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Reasoning Foundations 4 

Medical Diagnos 

Symbolic logic, probability, and value the, 
aid our understanding of how physicians reas, 

Robert S. Ledley and Lee B. Lus 

The purpose of this article is to ana- 

lyze the complicated reasoning processes 
inherent in medical diagnosis. The im- 

portance of this problem has received 
recent emphasis by the increasing inter- 
est in the use of electronic computers as 
an aid to medical diagnostic processes 

(1, 2). Before computers can be used 

effectively for such purposes, however, 
we need to know more about how the 

physician makes a medical diagnosis. 
If a physician is asked, "How do you 

make a medical diagnosis?" his explana- 
tion of the process might be as follows. 

"First, I obtain the case facts from the 

patient's history, physical examination, 
and laboratory tests. Second, I evaluate 
the relative importance of the different 

signs and symptoms. Some of the data 

may be of first-order importance and 
other data of less importance. Third, to 
make a differential diagnosis I list all 
the diseases which the specific case can 

reasonably resemble. Then I exclude one 
disease after another from the list until 
it becomes apparent that the case can be 
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ance are the ones who do remember and 
consider the most possibilities." 

Computers are especially suited to 

help the physician collect and process 
clinical information and remind him of 

diagnoses which he may have over- of Ilooked. In many cases computers may be 
as simple as a set of hand-sorted cards, 

s* whereas in other cases the use of a large- 
1] S scale digital electronic computer may be 

indicated. There are other ways in which 

computers may serve the physician, and 

ory some of these are suggested in this paper. 
For example, medical students might 

on. find the computer an important aid in 

learning the methods of differential di- 

_ted agnosis. But to use the computer thus 
we must understand how the physician 
makes a medical diagnosis. This, then, 
brings us to the subject of our investiga- 

ease category, or tion: the reasoning foundations of med- 
,eral possible dis- ical diagnosis and treatment. 

,ct nature cannot Medical diagnosis involves processes 
obviously, is a that can be systematically analyzed, as 

lanation of the well as those characterized as "intan- 

,r the physician gible." For instance, the reasoning foun- 
at after seeing a dations of medical diagnostic procedures 
Feeling about the are precisely analyzable and can be sepa- 
.Ithough hard to rated from certain considered intangible 
nation of his im- judgments and value decisions. Such a 
e way the data separation has several important advan- 
e patient's relia- tages. First, systematization of the rea- 
ce, facial expres- soning processes enables the physician to 
d the physician define more clearly the intangibles in- 

oughts do influ- volved and therefore enables him to 

agnoses. No one concentrate full attention on the more 
: reasoning proc- difficult judgments. Second, since the 

aking a medical reasoning processes are susceptible to 
is important be- precise analysis, errors from this source 

:ian to choose an can be eliminated. Of course, the meth- 
ecision which in ods presented in this paper are not de- 

complex reason- signed for immediate, direct application; 
rather, they serve as a suggested basis 

ing process must from which more practical procedures 
)hysician with a can be developed. However, a consider- 

diseases. It is ation of foundations is always essential 
^rors in differen- as the first step in the development of 

nore frequently practical applications. 
than from other The reasoning foundations of medical 

ncerning such er- diagnosis and treatment can be most 

ening and Hash- precisely investigated and described in 

to guard against terms of certain mathematical tech- 
t know. But I do niques. Before material to illustrate 

gment, the most these techniques was selected, many of 
of my acquaint- the New England Journal of Medicine 

9 



clinicopathological exercises from Mas- 
sachusetts General Hospital were stud- 
ied. It has been necessary to simplify 
the case illustrations in order to demon- 
strate the calculations in their entirety. 

Two well-known mathematical disci- 
plines, symbolic logic and probability, 
contribute to our understanding of the 
reasoning foundations of medical diag- 
nosis; a third mathematical discipline, 
value theory, can aid the choice of an 
optimum treatment. These three basic 
concepts are inherent in any medical 
diagnostic procedure, even when the di- 
agnostician utilizes them subconsciously, 
or on an "intuitive" level. 

As is shown below, the logical con- 
cepts inherent in medical diagnosis em- 
phasize the fundamental importance of 
considering combinations of symptoms 

or symptom complexes in conjunction 
with combinations of diseases or disease 
complexes. This point is emphasized be- 
cause often an evaluation is made of a 
sign or symptom (4) by itself with re- 
spect to each possible disease by itself, 
whereas consideration of the combina- 
tions of signs and symptoms that the 
patient does and does not have in rela- 
tion to possible combinations of diseases 
is of primary importance in diagnosis. 

The probabilistic concepts inherent in 
medical diagnosis arise because a med- 
ical diagnosis can rarely be made with 
absolute certainty; the end result of the 
diagnostic process usually gives a "most 
likely" diagnosis. The logical considera- 
tions present alternative possible disease 
complexes that the patient can have; the 
purpose of the probabilistic considera- 

tions is to determine which of these al- 
ternative disease complexes is "most 
likely" for this patient. 

The value theory concepts inherent in 
medical diagnosis and treatment are con- 
cerned with the important value de- 
cisions that the diagnostician frequently 
faces when he is choosing between alter- 
native methods of treatment. The prob- 
lem facing the physician is to choose 
that treatment which will maximize the 
chance of curing the patient under the 
ethical, social, economic, and moral con- 
straints of our society. As is discussed 
below, Von Neumann's so-called "theory 
of games" can be used to analyze such 
value decisions. 

Logical Concepts 
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Fig. 1. Combinations of attributes. 
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There are three ingredients to the 
logical concepts inherent in medical di- 
agnosis; these are (i) medical knowl- 
edge, (ii) the signs and symptoms pre- 
sented by the patient, and (iii) the final 
medical diagnosis itself. Medical knowl- 
edge presents certain information about 
relationships that exist between the 
symptoms and the diseases. The pa- 
tient's symptoms (4) present further in- 
formation associated with this particu- 
lar patient. With these two sources of 
available information, and by means of 
logical reasoning, the diagnosis is made. 

Symbolism. The first step in making a 
logical analysis of this process is to re- 
view some symbolism associated with the 
propositional calculus of symbolic logic. 
Such symbolism enables the more precise 
communication of the concepts involved 
in logical processes. The symbols x, y, 
. .. are used to represent "attributes" a 
patient may have such as, for instance, 
a sign "fever" or a disease "pneumonia," 
and so forth. Corresponding capital 
letters X, Y, . . . are used to repre- 
sent statements about these attributes. 
For example, Y represents the sen- 
tence: 

The patient has the attribute y. 

The negation of this statement: 

The patient does not have the attribute y. 

is represented by Y, where the bar (called 
negation) over the Y indicates "not." 
The combination of symbols X Y rep- 
resents the combined statement: 

The patient has both the attribute x 
and the attribute y. 

where the center dot (called logical 
product) indicates "and." The combi- 
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Table 1. Symbolic representation of com- 
binations of attributes. 

Interpre- Symbols Name tation 

Y Negation Not Y 
X . Y Logical X and Y 

product 
X + Y Logical sum X or Y 

(or both) 
X -> Y Implies If X then Y 

nation of symbols X + Y represents the 
combined statements: 

The patient has attribute x 
or attribute y, or both. 

where the plus sign (called logical sum) 
indicates "or"-that is, the "inclusive 
or." The sentence: 

If the patient has attribute x, 
then he has attribute y. 

is symbolized by X -> Y. 
All these symbols and their meanings 

are summarized in Table 1. But they 
can be most easily visualized by consid- 
ering, for example, the population of pa- 
tients illustrated in Fig. 1. The cross- 
hatched patients of Fig. la have attribute 
y-that is, they are those for whom Y 
holds. If we now consider a second at- 
tribute x for some of our patients (cross- 
hatched in the other direction), then Fig. 
1b indicates these patients for whom 
X Y holds. Similarly, Fig. l c indicates 
those patients for whom X + Y holds. In 
fact, with two attributes, our patients 
can be put into four classes, as indicated 
by CO, C1, C2, and C3 of Fig. ld. 

