 

by sine wave. 
The mathematician's equivalent to a 

linear filter is a linear transformation, 

obviously, and the mathematical theory 
of linear transformations has seen a 
vast amount of research, from some 
humble beginnings 200 years ago and 

more, up to some highly sophisticated 
and abstract work in recent decades. It 
is not overly surprising, therefore, that 
the first contact between the engineer 
and the mathematician took place in 
this area of random process theory. 

Wiener's Prediction Theory 

The contact was established by a 

small booklet in yellow paper cover 

(promptly dubbed the "Yellow Peril" 

by engineers), written in 1942 by N. 

Wiener. He was the first mathematician 

to diagnose some of the engineer's 

problems, or at any rate the first one 

to suggest a treatment along the lines 

I have described above. He prescribed 
a healthy dose of signal spaces, com- 

plete with Borel fields and probability 
measures, and some gentle applications 
of transformations. From among the 

latter he chose the engineer's favorite, 
the linear filters. Under these circum- 

stances, as he further pointed out, the 

most appropriate probability measure 

is the Gaussian, which I mentioned 

above. The reason for this lies essen- 

tially in one fact. It so happens that 

linear filters preserve the Gaussian char- 

acter of a measure: if it is Gaussian 

over input space then it will be Gauss? 

ian also over output space. 
To the engineer, this would have been 

a poor argument indeed, and it would 

never have persuaded him to abandon 

his sine wave approach to linear-filter 

problems for the statistical one. But 

Wiener further showed him that a 

Gaussian random process could be 

specified by a quantity (the so-called 

"spectral density") which is very closely 
related to his cherished sine waves. 

What suspicion remained in the engi? 
neer's mind was swept away by a final 

demonstration?namely, that he could 

calculate by a very simple formula the 

spectral density of the output of a 
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linear filter from that of the input. In 
other words, the engineer was shown 

that, by adopting Wiener's approach, 
he could do many of the things he had 
been doing before and that he could 
do them in a conceptually much more 

satisfying way. 
Beyond that, however, the new the- 

ory provided him with some novel and 
most revealing insights into the founda- 
tions of his technology. It showed him 
that there are some things which he can 

hope to accomplish with linear filters, 

disregarding perhaps certain practical 
complications, but that there are others 
he cannot under any circumstances 

hope to achieve. 
He cannot, for instance, hope to ever 

build a filter which will generate an 

output with a remote past from an 

input that lacks one. In order to do 
that he would have to construct a filter 
that anticipates the future (that is, one 
which violates the basic requirement of 

causality), and this is no more pos- 
sible than building a perpetual-motion 
machine. 

Beyond generating remote pasts, 
however, there is little that linear filters 
cannot do to Gaussian random proc- 
esses. In fact, one of the central theo- 
rems is that, given any two such 

processes (both without remote pasts), 
one can always find a linear filter which 
will accept one of them as input and 

generate the other as output, and vice 
versa. One can put this slightly dif- 

ferently by saying that all Gaussian 

processes form a class whose members 
are freely transformable into each other 

by linear filters. It is then customary 
to let one member of the class repre- 
sent all others, and a particularly dis- 

tinguished senior member is picked 
for the purpose?namely, a white 
Gaussian random process. 

The main objective of Wiener's the- 
ory was the problem of predicting the 
future of a Gaussian random process 
from knowledge of its past. Wiener 
showed first of all that the best pre- 
dictions could always be made by a 
linear filter. It is useless to try to im- 
prove on that by any devices, no matter 
how ingeniously they are contrived? 
and this includes tea leaves, gypsy 
women, and astrologers. A properly 
designed linear filter simply cannot be 
beaten for quality and consistency of 
performance when it comes to predict? 
ing Gaussian processes. 

The predicting filter accepts as input 
the process that is to be predicted and 
generates as output the best guess of 
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what the future will be. The guess will 

usually be in error by some amount, 
but on the average it will be as good as 
or better than any other forecasting 
procedure for Gaussian processes. In 
one case, however, the predicting filter 
will be dead right every time?namely, 
when the process originates completely 
in the remote past. For in this case, as 
we have said before, the process is 

perfectly predictable to begin with. 
In either case, the filter goes about 

its guessing business in such a clever 

way that gypsy women might have trou- 
ble imitating it. It first transforms the 

input into a white process, the senior 
member of the class?and this is al? 

ways possible, as we know. In the 
white form, a novel feature appears: 
part of the original input turns out to 
be perfectly predictable and part of it 

completely unpredictable. The predict? 
ing filter now proceeds with cold logic. 
It bases its forecast on the perfectly 
predictable part exclusively and ignores 
the rest. Since the rest is totally un? 

predictable, it is useless anyway, and 
the prediction error caused by its omis- 
sion is unavoidable. 

