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ciated with the excitation process be- 
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area of 1 cm2, one can arrive at the 
thickness dK of the nerve layer immedi- 
ately involved in the exchange of K ions. 

This simplified system is considered to 
be a valid one because of the steplike 
character of .the K ion concentration 
gradient existing in the resting state be- 
tween the two phases (that is, axoplasm 
and bathing solution). An additional ad- 
vantage is the fact that the thickness thus 
obtained corresponds to that of a mono- 
ionic layer, obviating the necessity of 
considering a possible diffusion process 
which would tend to restore the internal 
K ion concentration to a uniform level. 
Similar reasoning holds with regard to 
dNa. 

The actual calculations were per- 
formed on the basis of the net ion flux 
data (K=4.3 pmole/cm2 per impulse, 
Na= 3.7 pmole/cm2 per impulse) 
given by Keynes (1). The inner and 
outer ion concentrations used are those 
given by Keynes (1) for the Sepia axon 
(Nai = 110 mmole/kg, Na0 =458 mmole/ 
kg, Ki=272 mmole/kg, K0=9.7 mmole/ 
kg), and those given by Hodgkin (2) for 
the Loligo axon (Nai=49 mmole/kg, 
Nao = 440 mmole/kg, Ki = 410 mmole/ 
kg, Ko= 22 mmole/kg). 

The results are as follows, the figures 
in parentheses being values obtained 
from the second set of data. 

dK= 1.6393 A (1.109 A) 
dNa = 1.063 A (0.946 A) 

dK/dNa = 1.54 (1.172) 

Examination of these results shows 
that the thickness of the nerve layer in- 
volved in ionic fluxes lies in the range 
of the effective radii of the ions consid- 
ered (K= 1.33 A; Na=0.98 A). In ad- 
dition, the average of the two dKc/dNa 
ratios obtained equals 1.367, which is 
very close to 1.357, the ratio of the effec- 
tive radii of the K and Na ions. 

It is thought that these results may 
justify the conclusion that the nerve 
layer immediately involved in ionic shifts 
allows for the presence of only one-half 
of a monolayer of nonhydrated cations. 
Accordingly, the original formulation is 
modified to take the form 

f=A r (Ci-Co) 

where f is the net flux in moles per im- 
pulse, the sign denoting its direction; 
A is the area of the nerve in square cen- 
timeters; r is the effective radius of the 
ion in? centimeters; and Ci and CO are 
the inner and outer ion concentrations in 
moles per cubic centimeter. 

Conversion of the concentrations into 
osmotic pressures shows the flux to be 
inversely proportional to :the absolute 
temperature, a relation which .is in line 
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above, one obtains from the flux formula 
Ki= 345.3 mmole/kg and Nai=- 62.45 
mmole/kg. These values agree with 
those given by Koechlin (4) for the squid 
giant axons (Ki= 344 ? 15 mmole/kg, 
Nai = 65 + 15 mmole/kg), thus indicat- 
ing a possible confirmation of the valid- 
ity of the derived expression. 

The emergence of the effective ionic 
radii implies that electrostatic forces may 
be at work and that the excitation phe- 
nomenon may involve to a greater or 
lesser degree an adsorption phenome- 
non (5). 
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Proliferation of Excised Juice 
Vesicles of Lemon in vitro 

Abstract. Juice vesicles from mature 
lemon fruits will proliferate in vitro for 
indefinite periods. The comparatively sim- 
ple tissue grows on a synthetic nutrient 
medium almost entirely inorganic in com- 
position. 

Many types of excised meristematic 
plant tissues or parts have been the sub- 
ject of in vitro studies, but the successful 
culture of tissue from a mature fruit is 
mentioned only briefly in the literature. 
The first in vitro studies of fruit tissues 
were started by Schroeder (1) and are 
under way at present on several different 
fruit species (2). 

In the present study mature lemon 
fruits (variety Eureka) were surface- 
sterilized by immersion for 20 minutes in 
a saturated calcium hypochlorite solu- 
tion, rinsed with sterile water, and cut 
longitudinally into eighths. Removal of 
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Fig. 1. (Left) Vesicle stalk after 65 weeks 
of in vitro growth. (jight) Dead vesicle 
stalk after 6 weeks of in vitro growth. 
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