Figure 1 e illustrates a population of 
patients where the attributes x and y 
have the property that "if X then Y." 
Here, note that the patients for whom 
X -> Y holds are those of Co, C2 and 
C3 only. The situation C1 cannot occur 
(because C1 represents patients with X 
but not Y); hence, C1 has been crossed 
out. 

Of course, in general, more than two 
attributes are usually considered, and 
more complicated expressions can be 
formed by making combinations of 
attributes. Such expressions are called 
"Boolean functions" and are generally 
denoted in terms of the usual functional 
notation f(X, Y, . . ., Z). Similarly, for 
more than two attributes, we can classify 
the patients into more than four classes 
Ci. In fact, it is easy to see that for m 
attributes, there are 2m possible ways the 
patients can and cannot have the m at- 
tributes-that is, there are 2m of the 
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classes Ci, namely, Co, C1,..., C2m_. 
For our purposes, we need only intro- 

duce attributes that are symptoms and 
diseases. Let the symbol S (1) mean, 
"The patient has symptom 1," and simi- 
larly for S(2), and so forth. Let the sym- 
bol D(1) mean, "The patient has dis- 
ease 1," and similarly for D(2), and so 
forth. In general, a set of n symptoms, 

(1), S(2), . . ., S(n) 

and a set of m diseases, 

D(1), D(2), . . ., D(m) 

will be under consideration. Which 
symptoms and diseases are to be in- 
cluded in such sets is usually dictated by 
the circumstances. For example, an oph- 
thalmologist is interested in a certain 
collection of symptoms and diseases, 
whereas an orthopedist is interested in 
another collection. 

Logical problem. By means of our sym- 
bolic language, each of the three afore- 
mentioned ingredients of medical diagno- 
sis can be expressed in terms of Boolean 
functions. The relationships between dis- 
eases and symptoms that comprise 
medical knowledge can be expressed 
as a Boolean function of the diseases 
and symptoms under consideration, say 

E(S(1), . .., S(n), D(1), . .., D(m)) 

Similarly, the symptoms presented by a 
patient can be expressed as a Boolean 
function of the symptoms alone, say 

G(S(l1),...,S(n)) 

Then the diagnosis itself can be ex- 
pressed as a Boolean function of the dis- 
eases alone, say 

f(D(1), . ..,D(m)) 

To illustrate these three functions E, 
G, and f, let us for simplicity limit our 
consideration to two diseases, D(1) and 
D(2), and two symptoms, S(1) and 
S(2). Let us first discuss E. Suppose the 
following statements were made in a di- 
agnostic textbook concerning the rela- 
tionships between D(1), D(2), S(1), 
and S(2): 

If a patient has disease 2, he 
must have symptom 1 D(2) - S(1) 

If a patient has disease 1 and 
not disease 2, then he must 
have symptom 2 D(1) * D(2) -e S(2) 

If a patient has disease 2 and 
not disease 1, then he can- 
not have symptom 2 D(1) ? D(2) -> S(2) 

If a patient has either or both 
of the symptoms, then he 
must have one or both of S(1) +S(2) -> 
the diseases D(1) + D(2) 

Since all of these relations are to hold 

according to medical knowledge, we 
have for E: 

E=[D(2) S(1)]. 
[D(1) ? D(2) - S(2)] ? 

[D(l) ?.D(2)-8 (2)]- 
S(1) +S(2) -D(1)+ D(2)] (1) 

To illustrate the G function is much 
simpler. A particular patient might pre- 
sent symptom 2 and not symptom 1; then 
we have 

G=S(1) .S(2) 
Note that symptoms the patient does not 
have are included as well as those the 
patient does have. If it is not known 
whether the patient does or does not 
have a symptom--for example, if the 
symptom is determined as the result of 
a laboratory test not yet accomplished, 
then this symptom does not appear ex- 
plicitly in the function G. Thus, if the 
patient has symptom 2 and it is not 
known whether or not he has symptom 
1, then G=S(2). 

Function f may be illustrated as fol- 
lows. If the patient has disease 1 and not 
disease 2, then 

/=D(1) .D(2) 

Of course, function f is computed when 
the functions E and G are known. For 
example, as we shall presently show, if 
E as illustrated above describes the med- 
ical knowledge concerning D (1), D(2), 
S (1), and S (2), and if a patient presents 

G=S(1) .S(2) 
then it turns out that 

f=D(l) .D(2) 

Although we shall discuss a specific 
example below, it is important to first 
state the logical problem of medical di- 
agnosis in more abstract terms. The log- 
ical aspect of the medical diagnosis prob- 
lem is to determine the diseases f such 
that if medical knowledge E is known, 
then: if the patient presents symptoms 
G, he has diseases f. In terms of our sym- 
bolic language, the problem is to deter- 
mine a Boolean function f that satisfies 
the following formula: 

E -> (G --f) (2) 

This is the fundamental formula of med- 
ical diagnosis. That this is truly the diag- 
nosis in an intuitive sense can be readily 
seen. For it is easy to show that the fun- 
damental formula can be equivalently 
written as 

E - (f -G) 
11 



Co CG , C, 

D(l) 0 I 0 I 
D(2) 0 0 1 / 

Fig. 2. Logical basis for D(1) and D(2). 

O? C C C3 

S(l) 0 I 0 I 
S(2) 0 0 1 1 

Fig. 3. Logical basis for S ( 1) and S(2). 

which means in a sense that if the dis- 
eases f are cured, then the patient's 
symptoms will disappear. It can be 
shown that a solution f always exists. 
We shall actually illustrate below an ele- 
mentary computational technique for 
determining the function f in a simple 
situation involving two symptoms and 
two diseases; however, for more compli- 
cated situations where many more symp- 
toms and diseases are involved, more ad- 
vanced and powerful techniques for 
computing / must be used (5-7). 

Logical basis. To illustrate the appli- 
cation of the elementary computational 
method to a specific example, we must 
first consider the concept of a logical 
basis. Actually, we have already intro- 
duced this concept in a preliminary way 
in Fig. 1d, for a logical basis displays all 
conceivable combinations of the attri- 
butes under consideration that a patient 
may have. For two attributes (as con- 
sidered in Fig. ld) there are four such 
combinations. Figure 2 illustrates how 
these are displayed in a logical basis 
corresponding to the attributes D (1) 
and D(2). The 0 indicates that the cor- 
responding disease does not occur; the 1 
indicates that it does. Each column Ci 
represents a disease complex, that is, CO 
represents D ( 1 ) D (2)), C represents 

D( ) D? (2), and so forth. The columns 
represent an exhaustive list of conceiv- 
able complexes, that is, a patient must 
fit into one of these complexes. The com- 
plexes are mutually exclusive-that is, 
a particular patient can fit into only one 
of the complexes at a time. 

Similarly, we can form a logical basis 
for two symptoms, as is shown in Fig. 3, 
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where the columns are now labeled by 
Ck, with a superscript, and represent all 
conceivable symptom complexes. If we 
consider the four attributes S (1), S (2), 
D (1), and D (2), then all conceivable 
combinations of disease complexes and 
symptom complexes can be summarized 
by the columns on the logical basis of 
Fig. 4. Each column represents a differ- 
ent product C. C*; let us denote such a 
column simply by Ck. For example, the 
demarcated column in Fig. 4 corresponds 
to C1 * C2, and we denote it by C21. 
Thus this column C,2 represents the con- 
ceivable situation of a patient's having 
S(1) but not S(2), and at the same time 
D(2) but not D(1)-that is, 

S(1) .S(2) *D(1) .D(2) 

similarly, column C,2 (that is, C2. Cg) 
represents the case 

S(1) .S(2) .D(1) .D(2) 
and so forth. For n symptoms and m 
diseases, the combined logical basis will 
have 2n+" columns representing all con- 
ceivable combinations of symptom-dis- 
ease complexes. The reader who is fa- 
miliar with the binary number system 
will note that the columns of a logical 
basis with b rows simply form the binary 
numbers from 0 to (2k- 1). 

