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Kinds of Probability 

Although there are at least five kinds of 
pJrobability, we can get along with just one kind. 

I. J. Good 

The mathematician, the statistician, 
and the philosopher do different things 
with a theory of probability. The mathe- 
tnatician develops its formal conse- 
quences, the statistician applies the work 
of the mathematician, and the philoso- 
pher describes in general terms what this 
application consists in. The mathemati- 
cian develops symbolic tools without 
worrying overmuch what the tools are 
for; the statistician uses them; the phi- 
losopher talks about them. Each does his 
job better if he knows something about 
the work of the other two. 

What is it about probability that has 
interested philosophers? Principally, it 
is the question whether probability can 
be defined in terms of something other 
than itself, and, if not, how the idea of 
probability is used, what is its meaning, 
what are the shades of meaning. Can we 
verify that probability exists, or must we 
be satisfied to say how it is used? Is the 
ccuse" theory of meaning more appro- 
priate than the "verification" theory? It 
seems to me that the philosopher's job is 
mainly to describe what a man does or 
thinks at the precise moment that he uses 
the idea of probability. 

Our main question is this: are there 
different kinds of probability? The ques- 
tion is analogous to the one "Are there 
different kinds of life?" In a sense there 
are two kinds of life: animal and vege- 
table; in another sense there are as many 
as there are genera or species; in yet an- 
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other sense there is only one kind of life, 
since life is indivisible, and even the dis- 
tinction between animals and vegetables 
is misleading in some contexts. (As a 
matter of fact, even the distinction be- 
tween living and inanimate matter can 
mislead people into supposing that evo- 
lution is impossible.) Much of the con- 
troversy about the theory of probability 
is like this. From some points of view 
there are at least five kinds of probabil- 
ity; from another point of view they can 
all be defined in terms of a single kind. 
I shall elaborate this remark and begin 
by describing some different kinds of 
probability. Classification of different 
kinds of probability is half the problem 
of the philosophy of probability. 

The Classical Definition 

Some billion years ago, an anonymous 
speck of protoplasm protruded the first 
primitive pseudopodium into the prim- 
eval slime, and perhaps the first state of 
uncertainty occurred. Thousands of years 
ago words such as maybe, chance, luck, 
and fate were introduced into languages. 
If a theory is a method of using lan- 
guage, we could say that theories of 
probability are thousands of years old. 
But often a usage of language is not dig- 
nified by the name theory unless a real 
effort has been made to describe this 
usage accurately: a theory, then, is not 
just talk, but is also talk about talk. (Phi- 
losophers of science talk about talk about 

talk.) So when Aristotle (about 300 B.C.) 

said "the probable is what usually hap- 
pens," and when Cicero (about 60 B.C.) 

described probability as the "guide of 
life,"- they had formulated primitive 
theories of probability and of rational 
behavior. We can hardly tell whether 
these theories had any practical results; 
at any rate, the ancient Romans later 
practised insurance, and Domitius Ulpi- 
anus drew up a table of life expectancies 
(about A.D. 200.) 

Mathematical ideas, however, date 
back only a few hundred years. A com- 
mentary in 1477 on Dante's Purgatorio 
gives the probabilities of various totals 
when three dice are thrown. Perhaps the 
application was to cleromancy (divina- 
tion by dice). In the 16th century, Car- 
dan, an inveterate gambler, made sev- 
eral simple probability calculations of 
use to gamblers. He defined probability 
as a "proportion of equally probable 
cases"; for example, of the 36 possible 
results of throwing two dice, three give 
a total of 11 or more points, so the 
probability of this event is defined as 
1/12 if the 36 possible results are equally 
probable. The definition by equally prqb- 
able cases is usually called the "classical 
definition." 

The origin of the mathematical the- 
ory of probability is not usually ascribed 
to Cardan, but rather to Pascal (1654), 
who, in correspondence with Fermat, 
solved the first mathematically nontrivial 
problems. The first book on the subject, 
of any depth, was published soon after- 
wards by Huygens. 

