
and plus infinity, and its logarithm lies 
between - 00 and + o.) No theory is 

metaphysical if it can be virtually either 
proved or falsified, because its log-odds 
would then become very large, positive 
or negative. According to this definition, 
it is a question of degree whether a 
theory is metaphysical. 

For example, the theory of determin- 
ism is less credible than it was a hun- 
dred years ago, but is by no means dis- 
proved and never will be. A statistician 
can never prove that "random numbers" 
are not "pseudo-random," and likewise 
"pseudo-indeterminism" cannot be dis- 
proved (10). 

We can consistently talk about phys- 
ical probability without committing our- 
selves to the metaphysical theory that 
the universe is indeterministic, but only 
if we accept the existence of subjective 

probability or credibility. For if we as- 
sume determinism we can get physical 
probabilities only by having an incom- 
pletely specified physical setup. In this 
incomplete specification there must be 
probabilities. If we are determinists we 
must attribute these latter probabilities 
to our own ignorance and not merely to 
something basic in nature "out there." 
Whether or not we assume determinism, 
every physical probability can be inter- 
preted as a subjective probability or as 
a credibility. If we do assume determin- 
ism, then such an interpretation is forced 
upon us. 

Those philosophers who believe that 
the only kind of probability is physical 
must be indeterminists. It was for this 
reason that von Mises asserted indeter- 
minism before it became fashionable. 
He was lucky. 
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Water Transport 

This classical problem in plant physiology is becoming 
increasingly amenable to mathematical analysis. 

James Bonner 

Plant physiology, even though it has 
existed as an organized science for one 
hundred years, still has its classical prob- 
lems-problems which have been studied 
by many investigators during this hun- 
dred years, and problems which are 
nonetheless still unsolved. Such a classi- 
cal problem of plant physiology is that 
of water transport. It is not, in fact, un- 
solved in principle today. Certainly the 
question of how water ascends the trunk 
of the tree to supply the transpiring 
leaves has been solved in principle by 
Dixon (1) and by Renner (2). Although 
the tension-cohesion hypothesis of water 
transport proposed by Dixon (1) has 
been attacked from time to time, it has, 
I believe, thus far always turned out that 
the attackers have been barking up the 
wrong tree. In a broader sense, however, 
"water transport" can be used to mean 
material transport of water to, within, 

and from the plant, and in this sense 
water transport bristles with unsolved 
and even with unposed questions. 

In this article I propose to take up 
the successive steps in the material trans- 
port of water and to comment for each 
step on recent contributions which ap- 
pear to be of importance, as well as upon 
problems which appear to pose further 
interesting questions. 

From Soil to Root 

Let us first consider water movement 
from soil to root. As in all cases of water 
movement, this consists of water flow 
from regions of lower diffusion pressure 
deficit (DPD) to regions of higher 
DPD. The soil DPD is determined by 
soil moisture- stress and by the content of 
osmotically active solutes in the soil 

water. But the solutes are, in general, 
salts which can be taken up by the root 
and increase the DPD of the root cells. 
It might therefore appear that such so- 
lutes would contribute little to the soil- 
plant DPD-gradient which determines 
water uptake by the root. Indeed Walter 
(3) many years ago declared explicitly 
that soil solutes which can permeate the 
root do not in fact play any role in mois- 
ture uptake by the plant. 

Wadleigh (4) and his colleagues at 
Riverside (California) have, however, 
developed the concept of total soil mois- 
ture stress, a total made up of physically 
and osmotically determined components. 
These workers have shown experimen- 
tally that the addition of salts to soil does 
in fact increase the effective soil DPD 
against which the plant must work. We 
have therefore a paradox-Walter's view 
based on sound plant physiological foun- 
dations and Wadleigh's view based on ex- 
periment. 