Example of elementary computation. 
Although a logical basis lists all 
conceivable symptom-disease complex 
combinations, it is obvious that many 
of these do not actually occur. Which 
do occur and which do not occur is 
information included in medical knowl- 
edge, and therefore it is natural for 
us to look to the E function for such 
information. Thus the role of the E 
function that embodies medical sci- 
ence is to reduce the logical basis from 
all conceivable combinations of disease- 
symptom complexes to only those that 
are actually possible. As an illustration, 
consider the E function of the above ex- 
ample (see Eq. 1). First note that it con- 
tains as a term the expression D(2) --> 

S(1). This means that if a patient has 
D(2) then he must have S(1), and 
hence the combination of a patient hav- 

ing D(2) and not S(1)--that is, S 1)- 
cannot occur; thus, for example, column 
C2?, namely 

Co 

S(1) 0<- 
S(2) 0 
D(l) 0 
D(2) 1 - 

C2 

cannot occur. Similarly it can be checked 
that columns C02, C3?, and C32 cannot 
occur, for each of these represents pa- 

tients who have at least disease D (2) 
but do not have symptom S(1) (see 
Fig. 4 and Fig. lIe). Also the expression 

D(1) . D(2) ->S(2) 

is included in E; hence columns C0? and 
C,1 must be eliminated. From the ex- 

pression 

D(l) ? D(2) - S(2) 

we find that columns C22 and C)3 must 
be eliminated. Finally, the expression 

S(1) +S(2) --D(1) +D(2) 

eliminates columns C01, Co2, and Co3. 
Thus the reduced basis that includes the 
medical science information (that is, 
Fig. 4 with the appropriate columns 

omitted) is shown in Fig. 5. 
We now come to the following point: 

If the patient presents a particular symp- 
tom complex, what possible disease com- 
plexes does he have? Consider, for ex- 
ample, a patient that presents the case 
C2-that is, 

G=S(1) .S(2) 

The only column in our reduced basis 
that contains this symptom complex is 
C2--that is 

S(1) 0 
S(2) 1 
D(l) 1 
D(2) 0 

(see Fig. 5). Since this is the only dis- 
ease-symptom complex combination that 
can occur (according to medical knowl- 

edge) that includes the symptom com- 

plex S(1) S(2), it follows that the di- 
agnosis is C,-that is, 

f =D(1) . D(2) 

or the patient has disease D(1) but not 
disease D (2). 

As another example, suppose the pa- 
tient presented C1-that is, 

G=S(1) .S(2) 

then we must consider both column C21 
and column C31, since both of these col- 

umns include the S (1) S(2) symptom 
complex. Thus there are two possible 
disease complexes that the patient may 
have, C0 or C3. Thus, 

f=-D(1) .D(2) +D(1) .D(2) 

-that is, the patient has disease D(2) 
and it is not known whether he has D ( 1 ) 
or not; either further tests must be taken 
or else medical knowledge cannot tell 
whether or not he has D (1) under these 
circumstances. 

Next, suppose the patient has S(2), 
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and it is not known whether he has S (1) 
or not-that is, C2 or C3, or 

G=S(1) .S(2) +S(1) S(2) 
In this case we consider C2, ?C13, and 
C33, whence the patient has C1 or C,3- 
that is, 

f=D(1) .D(2) +D(1). D(2) 
or the patient certainly has D(1) but it 
is not known whether he has D(2) or 
not. 

We have thus demonstrated how, from 
the reduced basis that embodies medical 
knowledge and from the symptom com- 
plexes presented by the patient, we can 
determine the possible disease complexes 
the patient may have, which is the med- 
ical diagnosis. 

Probabilistic Concepts 

Need for probabilities. In the previous 
section we considered statements such as, 
"If a patient has disease 2, he must have 
symptom 2." While such positive state- 
ments have a place when, for example, 
some laboratory tests are being discussed, 
it is also evident that in many cases, the 
statement would read, "If a patient has 
disease 2, then there is only a certain 
chance that he will have symptom 2- 
that is, say, approximately 75 out of 100 
patients will have symptom 2." Since 
"chance" or "probabilities" enter into 
"medical knowledge," then chance, or 
probabilities, enter into the diagnosis it- 
self. At present it may generally be said 
that specific probabilities are rarely 
known; medical diagnostic textbooks 
rarely give numerical values, although 
they may use words such as "frequently," 
"very often," and "almost always." How- 
ever, as is shown below, it is a relatively 
simple matter to collect such statistics. 
Since we are considering topics from an 
essentially academic point of view, we 
shall assume that the probabilities are 
known or can be easily obtained, and we 
shall discuss methods of utilizing such 
probabilities in the medical diagnosis. 
Actually, such a discussion makes clear 
in any particular circumstances precisely 
which statistics should be taken and pre- 
sents methods for rapidly collecting them 
in the most useful form. 

Total and conditional probabilities. 
The first step in discussing a probabil- 
istic analysis of medical diagnosis is to 
review some definitions and important 
properties of probabilities. The concept 
of total probability is concerned with 
the following question. Suppose we se- 
lect at random from our population of 
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patients one single patient; what is the 
chance, or total probability, that the pa- 
tient chosen has certain specified attri- 
butes f (x, y, ..., z) ? By definition, the 
total probability is the ratio of the 
number of patients that have these at- 
tributes to the total number of patients 
from which the random selection is 
made. If the total number of patients is 
N, and if N(f) is the number of these 
patients with attributes f, then the total 
probability that a patient has attributes 
f is: 

P(f) =N(f)/N (3) 

For example, the probability that a pa- 
tient has disease complex Cg becomes: 

P(Ci) =N(Ci)/N (4) 

The conditional probability is analogous 
to the total probability, where the selec- 
tion is made only from that subpopula- 
tion of patients that have the specified 

condition. The conditional probability, 
denoted by P(Glf), that from patients 
having condition or attributes f, a single 
patient selected at random will also have 
attributes G is defined as the ratio of the 
number of patients with both attributes 
G f to the number of patients having 
attributes f. LNote: In this notation the 
condition appears to the right, and the 
attribute of selection to the left, of the 
vertical bar: P(attributelcondition) .] 
Thus we can write: 

P(Glf) =P(G. )/P(f) (5) 

For example, the conditional probability 
that a patient with disease complex Ci 
has symptom complex Ck becomes: 

P(CklCi) =N(Ck. Ci)/N(Ci) (6) 

Probabilistic problem. The results of 
the logical analysis of medical diagnosis 
often leave a choice about the possible 
disease complexes that the patient may 

Fig. 4. Logical basis for S(1), S(2), D(1), and D(2). 

Fig. 5. Reduced basis that includes medical knowledge. 
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have. The problem now is: Which of 
these choices is most probable-that is, 
which of the disease complexes given by 
the logical diagnosis function f is the 
patient most likely to have. In terms of 
conditional probabilities, the probabilis- 
tic aspect of the diagnosis problem is to 
determine the probability that a patient 
has diseases f where it is known that the 
particular patient presents symptoms G, 
that is, the probabilistic aspect of med- 
ical diagnosis is to evaluate P(flG) for 
a particular patient. 

The data upon which the evaluation 
of P(/[G) is based must, of course, come 
from medical knowledge. Such medi- 
cal knowledge is generally also given in 
the form of conditional probabilities- 
namely, the probability that a patient 
having disease complex C, will have 
symptom complex Ck, or P(CkICi). The 
reason medical knowledge takes this 
form is because this conditional prob- 
ability is relatively independent of local 
environmental factors such as geography, 
season, and others, and depends primar- 
ily on the physiological-pathological as- 
pects of the disease complex itself. Thus 
the study of the disease processes as a 
cause for the resulting possible symptom 
complexes can be expressed as such con- 
ditional probabilities: of having a symp- 
tom complex on condition that the 
patient has the disease complex. It is 
interesting to note that this is also the 
reason most diagnostic textbooks discuss 
the symptoms associated with a disease, 
rather than the reverse, the diseases as- 
sociated with a symptom. 