All of these authors were concerned 
with games of chance, and although they 
defined probability as a proportion of 
equally probable cases, their purpose 
must have been to explain why certain 
long-run proportional frequencies of suc- 
cess occurred. Without being explicit 
about it they were trying to explain one 
kind of probability in terms of another 
kind. James Bernouilli was much more 
explicit about it, in his famous work Ars 
Conjectandi, published in 1713, eight 
years after his death. His "law of large 
numbers" states that in n "trials," each 
with probability p of success, the num- 
ber of successes will very probably be 
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close to pn if n is large. For example, 
if a coin has probability exactly Y2 of 
coming down heads, and if it is tossed 
a thousand times, then the number of 
heads is unlikely to differ much from 
500; more precisely, the proportion of 
heads is unlikely to differ much from 
/2. In fact, the number of heads will 

very probably lie between 470 and 530. 
In a million tosses the number of heads 
will very probably lie between 499,000 
and 501,000. Thesd results are based on 
the assumption that the probability of 
heads is '/2 at each throw, no matter 
what the results of previous throws may 
have been. In other words, the trials 
must be "causally independent." Ber- 
nouilli did not make it clear that the 
trials must be causally independent and 
that pn must be large. If your probability, 
p, of winning a sweepstake is 1/1,000,000, 
then Bernouilli's theorem would not be 
applicable untit you had entered several 
million sweepstakes (by which time you 
would be too old to care). 

Bernouilli proved his theorem on the 
assumption that the probability, pI was 
defined as a proportion of equally prob- 
able cases. But he tried to apply the the- 
orem to social affairs in which this defi- 
nition is hardly appropriate. Worse yet: 
the probability is likely to be variable. 

Subjective Probability 

Even in games of chance the classical 
definition is not entirely satisfactory, for 
the games may not be "fair." A fair 
game of chance is one in which the ap- 
parently equal probabilities "really are" 
equal. In order to give this definition of 
a fair game any substance we must again 
distinguish between two kinds of proba- 
bility. Consider, for example, the proba- 
bility that cutting an, ordinary pack of 
playing cards will put a red card at the 
bottom of the pack, an event that I shall 
call a "success." Since half the cards are 
red and half are black, the probability 
would seem to be /2 if the pack of cards, 
and its shuffling, are fair. But if all the 
red cards have dirty, sticky faces, then 
a black card is more likely to be brought 
to the bottom. If we knew the red cards 
had sticky faces we would prefer to bet 
on a black card, in a "level bet." But if 
we did not know it, then the probability 
would still be /2 for us. Even if we al- 
lowed for the possibility of stickiness, the 
black cards are as likely to be more 
sticky as 'to' be less so, unless we hatie 
some fu-rther information. For us the first 
cut has probability I/2 of being successful. 

We may have an opponent who knows 
that the red cards are stickier. For him 
the probability is not the same as it is 
for us. This example shows that per- 
sonal, or subjective, or logical probabil- 
ity depends on the given information as 
well as on the event whose probability 
is to be estimated. This is the reason for 
notation of the form 

P (EIF) 

read from left to right (like all good no- 
tations) "the probability of E given F." 
For the sake of generality, E and F may 
be interpreted as propositions. This no- 
tation (or equivalent ones) has become 
standard during the present century. In 
this notation the probabilities we have 
just been discussing are 

P (bottom card is redI 
the cards have been well shuffled) 

and 

P(bottom card is redIthe cards; have 
been well shuffled by normal standards, 

but the red ones have sticky faces). 

The use of the vertical stroke, or equiva- 
lent notation, is likely to save us from 
the errors that may arise through talking 
simply about the "probability that the 
bottom card will be red," without refer- 
ence to the "given" (=assumed) infor- 
mation. 

Physical Probability 

Suppose that our opponent has car- 
ried out a very extensive experiment and 
has decided that the long-run proportion 
of successes is 0.47 (instead of '72). We 
may be tempted to call this the "true 
probability," or "physical probability," 
or "material probability," or "chance," 
or "propensity," and to regard it as hav- 
ing an impersonal, public, or objective 
significance. Whether or not physical 
probability is regarded as distinct from 
personal, private, intuitive, subjective, or 
logical probability, it is often convenient 
to talk as if it were distinct. I shall, how- 
ever, argue later on that its numerical 
value can be defined in terms of stibjec- 
tive probability. 