The paradox has been resolved by 
John Philip (5) of the agricultural phys- 
ics group of the Commonwealtlh Scien- 
tific and Industrial Research Organiza- 
tion's Division of Plant Industry (for- 
merly at Deniliquin, now at Canberra). 
By applying recent advances in the quan- 
titative theory of water movement in 
soils, Philip has shown that, during even 
moderate transpiration, removal of water 

The author is a member of the staff of the Di- 
vision of Biology, California Institute of Technol- 
ogy, Pasadena. This article is adapted from an 
address made 26 Aug. 1958 at the annual meeting 
of the American Society of Plant Physiologists, 
held in Bloomington, Ind. 
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Table 1. Rates of water movement through 
various media under an applied pressure 
differential of 1 atmosphere. [After Van 
den Honert (14)] 

Water movement Object (mg/cm' hr atm) 

Water-air surface (still) 0.007 
Water-air surface 

(strong wind) 0.191 
1 meter of conifer wood 20,000 
1 meter of young stem 100,000 
Water-coleoptile surface 195 
Water-root surface about 2,000 

from the soil by the roots results in a 
large moisture gradient close to the root 
surface. As a result, a large portion of 
the final transfer of water from soil to 
root takes place in the vapor phase 
across a narrow vapor gap. The vapor 
gap thus formed constitutes an effective 
barrier to the movement of salts; they 
cannot be taken up. The root is essen- 
tially surrounded, by a membrane, the 
vapor gap, which makes it into an ideal 
osmometer, permeable to water, imper- 
meable to solutes. Under these conditions 
the total soil-moisture stress concept is 
applicable. Under conditions in which 
the vapor gap is absent (conditions of 
low rate of transpiration and low soil- 
moisture stress), Walter's point of view 
-that salts, because they are taken up 
by roots, do not contribute to soil-mois- 
ture stress, does however obtain. The two 
views are both correct. They are merely 
two extreme expressions of plant-soil- 
water behavior. 

Within Plant Tissue 

Now let us consider the movement of 
water within plant tissue. Some interest- 
ing facts concerning this matter have 
come to light in recent years. Considera- 
tion of water movement within the plant 
can be simplified by discussion of move- 
ment within a tissue of isotopically 
labeled water. We take a tissue, give it 
some labeled water, and see how quickly 
and with what characteristics such water 
diffuses through the tissue. This is a dif- 
fusion process, and we can treat it in ac- 
cordance with Fick's laws, just as we 
can the diffusion of a solute. Such ex- 
periments have been done by Buffell 
(6), by Ketellapper (7), by Ordin and 
B3onner (8) with oat coleoptiles (see Fig. 
1), by Thimann and Samuel (9) with 
potato discs, and by Ordin and Kramer 
(10) with bean roots*. 

Now there are differen-t ways in which 
the entry of water into and through a 

tissue might proceed. The water might 
find the principal barrier to diffusion in 
the cuticle of the tissue, in which case 
diffusion through the cuticle would be 
slow compared to diffusion within the 
tissue. Alternatively, water might enter 
the free spaces of the tissue and permeate 
the free spaces, thus surrounding eachi 
cell with a layer of labeled water, after 
which the labeled water would proceed 
to diffuse into the vacuole of each cell, 
the membrane of each cell constituting 
the principal diffusion barrier. In both 
of these cases the time course of diffusion 
should follow that expected for diffusion 
of the solute into a cell surrounde(:J I)y a 
membrane with all resistance to diffusion 
located within the membrane. The kinet- 
ics of the diffusion should follow Fick's 
first law, given in Eq. 1, which predicts 
a particular and well-known time course-: 

dC1 D-.a(C.-C ) (1) 
dt V q 

where C, is concentration in the tissue, 
CO is external concentration, D is the dif- 
fusion constant of water in the tissue, V 
is the volume of the tissue, a is the area 
through which the diffusion is taking 
place, and q is the thickness of the dif- 
fusion barrier. 

A second possibility is that water en- 
ters the tissue and diffuses continuously 
through it, across cell walls, across mem- 
branes, through vacuoles. According to 
this view, water would pass through a 
material with resistance to diffusion uni- 
formly distributed through the tissue. 
Such diffusion, into a sheet of thickness 
x, should follow Fick's second law, given 
in Eq. 2, which yields a time course 

a3Ci =D 2C, (2) 
at ax2 

different from that of Eq. 1. In Eq. 2 the 
symbols possess the same meanings as in 
Eq. 1, and x refers to the depth within 
the tissue. Work with oat coleoptiles and 
with roots has shown that movement of 
water into and through the tissue fol- 
lows elegantly the time course expected 
if resistance to diffusion is uniform 
through the tissue. Water diffuses as a 
wave through a tissue of this kind. There 
is no special free space through which it 
quickly slurps. Nor is the outer boundary 
of the tissue a major barrier to water 
movement. 