The question that naturally arises at 
this point is: If medical knowledge is 
in the form P(CkjC4)--that is, prob- 
ability of having the symptoms given the 
patient having the diseases-then how 
can we make the diagnosis P(flG)--that 
is, the probability of having the disease 
given the patient having the symptoms? 
The answer lies in the well-known Bayes' 
formula (8) of probability. Let us first 
discuss the simpler case where f=Ci 
and G = Ck; then it can be shown that 

P(Ci)P(CkICi) P( Ci |Cud) = p(c)P( CklC) (7) 

where to under 2 indicates summation 

Table 3. 'Summary of values associated 
with treatment-disease combinations. 

T C2 C3 

T(1) 90/100 30/100 
T(2) 10/100 100/100 

over all possible disease complexes (that 
is, if there are m diseases under con- 
sideration, then o takes on values from 
0 through 2m- 1). The important part 
of Eq. 7 is the numerator of the right- 
hand side. It has two factors, P(CkJCi) 
and P(Ci). The former is just the rela- 
tion between Ck and C4 given by medi- 
cal knowledge, which we would certainly 
expect as a factor in the diagnosis. How- 
ever, observe the latter factor: it is the 
total probability that the patient has the 
disease complex in question, irrespective 
of any symptoms. This is the factor that 
takes account of the local aspects--geo- 
graphical location, seasonal influence, 
occurrence of epidemics, and so forth. 
This factor explains why a physician 
might tell a patient over the telephone: 
"Your symptoms of headache, mild 
fever, and so forth, indicate that you 
probably have Asian flu-it's around our 
community now, you know." And the 
physician is more than likely right; he is 
using the P(Ci) factor in making the 
diagnosis. 

In the more general case, the follow- 
ing adaptation of Bayes' formula can be 
made for our purposes: 

krG 
: P (Ci )P(Ck|Cd) 

P(flG) = kGC (8) 
2 5P(C,)P(CklCw,) 

Example of a simple computation. 
Table 2 gives hypothetical probabilities 
for our example that are consistent with 
our previous example of two diseases 
and two symptoms. These conditional 
probabilities and total probabilities were 
supposed to have been obtained from 
clinical statistical data and medical 
knowledge. We can immediately observe 
that the conditional probabilities corre- 
sponding to columns that were elimi- 
nated by means of the logical analysis 
are zero. This is because these columns 

represent unrelated disease-symptom 
combinations, according to medical 
knowledge, and hence there are no pa- 
tients having these disease-symptom com- 
plexes (see cross-hatched columns of 
Fig. 5). 

Now suppose a patient presented 
symptom complex 

G=S(l) .S(2) = C1 

Logical analysis shows that the diagnosis 
is 

f=D(1) .D(2) +D(1) .D(2) 
The problem now is: Which disease 
complex does the patient most likely 
have, 

C2D(l) .D(2) or C,D(l) .D (2) 

To solve this problem, we calculate both 
P(C2 I C1) and P(C3 ] C1) by means of 
Eq. 7 and Table 2, as follows: 

P( C,I C) =[P( C2)P(ClC2)]- 
[P(Co)P(C'lCo) + 

P(C1)P(CIC) + 
P(C2)P(C1lC,) + 

P(C3) + (C1jC3)] 
= [(25/1000) (1)] 

[(910/1000) (0)] + 
(50/1000) (0) + 

(25/1000)(1) + 
(15/1000) (2/3) 

= 25/(25 + 10) = 5/7 

Similarly, we have 

P(C3|C1) = [(15/1000) (2/3)] 
[(910/1000) (0) + 

(50/1000) (0) + 
(25/1000) (1) + 

(15/1000)(2/3)] 
= 10/(25 + 10) = 2/7 

Hence the chances are 5:2 that the pa- 
tient has disease 2 but not disease 1, 
rather than both disease 1 and disease 2. 

Next, suppose the patient presented 

G=S(1) ? S(2) = C3 

The logical analysis tells us that 

f=D(1) .D(2) +D(1) .D(2) 

That is, the patient has either 

Cl=D(1) .Db(2) orC3=D(1) .D(2) 

Determining the conditional probabili- 
ties P(CIjC3) and P(C3\C3) according 
to Table 2, we find: 

Table 2. Illustrative values of P(Ck|Ci) and P (Ci). 

P(C?ICo)l 1 P(C'ICo) =0 P(C2fCo) =0 P(C3ICo) =0 P(Co) =910/1000 
P(C?lC) =0 P(CICl) = 0 P(C2Cl) = 3/5 P(C3C1) =2/5 P(C1) = 50/1000 
P(C?C2) =0 P(CC2) = 1 P(C2C2)=0 P(C3C2)=0 P(C2-)= 25/1000 
P(C?IC3) =0 P(Cl C3) =2/3 P(C21C3) =0 P(C?lCs) = 1/3 P(C3) = 15/1000 
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P(C,[C) = 20/(20 + 5) = 4/5 
and 

P(C3alC) =5/(20+5) = 1/5 

Hence the chances are 4:1 that the pa- 
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tient most likely has disease 1 and not 
disease 2 rather than both diseases 1 and 
2. 

Statistics. In our use of probabilities 
we have tacitly made one subtle assump- 
tion that does not belong in the realm 
of the reasoning foundations of medical 
diagnosis, but rather in statistics. The 
assumption is that even though our 
probabilities, P(C,) and P ( Ck C), by 
definition, apply only to a randomly se- 
lected patient from a known population, 
we of course are applying the same 
probabilities to a new patient (not 
among the known population) who 
comes to the physician for diagnosis and 
treatment. The reason we can apply 
these probabilities to this patient anyway 
is beyond the scope of this article; it de- 
pends on statistical considerations-con- 
siderations which, by the way, have 
proved exceedingly useful for solving 
practical problems in many walks of 
life. However, certain general aspects of 
the statistical problem can serve to illus- 
trate some properties of our probabilistic 
approach to medical diagnosis. 

Note that the physician has no direct 
control over which particular person 
will come to him as a patient at any 
time, and hence his patients are certainly 
randomly chosen in this sense. Also note 
that although the patient is not a mem- 
ber of the known population upon which 
the probabilities were based, the proba- 
bilities will apply to him if he is a person 
who lives under approximately the same 
circumstances as those of the known 
population. By "circumstances" we mean 
geographical area, local community, sea- 
son of the year, and so forth. 

The important results of these obser- 
vations are twofold. First, since the 
probabilities, particularly P(C4), depend 
upon such circumstances, then for each 
physician or clinic there is a P(Ci). 
That is to say, in general, nearly all the 
patients of an individual physician or 
clinic will be subject to the same cir- 
cumstances. Thus each such physician or 
clinic will have its own P(C,) which, in 
general, will be different at different 
times. As discussed above, the P(C I Ck) 
can be used by many physicians over a 
longer period of time. 

Second, if these probabilities are so 
variable, from place to place and from 
time to time, the question arises as to 
how they can be evaluated at all. The 
answer to this is based on the fact that 
once a diagnosis has been made for a 
patient by a particular physician or clinic 
at a certain time, the symptom-disease 
complex combination that this patient 
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has becomes itself a statistic and can be 
included in a recalculation of the proba- 
bilities for this physician or clinic at 
that time. In other words, the patient 
for whom the diagnosis has been made 
automatically becomes a part of the 
known population upon which the proba- 
bilities for those circumstances are based. 
Thus the known population becomes 
simply the already-diagnosed cases. 
Hence the probabilities P(Ci) and 

P(CklCi) are continuously changing 
as successive diagnoses are made. Of 
course, the probabilities should be based 
on relatively current statistics; hence, 
after a time, the older cases are dropped 
from this known population. Actually 
this recalculation of probabilities is not 
hard to do. This problem is discussed 
below. 