A physical probability is the probabil- 
ity of a "success" given the "experimen- 
tal setup." So for physical probabilities, 
too, it is convenient to have a notation 
of the form 

'P(EIF) 

We can distinguish between true and hy- 
pothetical probabilities, depending on 
whether the experimental setup is true or 

hypothetical. For example, we can take 
an actual pack of cards and we can dis- 
cuss the probability that the bottom card 
will be red "given" (= on the assumption 
that) all the clubs have been omitted. 
This probability makes sense even if the 
clubs have not in fact been omitted, and 
the probability will then be "hypotheti- 
cal" and not "true." It so happens that 
it is decidedly useful to talk about hypo- 
thetical probabilities as well as true ones. 

We could imagine a physical chemist 
who could analyze the chemicals on the 
faces of the cards and then compute the 
probability of success by quantum the- 
ory. But this would be a far cry from the 
simple physical symmetry that led- Car- 
dan and Pascal to judgments of equal 
probability, or from the logical symmetry 
that caused us to consider black and red 
to be equally likely to be the stickier. It 
is perhaps clear by now that the classical 
definition, however suggestive, is by no 
means general enough to cover all the 
uses of the word probability. 

Inverse Probability 

Most applications of the theory of 
probability to the social sciences are more 
like unfair games of chance than fair 
ones. If n smokers are sent question- 
naires and r of them refuse to fill them 
out, what is the probability, p, that the 
next smoker selected will refuse to fill 
out his questionnaire? And what is the 
proportion of all smokers who will re- 
fuse? Whereas Bernouilli's theorem 
works from a knowledge of p to infor- 
mation about the number of "successes" 
in the sample, the answer here seems to 
require the inverse process. A simple esti- 
mate of p is r/n, but if r is small this 
may be a poor estimate, especially if 
r O. (To say that the probability of 
an event is 0 is to say that the event is 
infinitely unlikely. Such an assertion is 
not justified merely by 100 percent fail- 
ures in the past.) Sometimes r/n is 
taken as a definition of probability; it 
may be called the "naive" definition. 

A better attempt at "inverting Ber- 
nouilli's theorem" was made by Thomas 
Bayes in a paper published posthumously 
in 1763. The method is known as "in- 
verse probability," and was given a 
prominent place in Laplace's The'orie 
analytique des probabilite's (1812). It 
may also be described as the Bayer-La- 
place method of statistical inference. In 
modern terminology the principle of in- 
verse probability can be expressed in 
terms of "initial" probabilities, "final" 
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probabilities, and "likelihoods." The in- 
itial probability (also called- the "prior" 
probability) of a hypothesis is its proba- 
bility before some experiment is per- 
formed. (There may or may not have 
been previous experiments-or evidence, 
so the description "a priori" is inappro- 
priate.) The final probability is the 
probability after the experiment is per- 
formed. These probabilities are different, 
in general, because the given information 
is different. The likelihood of a hy- 
pothesis is the probability, given that hy- 
pothesis, of the actual result of the ex- 
periment. 

For example, suppose we have two 
hypotheses about a coin, either that the 
coin is fair or that it is double-heade4, 
and suppose that the initial probabiliti s 
of these two hypotheses are equal, th/t 
is, each is '2. Suppose now that the coin 
is tossed ten times and comes down heads 
every time. The likelihoods of the two 
hypotheses are then 2-10 = 1/1024 and 1. 

Bayes' theorem is, in effect, that the 
final probability of a hypothesis is pro- 
portional to its initial probability times 
its likelihood. In our example, the final 
probabilities are therefore proportional 
to 1/1024 and 1. Therefore, the final 
probability that the coin is double- 
headed is 1024/1025, or nearly certain. 

