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termining potential evapotranspiration 
are as follows: 1 year, 58.93; month of 
31 days, 5.00; month of 30 days, 4.84; 
month of 28 days, 4.52; and 1 day, 0.16. 
For leap years, monthly values would be: 
31 days, 4.99; 30 days, 4.83; and 29 
days, 4.67. 

For tropical and subtropical regions 
(except at high elevations) for all peri- 
ods, and for other regions for periods 
when temperatures do not drop below 
0?C, mean temperatures, as usually re- 
corded or published, are represented by 
the value within the second bracket. For 
periods of time which include recorded 
temperatures below 0?C, the compara- 
tive plant growth mean temperature 
must be obtained in a different manner. 
The latter mean temperature was util- 
ized as one factor for determining plant 
formations or life zones in a chart pub- 
lished in 1947 (1), and is considered to be 
the mean temperature of greatest signi- 
ficance to vegetation, and to be directly 
comparable in terms of plant life with 
the mean at any other point on our 
planet. The comparative plant growth 
mean temperature equals the sum of the 
average positive temperatures in degrees 
centigrade per unit of time, divided by 
the total number of these units of time 
in the period of the mean. 

Thus, the mean annual temperature 
to be utilized in the formula equals the 
sum of the mean monthly temperatures 
above 0?C divided by 12. The monthly 
mean equals the sum of the daily means 
above 0?C, divided by the number of 
days in that particular month. The daily 
mean equals the sum of the hourly 
means above 0?C, divided by 24. At 
stations where mean daily temperatures 
arc determined as one-half the sum of 
the maximum and minimum tempera- 
tures, such means are satisfactory except 
for days when the minima are below 
0?C; on such days half of the maximum 
temperature, if it is positive, may be 
used as the daily mean. 

Determination of potential evapotran- 
spiration from temperature values alone, 
without need for data on precipitation 
or other climatic factors, is possible be- 
cause of the two following considera- 
tions. 

1) The potential evapotranspiration 
rate at a given temperature decreases 
proportionately along the gradient of in- 
creasing precipitation from arid to wet 
areas, so that the product of the evapo- 
transpiration rate and the mean annual 
precipitation is the same all alohg the 
gradient. This is reflected in the regu- 
larity of the pattern of changes in physi- 
ognomy between the single climatic 
plant associations of each of the forma- 
tions along the precipitation gradient. 
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counterbalanced by the different physi- 
ognomies of the natural vegetation, de- 
veloped in the past through evolutionary 
processes, which bring the actual evapo- 
transpiration into equilibrium with the 
potential evapotranspiration rate and 
the moisture available. These variations 
are reflected in the diversity of aspect 
and lack of regularity of the pattern of 
changes of the physiognomies of the 
(usually several) edaphic, atmospheric, 
and hydric associations of the same plant 
formations along the moisture gradient. 
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Abstract. When smooth muscle of My- 
tilus is treated with relatively weak so- 
lutions of sodium cyanide, a transitory 
hyperpolarization or no change in po- 
larization precedes final depolarization. 
Thresholds for thermal, chemical, and 
electrical stimulation are all decreased 
during this period. Strength-duration 
curves indicate a reversible decrease in 
threshold of about 50 percent during this 
period. 

As an outgrowth of investigations into 
the nature of the mechanism of the cool- 
ing stimulus in smooth muscle of Mytilus 
(1), we decided to examine the relation- 
ship between inhibition of respiration by 
metabolic poisons and the effects of these 
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Fig. 1. Strength-duration curves for (A) 
normal Mytilus muscle in sea water; (B) 
the same muscle after treatment for 1 hour 
in 5mM NaCN; and (C) the same muscle 
subsequently allowed to recover for 1.5 
hours in sea water (intensity of threshold 
square wave pulses in microamperes versus 
duration in seconds). The rheobase is de- 
creased after treatment with cyanide, and 
this effect is partially reversible in sea 
water. The resting potential, which usu- 
ally returned to the normal value after 
recovery in sea water, did not do so in this 
particular muscle, perhaps because of rela- 
tively long treatment with cyanide. 
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poisons on the threshold to cooling (2). 
Resting potentials, recorded between 

the depolarized and experimental end of 
the muscle, were amplified and led to 
one channel of a dual-channel rectilinear 
galvanometric recorder, as in previous 
studies. Changes in tension were detected 
by a sensitive isometric transducer (3) in 
a bridge circuit, amplified, and led to 
the second channel of the recorder. The 
same electrodes were used for stimulat- 
ing and for recording potentials. 