But material transport of water through 
a tissue is not accomplished strictly by 
diffusion. It is accomplished rather by 
differences in DPD. Water is moved from 
a cell of lower to a cell of higher DPD, 
and the way in which the diffusion con- 
stant of water enters into this, if it does 

so at all, is, so far as I know, totally 
obscure. The permeation constant used 
to describe movement of water under a 
DPD gradient contains a filtration con- 
stant (rate of movement of water 
through a membrane under unit hydro- 
static pressure gradient), the elastic mo- 
dulus of the tissue, and the osmotic con- 
centration of the cell contents (11). 
However, the kinetics which characterize 
mass movement of water under the in- 
fluence of a DPD gradient may be for- 
mally treated by the diffusion equations. 
and they have been so treated many 
times. For oat coleoptiles again, the time 
course for material transport of water 
under the influence of a DPD gradient 
follows elegantly the expectation based 
on resistance to flow uniformly distrib- 
uted through the tissue. 

The time characteristics of water 
movement in a tissue have been men- 
tioned because, for some curious-reason. 
plant physiologists in general treat thlc 
kinetics of water movement into or out 
of plant tissue in accordance with Fick's 
first law, just as one treats water move- 
ment into or out of a single cell. Plant 
physiologists thereby implicitly assume 
that resistance to water movement is lo- 
cated in a boundary layer in the case of 
a tissue just as it is in the case of a single 
cell. This, as we have seen above, is in- 
correct. 

From Soil to Air 

Let us now proceed to the movement 
of water through the plant from root, or 
indeed from soil, to air. Let us assume 
for the moment that root pressure con- 
tributes nothing to this process. We take 
a given mass of water, transport it 
through successive regions, and finally 
evaporate it into the air. In the steady 
state, Eq. 3 obviously holds. 

(Amt. evaporated) d from leaves ) 
dt 

d (amt. transportedA - through stems) 
dt 

d (amt. transported 
- through rcots J 

dt 
d amnt. taken 

d up by roots (3 
dt 

Now there is a further condition which 
applies universally to material transport. 
and this is given by: 

d Amount transported 
dt 

-driving potential ( 
resistance 
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In electrical matters Eq. 4 is known as 
Ohm's law; in water matters we call it 
Van den Honert's law. It was first enun- 
ciated by Gradmann (12) in 1928, to be 
sure, but was first put to use by Van den 
Honert (13, 14). In the present case the 
driving potential is the difference in DPD 
between the supplying and the receiving 
regions, and the resistance to transport is 
that met by water in the liquid and vapor 
phases-that is, viscous and diffusional 
Combining Eqs. 3 and 4, we obtain: 

d Amt. transported ADPDT t.I 

dt RTotal 

ADPD1 ADPD2 
- R1 - ... ~~~(5) R, R2( 

where ADPD1, ADPD2, and so on are the 
DPD differences for the individual steps 
in water movement and R1, R2, and so 
on are the resistances for the same steps. 

We know something about the ADPD 
for each step in the process of water 
movement-for water movement from 
soil to root, from root to xylem, through 
the stem, from stem to leaf, and from 
leaf to air. And from this knowledge we 
can calculate the relative resistances of 
each step in water transport. 

It is well known that the bulk of the 
DPD gradient from soil to air is to be 
found at the step from leaf to air. This 
can be felt intuitively. We know that the 
leaf rarely possesses a DPD exceeding, 
say, 50 atmospheres, while air at 50 per- 
cent relative humidity possesses a DPD 
of close to 1000 atmospheres. The DPD 
gradient from soil to leaf may therefore 
be 50 atmospheres; from leaf to air, 950 
atmospheres. It is quite clear, then, that 
the bulk of the resistance to water loss 
is located in the leaf-air couple. Resist- 
ance even of a free water surface to 
water movement from it as vapor is very 
large as compared to resistance to water 
movement through living tissue or 
through woody stems, as can be shown 
by actual measurements on rate of water 
movement under an applied DPD gradi- 
ent. These rates of water movement and 
relative resistances to water movement 
are summarized in Table 1. 