Although Laplace's exposition was 
clearer than Bayes', he blatantly assumed 
that initial probabilities were always 
equal, whereas Bayes was more modest. 
Laplace assumed, for example, that an 
unknown physical probability, p, was 
initially (that is, before any observations 
were taken) equally likely to "take any 
value" between 0 and 1; he assumed, fo 
example, that each of the intervals\ 
(0, 0.01), (0.01, 0.02), . . . , (0.99, 
1.00) initially had prQbability 0.01. In 
the applications, p is what we are call- 
ing a physical probability existing "out" 
there," whereas the probability 0.01 is a 
more subjective kind of probability. By 
making this assumption of a "uniform 
distribution" of probability between 0 
and 1, Laplace proved his so-called "law 
of succession." This states that after r 
"successes" in n "trials," p can be esti- 
mated as, 

(r + 1)/(n + 2) 

For example, after one success in two 
trials, p is estimated as /2; after one suc- 
cess in one trial, p is estimated as 2/3; 
after no success in one trial, p is esti- 
mated as 1/3; after no success in no 
trials, p is estimated as- i'. The formula 
is open to dispute and ha-s often been 
disputed. It leads, for example, to the 

conclusion that anything that has been 
going on for a given length of time has 
probability I/2 Qf going on for the same 
length of time again. This does not seem 
to me to be too bad a rule of thumb if 
it is applied with common sense. 

Inverse probability is by no means 
the only method of statistical inference. 
There is, for example, an important 
method known as "maximum likeli- 
hood," used at times by Daniel Ber- 
nouilli (1777), Gauss (1823), and espe- 
cially by Fisher (1912). In this-method, 
that hypothesis is selected whose likeli- 
hood is a maximum, where "likelihood" 
is defined as it is above. For the simple 
sampling experiment mentioned above, 
the method of maximum likelihood 
leads to the naive estimate r/n, which 
in my opinion is not as good as the re- 
sult given by Laplace's law of succession. 

A familiar objection to the use of in- 
verse probability is that the initial prob- 
abilities carnot usually be determined by 
clear-cut rules. The method of maxi- 
mum likelihood is clear-cut, and does 
not lend itself so easily to conscious or 
unconsciouis cheating. But for small sam- 
ples it can lead to absurd conclusions. 
The method of inverse probability, al- 
though more arbitrary, need never lead 
to absurdity unless it is dogmatically 
combined with an assumption that the 
initial probabilities of alternative hy- 
potheses are invariably equal. 

Definition by Long-run Frequency 

One of Laplace's tricks was to use the 
expression "equally possible cases" in- 
stead of "equally probable cases," and 
thereby to pretend that he had defined 
probability completely. Not many peo- 
ple today are taken in by this verbal 
trick. 

Leslie Ellis (1843), A. Cournot 
(1843), G. Boole (1854), and J. Venn 
(in a full-length treatise, 1866), were 
not taken in. They asked, for example, 
how you could prove that a die was un- 
loaded except by throwing it a gr-eat 
number of times. They proposed to solve 
the problem of inverting Berriouilli's 
theorem by simply defining physical 
probability in terms of long-run fre- 
quency ("frequentism'). 

If a roulette wheel;`is spun 300 times 
and there is no occurrence of a 7 should 
we regard the probability of a 7 on the 
next spin as 1/37 (its "official" value), 
or as 0, ort as some intermediate value? 
This simple question exposes the-weak- 
ness both of Laplace's position and of 

pure frequentism. The frequentist would 
perhaps refuse to -make any estimate 
and would say "spin the wheel another 
few hundred&times." Owing to-lack of 
space I shall leave this question and con- 
sider an even simpler one. 