All this is concerned with Gaussian 

processes and linear filters only. The 
extent to which Wiener's theorems 

apply to more general processes and 
transducers is not known. Many people 
suspect that most of them carry over, 
but no satisfactory theory exists which 
demonstrates this. 

Shannon's Information Theory 

There is, however, a handsome body 
of theory which holds for very general 
processes and transducers. This is C. E. 
Shannon's information theory. 

The questions which led to the devel- 
opment of information theory are dif- 
ferent from those dealt with by Wiener. 
One starts out by assuming again that 
a certain type of signal is given, or, 
more precisely, a random process com- 
plete with signal space, probability 
measure, and Borel field. It need not 
be Gaussian. In fact, it will be con- 
venient in what follows to assume that 
the signal is a quantized one, looking, 
for example, like the one in Fig. 2. It 
is true, as I mentioned above, that this 
forces on us an extremely lumpy proba? 
bility measure and some attendant dis- 
comfort, but it does make explanations 
here a little easier. 

Information theory was developed to 
answer questions such as these: Is it 

possible to define some quantity, some 

single number, which would measure 
somehow the information conveyed on 
the average per sample of a signal? 
What properties should this quantity 
have and in what units should it be 
measured? How is it affected when the 

signal is passed through a transducer? 
How is it affected if it is passed through 
a communications channel with noise? 
that is, a channel in which the signal 
is distorted, mutilated, or drowned in 
interference? Are there ways of com- 

bating the effect of noise? 
The answer to the first question is 

affirmative. Intuitively we know that 
the information conveyed by a signal 
lies in its surprise value. The message 
"Fire!" in a movie house is more in- 
formative than "Coming Attractions." 
The more surprised one is over receiv- 

ing a particular signal, the greater, one 
can say, is the amount of information 

conveyed by it. On the other hand, 
the more certain the future value of a 

signal sample is, on the basis of the 

history that has preceded it, the less 

surprising it is, and the less information 
it conveys when it actually arrives. A 

signal, for instance, with seven quan- 
tum levels labeled "Monday," "Tues- 

day," and so on, conveys no informa? 
tion at all when it tells us that today 
is Tuesday if we knew already that 

yesterday was Monday. 
These intuitive notions of the infor? 

mation content of a signal can be put 
in a more definite form. We now sur- 
mise that a signal will be most informa- 
tive if, for one thing, all of its samples 
are statistically independent or, to use 
our present terminology, if it is white. 
The known history will then in no way 
compromise the surprise value of the 
sample scheduled to arrive next. For 
another, the probability of occurrence 
for the quantum levels of an individual 
sample should be as nearly equal as 
possible. On the other hand, if the 
history of a signal completely deter- 
mines its future, if nothing can possibly 
happen that could not be anticipated, or 
in still other words, if the signal is 
perfectly predictable, then it conveys 
no information at all. 

Surprisingly, these two requirements 
(the conditions under which it should 
be a maximum and those under which 
it should be zero), plus a third one of 
somewhat more involved nature, suffice 
to define uniquely a quantity which 
measures the mean amount of informa? 
tion per sample of a random process. 
As it happens, it is almost exactly what 
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physicists since the days of Boltzmann 
have been calling the "entropy." 

The main achievement of informa? 
tion theory, however, lies not in merely 
defining a quantity of information but 
in showing that it has some most re- 
markable properties. To begin with, 
the theory shows that this quantity 
remains unaffected when a signal is 

passed through a transducer. This is 
most satisfying because one feels intui- 

tively that a one-to-one transformation, 
no matter what it does to a signal, 
should not affect the information con- 
tent. 

The second important result is this: 

given two random processes (signals) 
with the same information content per 
sample, it is always possible to find a 
transducer which transforms one signal 
into the other. 

The practical difficulties of construct- 

ing the necessary transducer may be 

quite formidable. But it is clear that, 
in principle at least, all signals with 

equal information content form a class 
whose members are freely negotiable 
among themselves through the use of 
suitable transducers. 