Value Theory Concepts 

Value decisions for treatment: com- 
plicated conflict situation. After the 
diagnosis has been established, the phy- 
sician must further decide upon the 
treatment. Often this is a relatively sim- 
ple, straightforward application of the 
currently accepted available therapeutic 
measures relating to the particular diag- 
nosis. On the other hand, and perhaps 
just as often, the choice of treatment 
involves an evaluation and estimation of 
a complicated conflict situation that not 
only depends on the established diagno- 
sis but also on therapeutic, moral, ethi- 
cal, social, and economic considerations 
concerning the individual patient, his 
family, and the society in which he lives. 
Similar complicated decision problems 
frequently arise in military, economic, 
and political situations; and to aid a 
more analytical and quantitative ap- 
proach to these problems, mathemati- 
cians have developed "value theory." 
The striking similarity between these de- 
cision problems and the value decisions 
frequently facing the physician indicate 
that value theory methods can be ap- 
plied to the medical decision problem 
as well. Of the several mathematical 
forms value theory has taken, we have 
chosen to discuss that developed prin- 
cipally by Von Neumann (9, 10), often 
called "game theory." 

Expected value. One of the basic con- 
cepts upon which value theory rests is 
that of expected value (8). Suppose we 
consider 7000 patients, for all of whom 
two tentative diagnoses, C2 or C3, have 
been made, with probability 5/7 and 
2/7, respectively. Suppose, also, that 

there exists a treatment T(l) that is 90 
percent effective against disease complex 
C2 and 30 percent effective against dis- 
ease complex C3. If we use this treat- 
ment, what proportion of the 7000 pa- 
tients should we expect to cure? The 
answer is given in terms of the "ex- 
pected value" of the proportion E, which 
is the sum of the products of the value 
of the treatment for curing the disease 
complex and the probability that a pa- 
tient has the disease complex. For ex- 
ample, about (5/7) (7000), or 5000, will 
have disease complex C2, and of these 
we expect that 90 percent, or 4500, will 
be cured by T(1); similarly, for those 
with disease complex C3, we expect 
that 30 percent, or 600, will be cured by 
T(1). Altogether, we expect that 

[(910) (7)+ (3 0 )(47)] 7000 
will be cured by T(1). Here 

( 90 \(5 ( 30 2 2\ 51 
100/ 7 M+ l-\ V60770 

is the expected value of the proportion 
of patients cured by T(1). 

Suppose, on the other hand, that there 
is an alternative treatment T(2) for 
these diseases; it is 10 percent effective 
against C2 but 100 percent effective: 
against C3. The problem is: With which 
treatment will we expect to cure more 
patients (see Table 3)? The expected 
value of the proportion cured by T(2) 
becomes: 

( 10 \ (5\ (l00 (2\) 25 
100/ Uj7/ M10/ 0 !7 70 

and hence we would expect to cure more 
patients with T ( 1 ) than with T(2). On 
the other hand, suppose the probability 
that a patient has C2 is 2/7, that he has 
C3, 5/7. Then, calculating the expected 
value of the proportion who will be 
cured by both T(1) and T(2) respec- 
tively, we find: 

(90 (2 30\5\ 33 
100\ 7) 100 7 U 70 

( 10 (2\ (100 (5\ 52 
100J 7 ( 100/ \7 70 

Thus T(2) becomes the treatment of 
choice. 

The process of choosing the best treat- 
ment can be described in the terminol- 
ogy of games. There are two players, the 
physician and nature. The physician is 
trying to determine the best strategy 
from his limited knowledge of nature. 
The matrix representation of values 
given in Table 3 constitutes the payoffs 
-what the physician will "win," and 
nature "lose." 
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For the values of the treatments as 
given in Table 3, let us see how the 
expected value E, and hence the choice 
of treatment, depends on the probabil- 
ity that the patient has C2 or C3. If P 
is the probability that a patient has C2, 
then (1 - P) must be the probability 
that the patient has C3 (since by sup- 
position the patient has either C2 or C3 
but not both). Hence, by Table 3, the 
expected value E1 with treatment T( 1 ) 
becomes: 

E-=.9P - .3(1 -P) 

and the expected value E2 with treat- 
ment T(2) becomes: 

E2=.1P+ (1 -P) 

Figure 6 illustrates the graphs of these 
two equations, where the points for 
P =5/7 and P = 2/7, discussed above, 
are indicated. Hence T(1) is the treat- 
anent of choice for P to the right of 
?where the lines cross, and T(2) is the 
-treatment of choice for P to the left of 
where the lines cross. 

Up to now we have considered the 
value of a treatment with respect to a 
disease complex as being measured di- 
rectly by its effectiveness in curing the 
diseases. This, however, may not always 
be the case. For example, certain kinds 
of surgery do involve a marked risk; 
if the surgery is successful, the patient 
will be cured or benefited; if it is unsuc- 
cessful, the patient may die. Hence the 
value associated with this treatment is 
more difficult to define. As an illustra- 
tion, suppose values were chosen be- 
tween -10 and + 10, as is shown in 
Table 4. Then, if the probability that 
the patient has C2 is 5/7 and the proba- 
bility that he has C3 is 2/7, 

E1= (5) (5/7) + (- 10) (2/7) = 5/7 
E,2= (-5) (5/7) + (8) (2/7) =-4/7 

so that T(1) is the treatment of choice. 
If the probabilities were the other way 
around, that is, if C,= 2/7 and C,= 
5/7, then we would have E =- 40/7, 
E2 = 30/7, and T(2) would be the treat- 
ment of choice. 

Two points still require further dis- 
cussion. First, we have considered our 
problem from the point of view of many 
patients all of whom have the diagnosis 
C2 or C3, and we have seen how to 
choose that treatment which will max- 
imize the number of patients cured or 
maximize some other value for the pa- 
tients. However, in private practice, the 
physician is usually concerned with a 
single individual patient. A little reflec- 

Table 4. Values associated with treatment- 
disease combinations. 

T C2 C3 

T(1) +5 -10 
T(2) -5 + 8 

tion will show that when we are maxi- 
mizing the expected number of people 
cured, we are really maximizing the 
probability that any individual patient 
will be cured. Hence we need not actu- 
ally have, say, 7000 patients; we can 
apply our results to a single patient. The 
same argument holds when more com- 
plicated values are involved. 

The second point is that the decision 
involved for assigning the value to a 
treatment-disease combination was not 
discussed at all. Then what is the advan- 
tage of our new technique? The advan- 
tage is that we have enabled the separa- 
tion of the strategy problem from the 
decision of values problem; however, 
only the strategy problem was solved. 
The decision of values problem fre- 
quently involves intangibles such as 
moral and ethical standards which must, 
in the last analysis, be left to the phy- 
sician's judgment. 

Mixed strategy. In our development 
of the reasoning foundations of medical 
diagnosis for treatment, we first sketched 
the logical principles involved in the 
diagnosis; based on the alternative diag- 
noses presented by the logic, we calcu- 
lated probabilities for these alternatives; 
based on these probabilities, we sketched 
a technique for choosing between meth- 
ods of treatment. However at the present 
time, as we observed above, data are not 
generally available to enable the proba- 
bilities to be computed; and in rare dis- 
eases such data will be difficult to obtain. 
Hence selection of the method of treat- 
ment must frequently be made based on 
the logical diagnostic results alone. We 
now consider a method for determining 
the best treatment under such circum- 
stances. 

Again consider 7000 patients with 
identical diagnoses of C2 or C3, and sup- 
pose the effectiveness of alternative 
treatments T(1) or T(2) are as given 
in Table 3. But this time we do not 
know the probabilities that the patients 
have C2 or C3. Our problem is again to 
choose that treatment which will insure 
that we cure the largest number of peo- 
ple-that is, to maximize the minimum 
possible number of patients that we ex- 
pect will be cured. There are actually 

three ways we can choose the treatment: 
(i) treat all patients by T ( 1 ), (ii) treat 
all patients by T(2), and (iii) treat 
some patients by T(1) and others by 
T(2). The first two ways are called 
"pure strategies," the third, a "mixed 
strategy." 