Suppose that a coin-spinning machine 
is set to work and produces the sequence 

HTHTHTHTHTHTHTHTHTHT 

The proportion of heads is precisely %2 
and it seems reasonable to, predict that 
the "Venn limit," that is, the limiting 
proportion of heads if. the-sequene is 
indefinitely continued, will also be Y2?' 
Yet no one would say- that the spinning 
was fair. This type of difficulty was 
recognized by Venn but was not ade- 
quately met. R. von Mises (1919) pro- 
posed a new frequentist theory of prob- 
ability based on the notion of infinitel 
long random sequences-what he called 
"irregular collectives." The main prop- 
erty of an iirregular collective is that the 
proportion of "successes" (say heads) is 
the same for every sub-sequence selected 
in advance. This property is closely re- 
lated to the impossibility of a successful 
gambling system. An irregular collective 
is an abstraction like a point in Euclidean 
geometry. Von Mises drew a clear dis- 
tinction between the mathematical or 
abstract theory and the problem of ap- 
plication of that theory. He was perhaps 
the first person to make this distinction 
explicit for the theory of probability, 
in other words, to advocate Euclid's 
method, the "axiomatic method." But 
having mad-e the distinction, he virtually 
ignored the philosophical problem of 
application. He stated, like the 19th- 
century frequentists, that in the appli- 
cations the sequen&6s-must be long, but 
he did not say how long; just as the 
geometer might say that dots must be 
small before they are called points, with- 
out saying how small. But the modern 
statistician often uses small samples; he 
is like a draftsman with a blunt pencil. 
He would like to know how long is a 
long run. As J. M. Keynes said, "In the 
long run we shall all be dead." 

If a frequentist is cross-examined about 
how long is a long run, it is possible to 
deduce something about the implicit in- 
itial probabilities that he is using. This 
can be done algebraically, by assuming 
that the initial probabilities exist as "un- 
knowns," applying the theory of prob- 
ability, including Bayes' theorem, mak- 
ing-use of the frequentist's judgments, 
and finally solving; for kthe unknown in) 
itial probabilities--(or getting upper and 
lower bounds for them ). In this way 
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the frequentist may be seen, in spite of 
hot denials, to be behaving as if he had 
judgments concerning initial probabili- 
ties of hypotheses. Or he may be caught 
in a contradiction. 

Like Venn, von Mises deliberately re- 
stricted the generality of the theory to 
situations where the long-run frequency 
definition seemed to be reasonable. He 
was entitled to do this but he was not 
justified in being intolerant of theories 
that try to achieve more, and especially 
those that concern themselves more with 
the philosophical problem of applica- 
bility. 

Among other brilliant mathematicians 
since von Mises who have developed the 
mathematical theory, perhaps Kolmogo- 
rov deserves special mention. Most of 
these mathematicians have been con- 
cerned both with the mathematical the- 
ory and with its applications, but much 
less with the philosophical problem of 
applicability. Among those who have 
been so concerned were the philosopher 
W. E. Johnson, his two pupils J. M. 
Keynes (1) and H. Jeffreys (2), F. P. 
Ramsey (3), B. de Finetti (4), B. 0. 
Koopman (5), R. Carnap (6), B. Rus- 
sell (7), I. J. Good (8), and L. J. Sav- 
age (9). 

Neoclassical Definition 

Some of these writers are dualists and 
hold that one should talk about two 
kinds of probability. Others put most 
emphasis on the subjectivistic or logical 
interpretation. Here I shall merely sum- 
marize some of my own views, which in 
one respect or another are closely re- 
lated to those of the other authors just 
mentioned. The theory may reasonably 
be called "neoclassical" or "neo-Bayes- 
ian," since its opponents are primarily 
frequentists, and since Bayes' theorem is 
restored to a primary position from which 
it had been deposed by the orthodox 
statisticians of the second quarter of the 
20th century, especially by R. A. Fisher. 

1 ) The function of the theory of sub- 
jective probability is to introduce as 
much objectivity (impersonality) as pos- 
sible into "your" subjective body of be- 
liefs, not to make it completely imper- 
sonal, which may be impossible. With 
the help of a mathematical theory, based 
on a few axioms, a body of beliefs can 
be enlarged and inconsistencies in it can 
be detected. A subjective probability is 
a degree of belief--that belongs to a body 
of beliefs from which the worst incon- 

sistencies have been removed by means 
of detached judgments. 

2) Subjective probabilities are not 
usually precise but are circumscribed by 
inequalities ("taking inequalities seri- 
ously" or "living with vagueness"). 

3) Probability judgments are plugged 
into a sort of black box (the abstract 
or mathematical theory) and discern- 
ments are fed out; the judgments can 
be of very varied type, so that nothing 
of value in frequentism, classicism, or 
any other theory is lost. 