We realized, of course, that prolonged 
treatment with sufficiently high concen- 
trations of metabolic inhibitor would de- 
press the resting potential irreversibly. 
Also, since it had been found in studies of 
this muscle that any agent which resulted 
in subthreshold depression of the resting 
potential enhanced the effect of cooling, 
it was obvious that one should expect 
that an interference with respiration 
would ipso facto decrease the threshold 
to cooling stimulation or to a chemical 
stimulus such as the application of potas- 
sium ion. This was indeed found to be the 
case. 

However, we noticed that, in treat- 
ment with sodium cyanide, the eventual 
depression of the resting potential was 
preceded by a period in which either no 
change in potential occurred or an in- 
itial marked but transitory rise in rest- 
ing potential developed if 1 or 2.5 
or even 5 mM solutions of NaCN in sea 
water were used. This raised the question 
of the significance of the change to mus- 
cle excitability. 

In 1952 Ling (4) carried out a similar 
study. He investigated the effects of me- 
tabolic inhibitors upon the resting poten- 
tials of frog muscle and found that 5 mM 
NaCN, which did not in itself produce a 
significant fall in resting potential in frog 
muscle, greatly hastened the fall in rest- 
ing potential caused by 5 mM iodoace- 
tate if the cyanide and the iodoacetate 
were simultaneously applied. Following 
this lead in our studies of invertebrate 
muscle, we found that during the initial 
treatment with cyanide, the threshold 
amount of cooling necessary for con- 
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Fig. 2. Resting potential 
(A), and rheobase, in mic 
versus time, in hours, for 
treated with 5mM NaCN 
recover in sea water. In t 
time course of developme 
larization mirrors the decre 

traction of Mytilus musc 

Ls relation between degree of hyperpolari- 
zation and decrease in threshold evident 
in this experiment was encountered in 
many cases. 

Hodgkin and Keynes (6) found that 
cyanide reduces the rate of sodium effilux 
in cephalopod axons, but this is not the 
case in frog muscle (7). 

In Mytilus muscle, the situation is 
doubtless a complex one and may well 

.-..-.. - involve changes in the concentrations of 
ions inside and outside the fibers, and 

JRS 4 changes in charge as well as changes in 
s . in . m membrane permeability. One might at- 

s, in millivolts 
roamperes (B), tempt to explain the hyperpolarization roamperes (B), 
Mytilus muscle in terms of movements of ions or water. 
and allowed to It is true that depolarization is nor- 
;his muscle, the mally the first step in excitation. How- 
nt of hyperpo- ever, the use of cyanide or some other 
;ase in rheobase. agent may possibly affect a link in the 

chain of events further along than de- 
polarization, and thus activate the con- 

le was also de- tractile process (8). 
creased. It was also possible to poten- 
tiate the stimulating effects of the potas- 
sium ion by means of this procedure, 
which does not, in the concentra- 
tions used, decrease the membrane 
potential but, rather, usually enhances 
it. 

The phenomenon of a decrease in 
threshold unaccompanied by depolariza- 
tion was felt to be of sufficient interest to 
merit further study. Consequently, in or- 
der to investigate changes in excitabil- 
ity quantitatively, the classical strength- 
duration curves were determined, first 
on normal muscle in sea water and then 
on the muscle during treatment with 
NaCN. Resting potential values were 
recorded concurrently. 

It is clear that on treatment with 
NaCN, a decrease in threshold (5), un- 
accompanied by membrane depolariza- 
tion, occurs, and that this effect is par- 
tially or completely reversible (depending 
upon the duration of treatment with cy- 
anide) when the muscle is returned to 
sea water (Fig. 1). In Fig. 2, determina- 
tions of the rheobase and subsequently 
recorded resting potentials in another 
muscle are plotted against time. A cor- 
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