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wick-Rafter counts of phytoplankton and 
analyses of total phosphorus from water 
samples taken the same day. A number 
of estimates of nannoplankton and 
analyses of soluble phosphorus were also 
made during the study, which covered 
three summer months. 

While the phytoplankton populations 
were relatively low, there was consider- 
able variation in numbers from week to 
week, and several minor blooms were ob- 
served. As was expected, total phos- 
phorus also varied considerably, increas- 
ing in all ponds after heavy rains. 

LARRY A. WHITFORD 
RONALD C. PHILLIPS 

Department of Botany, North Carolina 
State College, Raleigh, and 
Florida State Board of 
Conservation, St. Petersburg 

References 

1. W. H. Pearsall, J. Ecol. 9, 241 (1922). 
2. W. Rodhe, Symbolae Botan. Upsalienses 10 

(1948). 
3. G. E. Hutchinson, Ecology 25, 3 (1944). 
4. W. Abbott, ibid. 38, 152 (1957). 
5 November 1958 

Artificial Neuron 

Abstract. An electronic model is de- 
scribed for simulating many of the gross 
operational functions which are believed 
to hold for living nerve cells. Synaptic 
growth is not included. Despite difficulties 
in drawing very rigorous analogies be- 
tween the biological cell and its model, 
a sufficient number of rough similarities 
exist to make systemic experimentation 
interesting. Several approaches are men- 
tioned. 

Although the complete transmission 
properties of living nerve cells are not 
known, many gross behavioral aspects 
are reasonably well understood. The 
logical properties of neurons are thought 
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(2). This four-transistor device exhibits 
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summation, variable threshold, and all- 
or-none output, as described. 

The model has an integrating time 
constant of 2 msec and a refractory 
time constant of about 10 msec, ap- 
proximating corresponding values in the 
biological neuron. Quiescent threshold is 
from 1 to 5 volts (depending on the 
number of inputs connected), while the 
output pulse level is 10 volts. These 
levels are many times greater than those 
found in nerve tissue (there thresholds 
are typically 5 to 10 my; output spike 
potentials are approximately 50 mv), 
but the ratios between threshold and 
output levels are commensurate. These 
ratios in part determine input summa- 
tion characteristics when several cell 
outputs combine. The output pulse dur- 
ation is approximately 4 msec; this is 
considerably greater than the action 
spike length found in biological nerve, 
but it can be shortened at will by use 
of a suitable differentiating network. 
The output characteristics are com- 
patible with the input (excitatory and 
inhibitory) requirements such that a 
chain or network can be readily as- 
sembled. One unit will drive up to 100 
others without serious deterioration of 
output wave form or output level. 

This circuit can be used to give either 
single pulse outputs or variable fre- 
quency pulse trains, depending on the 
nature of the input. A typical direct- 
current input versus frequency output 
characteristic is shown in Fig. 2. This 
mode of operation is useful for simu- 
lating peripheral receptors, such as reti- 
nal elements, when used in conjunction 
with suitable transducers. 

Photoresistive cells (for example, cad- 
mium selenide) and these neuron mod- 
els have been used to simulate some of 
the simple structures and functions of 
the retina. "On," "off," and "during" 
receptors are easily produced, as are 
flicker-fusion phenomena. Mutual inhi- 
bition of cells in an array, resulting in 
spatial differentiating of optical images, 
is also readily arranged. Similar experi- 
ments in audition are contemplated. 

The relative simplicity and low unit 
cost (less than $10) of this model makes 
feasible network experiments in which 
large numbers of cells are used. Simple 
circuit changes to obtain other input 
and refractory time constants or excita- 
tion and inhibition thresholds can be 
easily made if desired. 

L. D. HARMON 
Bell Telephone Laboratories, 
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Isotope Dilution Method for Assay 
of Inagglutinable Erythrocytes 

Abstract. The number of cells that re- 
main free in the presence of agglutinin is 
usually much larger than the number of 
inagglutinable cells. The true inagglutin- 
able proportion can be found by successive 
agglutinations of a labeled population in 
the presence of unlabeled carrier cells. By 
this means it is shown that group A per- 
sons possess non-A erythrocytes in propor- 
tions of the order of 10-3. 