4) Many orthodox statistical tech- 
niques achieve objectivity only by throw- 
ing away information, sometimes too 
much. One way this can happen is if 
the observations supplied by a very ex- 
pensive experiment support a hypothesis 
not thought of in advance of the experi- 
ment. In such circumstances, it will often 
happen that the experimenter will be 
thrown back on his personal judgment. 

5) The theory can be extended to 
become a theory of rational behavior, 
by introducing "utilities" (value judg- 
ments). 

6) All this is important for statistical 
practice and for the making of decisions. 

7) A theory of subjective probability 
is general enough to cover physical prob- 
abilities, but not conversely. Although a 
physical probability can be regarded as 
something that is not subjective, its nu- 
merical value can be equated to the lim- 
iting value of a subjective probability 
when an experiment is repeated indefi- 
nitely under essentially constant circum- 
stances. 

Kinds of Probability 

Since this article is concerned mainly 
with subjective and physical probability, 
it would be inappropriate to discuss 
other kinds in great detail. Perhaps a 
mere list of various kinds will be of 
interest: 

1) Degree of belief (intensity of con- 
viction), belonging to a highly self-con- 
tradictory body of beliefs. (This hardly 
deserves to be called a probability.) 

2) Subjective probability (personal 
probability, intuitive probability, cre- 
dence). Here some degree of consist- 
ency is required in the body of beliefs. 

3) Multisubjective probability (mul- 
ticredence). The name here is self-ex- 
planatory. 

4) Credibility (logical probability; 
impersonal, objective, or'legitimate in- 
tensity of conviction). 

5) Physical probability (material 
probability, chance, propensity; this last 
name was suggested by K. R. Popper). 

6) Tautological probability. In mod- 
ern statistics it is customary to talk about 
ideal propositions known as "simple sta- 
tistical hypotheses." If, for each possible 
result, E, of an experiment, P(EIH) is 
equal to a number that is specified as 
part of the definition of H, then the 
probability P(EIH) may be called a 
"tautological probability," and H is a 
"simple statistical hypothesis." 

Much of statistics is concerned with 
testing whether a simple statistical hy- 
pothesis is "true" (or approximately 
true) by means of sampling experiments. 
If we regard this as more than a manner 
of speaking, then, for consistency, we 
must believe in the existence of physical 
probabilities. For example, the proposi- 
tion that a coin is unbiased is a simple 
statistical hypothesis, H, part of whose 
definition is that P(headslH) = I/2, a 

tautological probability. But if we say or 
believe that this proposition is true, then 
we are committed to saying or believing 
also that this tautological probability is 
a physical probability. It is at least a 
matter of linguistic convenience or con- 
sistency, and it may be more. 

A full discussion of the relationships 
between the various kinds of probability 
would take us too far afield. I shall 
merely repeat dogmatically my opinion 
that although there are at least five dif- 
ferent kinds of probability we can get 
along with just one kind, namely, sub- 
jective probability. This opinion is anal- 
ogous to the one that we can know the 
world only through our own sensations, 
an opinion that does not necessarily 
make us solipsists, nor does it prevent 
us from talking about the outside world. 
Likewise, the subjectivist can be quite 
happy talking about physical probabil- 
ity, although he can measure it only 
with the help of subjective probability. 

Bearing on Indeterminism 

On the face of it, the assumption that 
physical probabilities exist seems to im- 
ply the metaphysical theory of indeter- 
minism. I shall conclude by trying to 
analyze this opinion. 

When I say that a theory is "meta- 
physical," I mean that there is no con- 
ceivable experiment that can greatly 
change the logarithm of its odds. (The 
odds corresponding to probability p are 
defined as p/(1 - p). It lies between 0 
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and plus infinity, and its logarithm lies 
between - 00 and + o.) No theory is 

metaphysical if it can be virtually either 
proved or falsified, because its log-odds 
would then become very large, positive 
or negative. According to this definition, 
it is a question of degree whether a 
theory is metaphysical. 