We can say in a general way that if 
the resistance to water movement froim 
liquid water through and into the root 
is put at 1, then the resistance to water 
movement of a meter of stem is, say, of 
the order of 0.1 to 0.02, but that the 
resistance of water movement from water 
surface to water vapor in the air is 1 mil- 
lion or more. It is clear, then, that the 
leaf-air surface and the process of tran- 
spiration which takes place at it is of 
the greatest interest in the study of water 
relations. 

Transpiration 

We know of course a great deal about 
transpiration. During the past few years 
this knowledge has been increased by 
Bange (15), who has contributed to 
our. understanding by working, out the 
contributions to the resistance to water 
movement of the consecutive parts of 
the vapor path in the leaf-the resist- 
ance of the substomatal cavity, of the 
pore itself, and of the vapor cups over 

the pore. And Raschke (16) has made 
a contribution by his analysis of the 
radiation and heat balance of leaves 
in relation to transpiration. The rate of 
transpiration is in a great degree regu- 
lated by the temperature of the leaf, 
which in turn determines the vapor 
pressure of water at the leaf surface. 
The leaf temperature is in turn deter- 
mined by the balance between rate of 
heat gain and rate of heat loss. The 
leaf absorbs light, degrades this to heat, 
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Fig. 1. Rate of equilibration of isotopically (DHO) labeled water, supplied externally, 
with the internal water of oat coleoptile sections. The average concentration of labeled 
water inside the tissue relative to the external concentration of the label is plotted as a 
function of time, expressed in half times. The two solid lines represent the expectatiors 
for boundary-layer (Fick's first law) and solid-sheet (Fick's second law) diffusion. The 
points are experimental. [Data from Ordin and Bonner (8)] 
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Fig. 2. Relation of rate of water movement through the stem of a transpiring grapevine 
(cut at base) to the pressure gradient along the stem before and after the vessels are 
allowed to fill with air. (Left) The transpiring stem, base in water, is allowed to suck in 
air. The vessels near the cut end fill with air. The rate of water movement decreases but 
is restored when the cut end is returned to water. (Right) Pressure drop along the stem 
(in arbitrary units) during the same experiment. The initially constant rate of water 
movement is attended by a constant pressure gradient. When air enters the vessels, the 
pressure gradient increases rapidly. When the stem is restored to water, the rate of water 
movement is restored, due to the greatly increased pressure gradient. [After Scholander 
et al. (19)] 
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and warms itself until its rate of heat 
loss equals its rate of heat gain. As 
Raschke (16) has so clearly shown, most 
of the heat gained by the leaf is dissi- 
pated by transfer to the surrounding air, 
and hence leaf temperature depends 
greatly on the rate of air movement over 
the leaf. 

Movement of air across the leaf works 
at once in two directions, on the one 
hand cooling the leaf and hence decreas- 
ing the rate of transpiration, on the other, 
steepening the vapor-pressure gradient 
between leaf and air and hence increas- 
ing the rate of transpiration. And still 
another factor is of importance. Heat 
transfer from leaf to air is sensitive to 
the character of the air flow over the 
leaf. When the flow is turbulent, then 
the heat-transfer pattern is a modifica- 
tion of that which occurs when the flow 
is laminar. And we know next to noth- 
ing about the aerodynamics of leaves. 
At what speed does the air flow change 
from laminar to turbulent in the region 
of the leaf? How does leaf shape influ- 
ence this process? In a real plant with 
many leaves-an assemblage of leaves- 
air flow through the plant is probably 
often irregular and hence turbulent. Is 
it possible that, despite this macroscopic 
turbulence, flow over the leaf on a micro- 
scopic scale remains laminar? These are 
unanswered questions. Raschke (16) has 
shown that it should be possible in prin- 
ciple to calculate and predict rates of 
transpiration of a leaf, a plant, or a crop, 
but that before we can do so we need 
to have additional physical information; 
we need a new science of phytoaerody- 
namics. 