Estimation of small proportions of in- 
agglutinable cells has hitherto presented 
insurmountable difficulties. Ashby (1) 
found a range of 0.03 to 3.5 percent of 
free cells in human anti-A or anti-B ag- 
glutinations. It was uncertain whether 
the cells remained free because they 
were truly inagglutinable or because of 
some other limitation of the reaction. 
McKerns and Denstedt (2) reasoned 
that if free cells were inagglutinable 
they would accumulate with successive 
additions of fresh cells to the reaction 
mixture. Since successive additions did 
not increase the free-cell count, the free 
cells are mainly agglutinable. In these 
circumstances the count does not reveal 
the proportion of inagglutinable cells 
or even if any such cells are present. 

If cells are radioactive, they can be 
distinguished from unlabeled cells added 
later. Thus initial cells can be traced 
through many agglutinations with un- 
labeled "carrier" cells. This eventually 
removes the labeled agglutinable cells, 
and the remaining activity represents in- 
agglutinable cells. 

An experiment with known mixtures 
of agglutinable- and inagglutinable --cells 
labeled in vitro with sodium Cr51-chro- 
mate (3) illustrates the feasibility of the 
method. About 0.03 ml of labeled O 
cells and 2 ml of unlabeled AB cells 
were mixed with 25 ml of saline and 
10 ml of lima bean extract (4) having 
an anti-A titer of 1:128. A 1-ml sample 
was removed for Cr51 counting. The re- 
mainder was agglutinated at 4?C in a 
7- by 9-in. pan. The mixture was trans- 
ferred to a separatory funnel and al- 
lowed to settle 5 minutes, and the 
agglutinated mass separated from the 
supernatant. One milliliter of superna- 
tant was removed for counting. The re- 
maining volume was noted and returned 
to a pan with 3 ml of added agglutinin 
and 3 ml of 66 percent suspension of un- 
labeled AB carrier cells. This was re- 
peated six times, then 0.5 ml of labeled 
AB cells was added with the usual car- 
rier and agglutinin. This reaction mix- 
ture was sampled for counting, and the 
experiment continued through five more 
stages. The supernatant sample at each 
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tube. Preliminary dilutions of reaction 
mixture and supernatant samples of 
stage 7 were required to bring them 
within counting range. In Fig. 1, cor- 
rected sample activity is plotted against 
stage. The inagglutinable cells remain 
in the system while agglutinable cells 
added midway in the experiment are 
swept out. 

The dilution owing to additions of ag- 
glutinin and carrier was noted at each 
stage, and the activity was corrected by 
the cumulative product of prior individ- 
ual dilution factors. An individual dilu- 
tion factor does not include the packed- 
cell volume of carrier which is, in effect, 
both added and removed between sam- 
plings. One might suppose the proper 
factor to be the ratio of reaction mix- 
ture volumes after and before the fluid 
additions. Reconstruction experiments 
corrected in this manner, however, 
showed a paradoxical increase of inag- 
glutinable cells. If the data for Fig. 1 
had been so treated, for example, the 
proportion of labeled cells would have 
seemed to double within eight stages. 
Evidently agglutination does not entrap 
inagglutinable cells but excludes them 
locally, thus tending to concentrate such 
cells in the supernatant. We infer that 
agglutinated cells possess an extracellu- 
lar volume inaccessible to free cells. 
Under our experimental conditions this 
associated volume was about one-third 
the total volume of the agglutinated 
mass, since omission of all the 66 per- 
cent carrier from the calculations for 
Fig. 1, rather than just its packed-cell 
volume, nearly compensated for the con- 
centration effect. This unexpected exclu- 
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Fig. 1. Reconstruction experiment with 
inagglutinable O cells and agglutinable 
AB cells. The point on the left is the ini- 
tial reaction mixture in which only the O 
cells are labeled. The following six points 
are supernatants of successive agglutina- 
tions with unlabeled AB carrier cells. The 
high point is the reaction mixture of stage 
7 after the addition of labeled AB cells. 
The remaining five points are supernatants 
as before. 
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