For example, the theory of determin- 
ism is less credible than it was a hun- 
dred years ago, but is by no means dis- 
proved and never will be. A statistician 
can never prove that "random numbers" 
are not "pseudo-random," and likewise 
"pseudo-indeterminism" cannot be dis- 
proved (10). 

We can consistently talk about phys- 
ical probability without committing our- 
selves to the metaphysical theory that 
the universe is indeterministic, but only 
if we accept the existence of subjective 

probability or credibility. For if we as- 
sume determinism we can get physical 
probabilities only by having an incom- 
pletely specified physical setup. In this 
incomplete specification there must be 
probabilities. If we are determinists we 
must attribute these latter probabilities 
to our own ignorance and not merely to 
something basic in nature "out there." 
Whether or not we assume determinism, 
every physical probability can be inter- 
preted as a subjective probability or as 
a credibility. If we do assume determin- 
ism, then such an interpretation is forced 
upon us. 

Those philosophers who believe that 
the only kind of probability is physical 
must be indeterminists. It was for this 
reason that von Mises asserted indeter- 
minism before it became fashionable. 
He was lucky. 
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Water Transport 

This classical problem in plant physiology is becoming 
increasingly amenable to mathematical analysis. 

James Bonner 

Plant physiology, even though it has 
existed as an organized science for one 
hundred years, still has its classical prob- 
lems-problems which have been studied 
by many investigators during this hun- 
dred years, and problems which are 
nonetheless still unsolved. Such a classi- 
cal problem of plant physiology is that 
of water transport. It is not, in fact, un- 
solved in principle today. Certainly the 
question of how water ascends the trunk 
of the tree to supply the transpiring 
leaves has been solved in principle by 
Dixon (1) and by Renner (2). Although 
the tension-cohesion hypothesis of water 
transport proposed by Dixon (1) has 
been attacked from time to time, it has, 
I believe, thus far always turned out that 
the attackers have been barking up the 
wrong tree. In a broader sense, however, 
"water transport" can be used to mean 
material transport of water to, within, 

and from the plant, and in this sense 
water transport bristles with unsolved 
and even with unposed questions. 

In this article I propose to take up 
the successive steps in the material trans- 
port of water and to comment for each 
step on recent contributions which ap- 
pear to be of importance, as well as upon 
problems which appear to pose further 
interesting questions. 

From Soil to Root 

Let us first consider water movement 
from soil to root. As in all cases of water 
movement, this consists of water flow 
from regions of lower diffusion pressure 
deficit (DPD) to regions of higher 
DPD. The soil DPD is determined by 
soil moisture- stress and by the content of 
osmotically active solutes in the soil 

water. But the solutes are, in general, 
salts which can be taken up by the root 
and increase the DPD of the root cells. 
It might therefore appear that such so- 
lutes would contribute little to the soil- 
plant DPD-gradient which determines 
water uptake by the root. Indeed Walter 
(3) many years ago declared explicitly 
that soil solutes which can permeate the 
root do not in fact play any role in mois- 
ture uptake by the plant. 

Wadleigh (4) and his colleagues at 
Riverside (California) have, however, 
developed the concept of total soil mois- 
ture stress, a total made up of physically 
and osmotically determined components. 
These workers have shown experimen- 
tally that the addition of salts to soil does 
in fact increase the effective soil DPD 
against which the plant must work. We 
have therefore a paradox-Walter's view 
based on sound plant physiological foun- 
dations and Wadleigh's view based on ex- 
periment. 

The paradox has been resolved by 
John Philip (5) of the agricultural phys- 
ics group of the Commonwealtlh Scien- 
tific and Industrial Research Organiza- 
tion's Division of Plant Industry (for- 
merly at Deniliquin, now at Canberra). 
By applying recent advances in the quan- 
titative theory of water movement in 
soils, Philip has shown that, during even 
moderate transpiration, removal of water 

The author is a member of the staff of the Di- 
vision of Biology, California Institute of Technol- 
ogy, Pasadena. This article is adapted from an 
address made 26 Aug. 1958 at the annual meeting 
of the American Society of Plant Physiologists, 
held in Bloomington, Ind. 
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