Ascent of Sap 

Now let us return to the most classical 
aspect of water transport-namely, the 
ascent of sap. The basic idea of the ten- 
sion-cohesion hypothesis is, roughly, that 
as water evaporates from the leaf-wall 
surfaces, liquid water moves into the 
pores thus emptied, keeping the wall wet. 
Thus, a tension is exerted on this water. 
This tension is transmitted all the way 
back to the roots through continuous 
water columns in the xylem. Many ob- 
servations support this hypothesis, such 
as the fact that the water in the xylem 
is in fact under tension during transpira- 
tion. This tension has been calculated in 
various ways and can be measured simply 
by measuring the resistance of the stem 
to water flow under the influence of a 

known artificially applied pressure drop. 
If we then know also how fast water 
moves through the stem during transpira- 
tion and assume that the resistance is un- 
changed, we can calculate from Eq. 3 the 
tension needed to cause the measured 
flow. These tensions are considerable. 

However, the principal difficulty with 
the tension-cohesion hypothesis has al- 
ways been this: Why don't these fragile 
columns of water break and, if they do, 
why don't the breaks spread through the 
entire xylem and block transpiration? 
Recently, too, several people have ex- 
pressed their dissatisfaction with the ten- 
sion-cohesion hypothesis on the basis of 
xylem ringing experiments. Partial rings 
are made at intervals, inserted along a 
trunk with an appropriate phyllotaxy 
such that no linear longitudinal path for 
continuous water columns remains in the 
stem. But such a girdled plant continues 
to move water up its stem and does not 
wilt. Preston (17), Elazari-Volcani (18), 
and others have, on this basis, decided 
that the tension-cohesion hypothesis is 
wrong and must go. 

The matter has been approached again 
by Scholander and his colleagues (19). 
They have already shown (20) that a 
grapevine can transpire very well indeed 
even if all or nearly all of the xylem ves- 
sels are filled with air (Fig. 2). They have 
now shown that the xylem behaves as a 
continuous system made up of macro- 
pores (the vessel lumens), which are 
imbedded in a matrix of micropores 
(perhaps the cell walls). At full transpi- 
rational flow the large macropores, which 
offer the least resistance to flow, conduct 
most of the water. If air is allowed to 
enter the vessels or if a cavitational break 
occurs, the vessels concerned are emptied 
of water but the air cannot penetrate 
further-it cannot pass through the small 
pores, the micropore structure. Water 
flow continues past the air-blocked cav- 
ity but through the micropores. The situ- 
ation is similar to the rise of water by 
capillarity up a piece of blotting paper; 
this rise is of course not blocked by the 
act of poking a small hole in the center 
of the paper. In the case of the xylem, 
resistance to flow is increased by the 
break. Full transpirational flow is main- 
tained only at the cost of an increase in 
pressure drop along the stem. 

These facts have been established by 
Scholander and his colleagues (19, 20) 
by the use of ingenious experimental de- 
vices for the measurement of pressure 
and tension in the xylem. These are all 
essentially hydraulic instruments and are 

well suited to their purpose. The conclu- 
sions are clear: water flow under tension 
can continue even in stems in which the 
xylem contains air; water flow can con- 
tinue also in stems which have been sub- 
jected to multiple girdling and in which 
no direct longitudinal water columns can 
remain. In both of these cases, however, 
maintenance of flow rate is at the cost 
of increased tension in the xylem. 

Even so, problems still present them- 
selves in connection with the ascent of 
sap: How do vessels once emptied of 
water by cavitational breaks become re- 
filled? What exactly constitutes the mi- 
cropores? But in main outline we see 
that continuous columns of water under 
tension occur in the plant in spaces other 
than the lumens of the vessels. The ten- 
sion-cohesion hypothesis of water trans- 
port remains unchallenged. 

Phytobiophysics 

These, then, are some of the problems 
of water transport. There are still many 
problems to be solved; the problems of 
water relations are increasingly of a phys- 
ical nature-problems which lend them- 
selves to mathematical formulation and 
analysis. They are problems that might 
properly be the concern of that branch 
of plant physiology which I like to call 
"phytobiophysics." 
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