Consider the values of Table 3, and 
suppose we choose the third way of 
treatment (which really includes the first 
two anyway). Let Q .be the fraction of 
patients to be treated by T(1), then 
(1 - Q) is the fraction to be treated by 
T(2). Observe that if all the patients 
had C2, we would expect to cure 

[ Qf + 6( 1-OQ) ]7000 
patients. We have called the bracketed 
expression E(C2) and have graphed it 
in Fig. 7. Similarly, if all the patients 
had C3, we would expect to cure 

[1o^00 ]+ too -"' ]70""0 
patients; we have also graphed this 
bracketed expression in Fig. 7. Evidently, 
for a particular value of Q, the lower 
(thick) line in Fig. 7 represents the 
minimum number of patients that we 
can expect to cure. For Q=.6, this 
minimum number is a maximum, and 
we would expect to cure 58 percent of 
the patients (or 4060 patients); hence 
(.6) (7000) patients should be treated by 
T(1) and the rest, (.4) (7000), should 
be treated by T(2). 

To arrange for such a treatment is 
easy: Separate the patients at ran- 
dom into two groups, one containing 
(.6) (7000) = 4200 patients, the other 
containing (.4) (7000) = 2800 patients, 
the former group to receive T(1), the 
latter T(2). However, there is another 
way of arranging for such a treatment, 
as follows: As each patient comes up for 
treatment, spin the wheel of chance 
shown in Fig. 8. If the wheel stops oppo- 
site one of the numbers 0, 1, 2, 3, 4, or 
5, the patient receives T(1); if it stops 
opposite 6, 7, 8, or 9, the patient re- 
ceives T(2). Since there is an equal 
chance that the wheel will stop opposite 
any number, then about 0.6 of the pa- 
tients will receive T(1) and 0.4 will 
receive T(2). This process is called 
"choosing a random number from 0 to 
9." Actually, one does not need to spin 
a wheel of chance to get random num- 
bers: books have been published con- 
taining nothing but millions of random 
numbers (11, 12). 

Why do we bring up random numbers 
when all we really needed to do was 
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divide our 7000 patients into two 
groups? To treat the 7000 patients, the 
two-group technique is perfectly ade- 
quate; but let us consider again the phy- 
sician who is concerned at the moment 
with a single patient. He cannot very 
well divide up the patient into two 
groups. To help this physician out, we 
interpret Q as the probability that the 
patient should receive T(1), and then 
(1- Q) is the probability that the pa- 
tient should receive T(2). With this in- 
terpretation, the above discussion shows 
that by choosing Q to be .6, the chance 
or probability of curing the patient is 
maximized to .58. Hence the physician 
chooses a single random integer: if it 
is 0, 1, 2, 3, 4, or 5, the patient gets 
T(1); if it is 6, 7, 8, or 9, the patient 
gets T(2). This is the concept of a 
mixed strategy applied to a single case. 

Such a method for choosing the treat- 
ment may be very hard to appreciate at 
first contact, but this is just the method 
used every day when probabilities are 
applied to single situations. Of course, in 
actual practice, some further informa- 
tion bearing on the choice of treatment 
would be sought-that is to say, the 
formulation of the problem of which 
treatment to give the patient is far more 
complicated than that posed by the 
single problem discussed above. In con- 
clusion, we may quote J. D. Williams 
(13) on the role of game theory: 

"While there are specific applications 
today, despite the current limitations of 
the theory, perhaps its greatest contribu- 
tion so far has been an intangible one: 
the general orientation given to people 
who are faced with overcomplex prob- 
lems. Even though these problems are 
not strictly solvable-it helps to have a 
framework in which to work on them. 
The concepts of a strategy, the repre- 

2/7 '5 
Probability P 

Fig. 6. Mathematical expectation of treat- 
ment. 

Fraction (oY probability) Q 

Fig. 7. Mathematical expectation in mixed 
strategy. 

sentations of the payoffs, the concepts of 
pure and mixed strategies, and so on, 
give valuable orientation to persons who 
must think about complicated situa- 
tions." 

Simplified Illustration 

A case history. A 5-week-old female 
infant was observed by the mother to 
have progressive difficulty in breathing 
during a 5-day period. No respiratory 
problem had been present immediately 
after birth. 

Physical examination showed a well- 
nourished infant with hemangiomas 
(blood vessel tumors) on the lower neck 
anteriorly, on the left ear, and lower lip. 
The physical examination was otherwise 
negative, and all the laboratory tests 
were normal. X-ray examination of the 
chest showed a mass in the anterior su- 
perior mediastinum which displaced the 
trachea to the right and posteriorly. 
There was some narrowing of the tra- 
chea caused by the mass. Several small 
flecks of calcium were placed anteriorly 
within this mass. 

The physician is thus faced with this 
problem: A 5-week-old infant presents 
increasing respiratory distress which 
must be relieved or the infant will die. 
First, what differential diagnosis should 
he make and, second, what should the 
treatment be? The physician decided 
that one or more of three abnormalities 
might be causing the respiratory distress: 
(i) a prominent thymus gland [hereafter 
referred to as D(1)], since it is well rec- 
ognized that a large thymus can cause 
such distress; (ii) A deep hemangioma 
in mediastinum, D(2), must be consid- 
ered because the infant has three surface 
hemangiomas and therefore should have 

another hemangioma below the surface 
of the skin. (The hemangiomas had en- 
larged since birth.) Also, calcium such 
as that seen in the mass on the chest 
x-ray is found in blood vessel tumors; 
(iii) A dermoid cyst, D (3), could be 
present in the mediastinum. The cal- 
cium in the mass suggests this possibil- 
ity. 

What treatments should be used? The 
physician decides that some treatment 
is absolutely necessary and that there are 
two possibilities, x-ray therapy to the 
mass or surgery. 

There are some arguments for and 
some against each treatment. This type 
of problem is susceptible to value theory 
analysis. The physicians set up the argu- 
ments pro and con for each treatment 
as follows: 

1) X-ray therapy to the mass [here- 
after referred to as T(1)]. Argument 
pro. (i) If the mass is thymus, the 

x-ray treatment will cause it to decrease 
in size. (ii) If the mass is a hemangioma 
composed of small blood vessels, it may 
decrease with radiation. (iii) This treat- 
ment can be done quickly with little dis- 
comfort or immediate danger to the 
patient. 

Argument con. (i) Radiation to the 
mass may cause cancer of the thyroid to 
develop later (14). (ii) Radiation will 
not affect the mass if it is a dermoid cyst 
or a large vessel-type hemangioma. 

2) Surgery [hereafter referred to as 
T(2)]. Argument pro. (i) surgical ex- 
ploration will permit the surgeon to in- 
spect the mass and to make a definite 
diagnosis. (ii) If the mass is found to be 
a dermoid cyst, it can be removed. If 
the mass is thymus or hemangiomas, par- 
tial or total removal may be possible. 

Argument con. (i) The infant is sub- 
ject to the risks of a surgical procedure 
(these are concerned with general anes- 

Fig. 8. Gambling wheel. 
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Fig. 9. Reduced logical basis for the illustrative example. 

thesia and a chest operation). (ii) If the 
mass is a hemangioma, an attempt at 

surgical removal might result in bleed- 
ing which would be difficult to control 
and thereby add to the risk of the opera- 
tion. 