This theorem is very reminiscent of 
one of Wiener's which I have men- 

tioned, and the similarity goes in fact 
even further. For, among all these 

negotiable class members, there is one 

particularly distinguished senior mem? 

ber, and this is the one which is white 
and which has quantum levels of equal 
probability of occurrence. This is the 
one which, as I said above, carries the 
most information per sample. We can 
now say, further, that it is the one 
member in the class which can get 
along with the fewest samples per sec? 
ond or with the fewest quantum levels 

per sample. It is the most efficient 
member of the class. Where the others 
are "redundant," in the engineer's 
vernacular, this one wastes no words 
and gives its messages in the most 
laconic and abrupt of telegraphic styles. 

The usefulness of this class concept 
lies in the following fact: Many com- 
munications channels, in practice, can 

accept only certain kinds of signals, and 

only at certain limited sample rates. In 
other words, a channel can be char- 
acterized by the kind of signal which 
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it is designed to carry and by the 

sample rate which it can accept. How? 

ever, along with this design signal the 
channel can be forced to carry any 
other signal, provided only that it be- 

longs to the same class as the design 
signal. For, as we now know, any 
signal from this class can be freely 
transformed (or "encoded," as engi? 
neers are apt to say) into the design 
signal by a suitable transducer. This 
assertion is the essence of one of Shan- 
non's famous coding theorems?namely, 
the one for the so-called noiseless 
channel. 

Another, even more famous, coding 
theorem applies to noisy channels? 
that is, to channels in which the signal 
is distorted by some interference. It 
stands to reason that in such channels 
some information will always be lost 
because of the interfering noise, and 
this is actually so. One can, and ir* 
fact does, express the signal degrada- 
tion by a single number?namely the 
loss of information content, and calls it 
the "equivocation" due to noise. 

It is tempting at this point to specu- 
late as follows. Since a noisy channel 
will inevitably lead to some loss of in? 

formation, some equivocation, in the 

signal, is it perhaps possible to "enrich" 
the signal artificially prior to its trans- 
mission? In other words, can one 
somehow raise its initial information 
content by injecting into it some extra 
but irrelevant information and then let 
the channel degrade it? It is conceiv- 
able that the artificially enriched signal 
would release to the channel only that 
information which it did not need in 
the first place and thus would emerge 
on the other end as clean and undefiled 
as it started out. Such a scheme is in 
fact possible, and this is the assertion 
of the second coding theorem. 

Unfortunately, it is easier to say that 
this can be done than to find how to 
do it. The trouble lies with the prepa- 
ration of the signal prior to transmis- 
sion. The problem is not only one of 
how much extra information to inject 
into the signal prior to its ordeal by 
transmission. What matters more is 
that the enriched signal must be forti- 
fied against all possible adversities 
which it may encounter during its pas- 

sage through the channel. This is some- 
what like the speeches of highly placed 
government officials which ought to be 
so written that they cannot be misunder- 

stood, no matter how far out of con- 
text they are quoted. These problems 
are very difficult, by all indications, 
and no altogether satisfactory solutions 
have been found for them, either by 
mathematicians working in information 

theory or by ghost writers working on 
official speeches. 

Conclusion 

Our story started out with a main 

character, the engineer, in search of a 
solution to his problems. In the first 
few chapters he played a prominent, if 
some what helpless, role, but toward the 
end he faded into the background and 
left the stage to the mathematician. 
This is no accident but a part of the 

story's plot. The engineer has in fact 
returned to his laboratory. He is now 

engaged in overcoming the countless 
vicissitudes and irritating complications 
which must be overcome whenever the 

grand and sweeping theories of the 
mathematician are reduced to practice. 
In the process, he has had to develop 
many variations on the original theo? 

ries, some of them similar to their pro- 
totypes but others having only the 

vaguest of resemblances. His patient 
(and largely anonymous) labor, how? 

ever, has found the most varied realiza- 

tions, in automatic pilots and guidance 
systems, in oil refineries and nuclear 

reactors, in radars and navigation sys? 
tems, in telephone and television, and 
in many others. 

The engineer has been joined in his 
labors by some unexpected and un- 

precedented company. The theories 
which had been precipitated mainly by 
his problems have attracted the interest 
and activities of physicists, biologists, 
neurologists, psychologists, and linguists, 
not to even mention mathematicians. 
In all these fields the theories have 
raised at least as many questions as 

they have answered, and there are now, 
it seems, more frontiers that are wait- 

ing to be conquered than there are con- 

querors. 
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