Setting up the illustration. The above 
case history suggests an appropriate sim- 
plification that we can make for pur- 
poses of illustration. Let us limit our 
attention to just the three diseases D(l1), 
D(2), and D(3) (large thymus, deep 
hemangioma, and dermoid cyst, respec- 
tively), the three symptoms S ( 1 ), S(2), 
and S(3) (respiratory distress, several 
surface hemangiomas, and mediastinal 
mass on chest x-ray, respectively), and 
the two treatments T(1) and T(2) 
(x-ray therapy and surgery, respec- 
tively). Of course a realistic application 
of the techniques developed above would 
require consideration of the hundreds of 
diseases and symptoms associated with, 
say, a particular specialty. However, 
within the limited space allowed the 
present article, we are forced to confine 
our attention to the three diseases and 
three symptoms suggested by the case 
history. The discussion of a method per- 
mitting the feasible application of our 
techniques to more realistic circum- 
stances is given in the following section. 

We shall now digress for a moment 
from the case history in order to set up 
the illustration. Since we are considering 
only three symptoms, there are 23 = 8 
conceivable symptom complexes; for our 
three diseases there are likewise 23 = 8 
conceivable disease complexes; therefore 
there are 23+3 = 64 columns in our logi- 

Table 5. Values of treatments for disease 
complexes. 

T C1 Ca C4 Cd 

X-ray T(1) +3 -2 - 3 -2 
Surgery T(2) -2 +6 +10 +8 
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cal basis that represents all conceivable 
symptom-disease complex combinations 
(see Fig. 9). Further, let us suppose that 
the population of patients under consid- 
eration is such that they can have no 
other symptoms or diseases than those 
given above, and that each patient must 
have at least one of the symptoms and 
at least one of the diseases. Let us sup- 
pose that medical knowledge consists of 
the following three observations: 

1. A patient having D (1) 
and also either D (2) 
or D(3) must have D(1) ? [D(2) + D(3)]-> 
both symptoms S(1) S(1) S (3) 
and S(3) 

2. If a patient does not 
have D(2) then he 
does not have S(2) D(2) -> S(2) 

3. If a patient does not 
have D(1) but does 
have both D(2) and 
D(3), then he has D(1) . D(2) * D(3) -> 

symptom S(3) S(3) 

Under these observations of medical 
knowledge and under the limitations 
imposed on the population of patients 
under consideration, Fig. 9 represents 
the reduced basis embodying medical 
knowledge, where the noncrosshatched 
columns represent possible symptom-dis- 
ease complex combinations consistent 
with medical knowledge and the popu- 
lation of patients selected. 

Examples of logical diagnosis. Now 
we are ready to return to our case his- 
tory. Here the patient presented symp- 
toms S(1), S(2), and S(3)-that is, 

G=S(1) .S(2) .S(3) 

By the technique described above, it is 
easy to see the logical diagnosis: 

f=D(1) D(2)D(3) + 
D(1).D(2) .D(3 ) + 

D(1) .D(2) .D(3) + 
D(1) .D(2) .D(3) =D(2) 

which means that the patient certainly 
has D(2), and may or may not have 

D(1) and D(3). Here, then, the logical 

diagnosis results in four possible disease 
complexes that the patient may have. 

Consider next a patient that presents 
symptoms S(1) and S(2), but where 
the x-ray has not yet been taken-that 
is, G =S(1) S (2). By the above tech- 
niques, we find that the logical diagnosis 

f=D(l) .D(2)D(3) +_ 
D(1) .D(2) .D(3) + 

D(1) .D(2) *.D(3) + 
D(1) .D(2) .D(3) 

Note that this is the same diagnosis as 
for the patient with symptoms G = 

S(1) S(2) 'S(3). In other words, if, 
when the x-ray was taken, positive re- 
sults were obtained, the diagnosis re- 
mains the same as it was before the 
x-ray results were known. On the other 
hand, suppose the x-ray turned out nega- 
tive; then the patient's symptoms would 
be 

G=S(1) .S(2) .S(3) 

whence it is easy to see that the diagno- 
sis becomes 

f=D(l) .D(2) .D(3) 

In this case the additional information 
obtained from the x-ray film enabled 
the diagnosis to be reduced from four 
disease complex possibilities to a unique 
disease complex diagnosis. This example 
illustrated the interesting fact that ad- 
ditional diagnostic information may not 
always result in further differentiation 
between disease complexes, depending 
on the circumstances. 

As a final example of logical diagno- 
sis, consider a patient that presents 

G=S(1) .S(2) .S(3) 
Here we find 

f=D(1) .D(2) .D(3) + 
D(1). D(2)? D(3) + 

D(1) .D2) D(2) ) + 

D(1) .D(2) .D(3) 

Thus the patient must have one of these 
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four possible disease complexes. In this 
case the logical diagnosis, while narrow- 
ing down the possibilities, does not seem 
sufficient. Therefore let us determine 
which of these disease complexes the 
patient most probably has. 

Examples of probabilistic diagnosis. In 
order to present these examples we must 
have a table of conditional and total 
probabilities. In Fig. 10 we present such 
a table; however the numbers in the 
table do not have any basis in fact, they 
were just made up for the purposes of 
the illustration. They are, however, self- 
consistent in themselves and consistent 
with the logical assumptions made above. 
The cross-hatched probabilities are all 
0 and correspond to symptom-disease 
complex combinations that are not pos- 
sible according to medical knowledge. 

Consider the patient with symptom 
complex 

G=S(1) .S(2) .S(3) =C4 

We found by logical analysis that the 
patient can have one of the following 
disease complexes: 

D(1) . D(2) . D(3) = C1 
D(1) .D(2) .D(3) =C2 
D(l) .D(2) .D(3) =C4 
D(1) .D(2) .D(3) =C6 

Hence, by the techniques described 
above, we have: 

P(CIC4) =[(.600)(.333)]- 
[(.600) (.333) + (.150) (.067) + 

(.050) (.300) + (.005) (.200)] = .885 

and, similarly, 

P(Ca C4) =.044 
P(C4 C') =.067 
P(C0 C4) =.004 

Thus it becomes clear that the patient 
most likely has 

C,=D(1) *D(2) .D0(3) 

-that is, an enlarged thymus only. 
Analysis of the treatment. Let us con- 

tinue further with this case and deter- 
mine the treatment of greatest value for 
the patient. For this we need a table 
giving the values of the two treatments 
under consideration for each of the dis- 
ease complexes the patient may have. To 
fill in this table we have used the phy- 
sician's considered judgment with regard 
to the pro and con of each treatment in 
relation to the disease complex. The 
values have been chosen between + 10 
and - 10, the greatest value (the best 
treatment for a particular situation) 
being + 10, the smallest (for the worst 

treatment) being - 10 (see Table 5). If 
statistics were available on the outcomes 
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P(symptom complex | disease complex) 

Fig. 10. Values of conditional probabilities 
example. 

of the different treatments for the vari- 
ous disease complexes, then the judg- 
ment could be replaced by a calculated 
probabilistic value. However, this-.cannot 
always be done in general, for the value 
of some treatments may involve ethical, 
social, and moral considerations as well. 

For our patient who presented symp- 
toms 

G=S(1) .S(2) .S(3) 
we determine for the value of treatment 

T(1) (the x-ray treatment) by means 
of the techniques described above, as 
follows: 

(3) (.885) - (2) (.044) - 
(3) (.067) - (2) (.004) = 2.358 

On the other hand, the value of treat- 
ment T(2) becomes 

- (2) (.885) + (6) (.044) + 
(10) (.067) + (8) (.004) =-.804 

Obviously, then, the treatment of great- 
est value to this patient is T( (1), the 
x-ray treatment. 

T(2) 0 , T(I) 

4 _ 
6- 

8 

Fig. 11. Determining the best treatment. 

and total probabilities for the illustrative 

On the other hand, suppose we did 
not know or could not calculate the prob- 
abilities P(C1iC4), P(C2JC4), P(C4IC4), 
and P(C6\C4) due to lack of sufficient 
statistical data or for other reasons. The 
problem is to choose the treatment which 
will maximize the minimum gain for the 
patient. The graphical solution of this 
problem according to the techniques dis- 
cussed above is given in Fig. 11. Hence 
T(1) should be chosen with probability 
0.61 over T(2) with probability 0.39. 

Conditional Probability or 

Learning Device 

A device often called a conditional 
probability or learning machine can be 
used to implement the foregoing logical 
and probabilistic analysis of medical 
diagnosis. The particular form of such a 
device that we shall describe was chosen 
for its extreme simplicity and ready 
availability. It can collect data rapidly, 
and it easily recalculates the probabili- 
ties at each use. With such a device the 
variation of P(Ci) with location, season, 
and so forth, can be checked as well as 
relative stability of P(C"jCi). As de- 
scribed here, it is essentially an experi- 
mental tool, but undoubtedly more so- 
phisticated forms of the device could be 
further developed. 

Consider the logical analysis of medi- 
cal diagnosis first. In a realistic applica- 
tion perhaps 300 diseases and 400 symp- 
toms must be considered as, for exam- 
ple, might occur within a medical spe- 
cialty. The logical basis for such a set 
of symptoms and diseases would require 
2700 columns (more than 10200) from 
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'Ij 

C2 

1 C3 using past diagnoses to aid in making 
C C future diagnoses. Any wrong past diag- 

noses may therefore lead to a perpetua- 
H'j I r/^j tion of errors. Hence it is clear that only 

^0"^ ̂  carefully evaluated or definitely verified 
diagnoses should be used in making up 

; ! 1 ̂ the deck, or at least there should be 
provision for review and removal of in- 

; *) ~^ correct diagnoses. K>I 

C3 
Fig. 12. Cards notched to indicate columns of logical basis. 

which the elimination of columns for the 
reduced basis would be made. This is 
obviously impracticable. However, the 
columns to be eliminated correspond to 
disease-symptom complexes that will 
never occur; the reduced basis corre- 
sponds to columns that will occur. 
Hence, by listing many cases by disease- 
symptom complex combination, the re- 
duced basis will soon be generated. This 
can be done, for example, with mar- 
ginal notched cards, as follows: Posi- 
tions along the edge of a card are as- 
signed to the diseases and symptoms 
under consideration. After a case has 
been diagnosed, the positions on the edge 
of a single card are notched correspond- 
ing to the diseases the patient has, as 
well as the presented symptoms. This 
card then represents a column of the de- 
sired reduced basis. In this way the en- 
tire reduced basis can soon be generated 
(see Fig. 12). 

The probabilistic analysis of medical 
diagnosis is obtained by notching a card 
for every patient who has been diagnosed. 
Then there will be, in general, more 
than one card representing a single col- 
umn of the logical basis. The number of 
cards representing columns C. Ci is 
then just N(Ck Ci) of Eq. 6. After a 

Fig. 13. Sorting the cards. 

sufficient number of patients have been 
so recorded-that is, after a sufficient 
number of disease-symptom complex 
combination cards have been obtained- 
the entire deck of such cards is ready to 
be used. 

The cards are sorted as illustrated in 
Fig. 13. To separate those cards that are 
notched in a certain position from those 
that are unnotched in that position, put 
a rod in the corresponding position and 
the notched cards will fall; the un- 
notched cards will not fall. Then, by 
means of a rod through the holes in the 
upper right-hand corner of the cards, the 
unnotched cards are removed from the 
notched ones. 

To make a diagnosis, sort out those 
cards that correspond to the symptom 
complex presented by the patient. The 
disease complex part of these cards gives 
all possible disease complexes the pa- 
tient can have. Separate these cards by 
the symptom complexes: the thicknesses 
of the resulting separated decks will be 
proportional to the probability of the 
patient's having the respective disease 
complexes (see Fig. 14). 

To determine P(Ci), sort the cards 
for Ci; then P(C,) is the ratio of the 
thickness of the sorted cards to the thick- 
ness of the entire deck of cards. To de- 
termine P(CkjCi), sort the cards for Ci 
and measure their thickness; then sort 
these for Ck and measure their thickness; 
then P(CkICi) is the ratio of the former 
to the latter measurements. 

After each diagnosis is made, a card 
is notched accordingly and placed with 
the deck. Old cards are periodically 
thrown away. This keeps the statistics 
current. In general, the decks will grow 
exceedingly rapidly. In a clinic it is often 
normal to diagnose over 100 patients per 
day; at this rate only 10 days will result 
in 1000 cards. 

It is important to observe that we are 

Conclusions 

Three factors are involved in the log- 
ical analysis of medical diagnosis: (i) 
medical knowledge that relates disease 
complexes to symptom complexes; (ii) 
the particular symptom complex pre- 
sented by the patient; (iii) and the dis- 
ease complexes that are the final diag- 
nosis. The effect of medical knowledge 
is to eliminate from consideration dis- 
ease complexes that are not related to 
the symptom complex presented. The 
resulting diagnosis computed by means 
of logic is essentially a list of the pos- 
sible disease complexes that the patient 
can have that are consistent with medi- 
cal knowledge and the patient's symp- 
toms. Equation 2 is the fundamental 
formula for the logical analysis of med- 
ical diagnosis. 

The "most likely" diagnosis is deter- 
mined by calculating the conditional 
probability that a patient presenting 
these symptoms has each of the possible 
disease complexes under consideration. 
This probability depends upon two con- 
tributing factors. The first factor is the 
conditional probability that a patient 

Fig. 14. For a patient presenting symptom 
complex C1, the conditional probabilities 
for diagnoses C2 and C3 are read from 
the respective thicknesses of the decks 
as P(C2C1) =5/(5+2) and P(C3IC) = 
2/(5 + 2). 
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with a certain disease complex will have 
a particular symptom complex (that is, 
just the reverse of the afore-mentioned 
conditional probability); it remains rela- 
tively independent of local factors and 
depends primarily on the physiopatho- 
logical effects of the disease complex 
itself. The second factor is the effect on 
the medical diagnosis of the circum- 
stances surrounding the patient or, more 
precisely, the total probability that any 
person chosen from the particular popu- 
lation sample under consideration will 
have the particular disease complex un- 
der consideration; this may depend on 
the geographical location of the popu- 
lation sample, or the season when the 
sample is chosen, or whether the popu- 
lation sample is chosen during an epi- 
demic, or whether the sample is com- 
posed of patients visiting a particular 
type of specialist or clinic, and so forth. 

The afore-mentioned probabilities are 
continually changing; each diagnosis, as 
it is made, itself becomes a statistic that 
changes the value of these probabilities. 
Such changing probabilities reflect the 
spread of new epidemics, or new strains 
of antibiotic-resistant bacteria, or the 
discovery of new and better techniques 
of diagnosis and treatment, or new cures 
and preventive measures, or changes in 
social and economic standards, and so 
forth. This observation emphasizes the 
greater significance and value of current 
statistics; it depreciates the significance 
of past statistics. Equation 8 above, which 
is an adaptation of Bayes' formula, sum- 
marizes the probabilistic analysis of med- 
ical diagnosis. 

Use of value theory enables the sys- 
tematic computation of the optimum 
strategy to be used in any situation. It 
does not, however, determine the values 
of the treatments involved. It is quite 
evident that the choice of such values 
involves intangibles which must be eval- 
uated and judged by the physician. How- 
ever, by clearly separating the strategy 
problem from the values judgment prob- 
lem, the physician is left free to concen- 
trate his whole attention on the latter. 
One of the most important and novel 
contributions to the value theory for our 
purpose is the concept of the mixed 
strategy for approaching value decisions. 

The mathematical techniques that we 
have discussed and the associated use of 
computers are intended to be an aid 
to the physician. This method in no way 
implies that a computer can take over 
the physician's duties. Quite the reverse; 
it implies that the physician's task may 
become more complicated. The physi- 
cian may have to learn more; in addi- 
tion to the knowledge he presently needs, 
he may also have to know the methods 
and techniques under consideration in 
this paper. However, the benefit that we 
hope may be gained to offset these in- 
creased difficulties is the ability to make 
a more precise diagnosis and a more 
scientific determination of the treatment 
plan (15). 
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