
SCIENCE

19 December 1958

Volume 128, Number 3338

Editorial	Proof of the Pudding	1537
Articles	Decomposition of Economic Time Series: J. Shiskin	1539
	Business fluctuations are broken down into seasonal, cyclical, and irregular factors by computers.	
	Radiation Dose Rate and Mutation Frequency: W. L. Russell, L. B. Russell, E. M. Kelly	1546
	The frequency of radiation-induced mutations is not, as the classical view holds, independent of dose rate.	
	Groningen Radiocarbon Dates III: H. de Vries and H. T. Waterbolk	1550
	S. R. Gevorkiantz, Forest Biometrician: P. O. Rudolf	1557
News of Science	International Council of Scientific Unions; other events	· 1558
Book Reviews	I. B. Cohen, Ed., Isaac Newton's Papers and Letters on Natural Philosophy and Related Documents, reviewed by F. E. Brasch; other reviews	.1566
Reports	Inherited Electrophoretic Hemoglobin Patterns among 20 Inbred Strains of Mice: E. S. Russell and P. S. Gerald	1569
	New Type Sedative and Soporific Drug: G. Cronheim, J. T. Gourzis, I. M. Toekes .	1570
	Development of Resistance of Influenza B Virus to Polysaccharides: P. Gerber and E. Adams	1571
	Salt Excretion by Nasal Gland of Laysan and Black-Footed Albatrosses: H. Frings, A. Anthony, M. W. Schein	1572
	Correlation of Drug Penetration of Brain and Chemical Structure: $A.\ H.\ Soloway$	1572
	Acute Infection of Mice with Smith Strain of Staphylococcus aureus: G. A. Hunt and A. J. Moses	1574
	Fractional Escape and Avoidance on a Titration Schedule: B. Weiss and V. G. Laties	1575
	Increase in Locomotor Activity Following Shielding of the Parietal Eye in Night Lizards: R. Glaser	1577
	Use of Borosilicate Glass in Ozonizer Tubes: R. F. Grossman and A. C. Bluestein	1578
Departments	Letters	1532
	Forthcoming Events: Equipment	1582

MONITORING ALVEOLAR CO₂ -AT A GLANCE

Critical changes in alveolar CO₂ can be detected instantly when a Beckman/Spinco medical gas analyzer is used to monitor patients during major surgery.

These changes are sensitively reflected by an indicating meter and a small CO₂ detector which clamp to the operating table. The anesthesiologist can read the meter without moving—without even turning his head.

The meter (about the size and shape of a teacup) and the detector are the only pieces of apparatus near the patient. The rest of the equipment can be placed as far away as 50 feet.

Many hospitals are now using Spinco's analyzers routinely for all high-risk surgery. With these instruments, anesthesiologists make adequate ventilation doubly certain.

Recently, four Los Angeles anesthesiologists reported another significant application for CO₂ analyzers:

Continuous Alveolar Carbon Dioxide Analysis as a Monitor of Pulmonary Blood Flow, Leigh, M. D., Jenkins, L. C., Belton, M. K., Lewis, G. B. Jr., Anesthesiology 18, 878-82 (1957).

Reprints are available. Please write Spinco Division, Beckman Instruments, Inc., Stanford Industrial Park, Palo Alto, California. Ask for file LB-5.

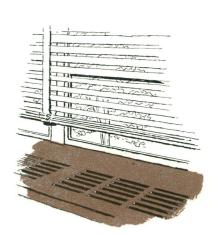
Now...laboratory "table-top toughness" for many busy interior surfaces

...J-M Colorlith

handsome, tough, colorful

Highly functional
J-M Colorlith (properly
finished with clear coat
lacquer or equal for best appearance and performance)
permits laboratories to add a
colorful new touch of personality to a variety of interior areas,
including those shown here.

Colorlith was originally developed to answer the need for a tough, handsome table-top material. Now its colors and texture make any lab or school building a show place. And because it's fabricated from two of nature's most durable minerals, asbestos and cement, it can take the most grueling punishment.


A workable material, Colorlith comes in large

4' x 8' sheets which can be cut in any shape. Thicknesses range from 1/4" to 11/4". Because it has great uniform strength, it can be used in thicknesses down to 1/4" for fume hoods, or for resurfacing old table tops and walls. Its color runs completely through the sheet.

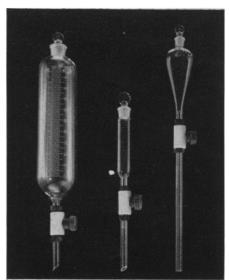
Many laboratory furniture manufacturers now feature Colorlith. And there are cutting shops convenient to you which can easily custom-fabricate Colorlith sections to your needs. For names

and addresses, plus Colorlith specification and maintenance data, contact your J-M representative, or write direct.


Colorlith comes in 3 popular decorator colors: Cameo Brown, Surf Green, and Charcoal Gray.

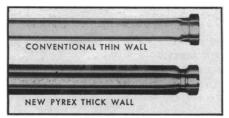
Office, classroom window sills, built with Colorlith, have unusual strength and durability . . . won't warp. Color doesn't fade. Louver slots can be readily machined.

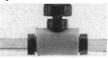
Washroom wainscots, made of Colorlith, withstand moisture and heavy abuse for years. Material resists cracking, chipping ... is easily cleaned ... and stays attractive.


Shower stalls present a new application. Large sheets reduce number of joints. Material is strong, rigid—can't rust or deteriorate with prolonged exposure to moisture.

Johns-Manville, Box 14, New York 16, N. Y. In Canada, Port Credit, Ontario

JOHNS-MANVILLE


OVER 100 YEARS OF QUALITY PRODUCTS . . . 1858-1958


NEW PYREX® Needle Valve Ware HEAVY DUTY STEMS

Here's a new line of needle valve ware with stems twice as heavy.

This new design means greater strength and longer life in your ware.

NEW LARGE 4.7MM VALVE

Now available as well as the customary 2mm.

Pyrex Needle Valve Ware gives you these other advantages, too.

Ground flunges. ALL PYREX flange faces are finely *ground* to assure a better seal, particularly under pressure.

Non-contaminating. You get the chemical stability of chemical glass No. 7740 in this new ware. Valve body and retainer rings are pure Teflon*.

Complete Line. This new PYREX line includes the valves, ground joint connections, burettes, distilling heads, funnels, chromatographic tubes and stopcocks.

Check your Pyrex Laboratory Glassware Catalog, LG-1, for sizes and prices. *T.M. for Du Pont Tetrafluoroethylene Resin.

CORNING GLASS WORKS
34-12 Crystal Street, Corning, N. Y.

Corning means nesearch in Glass

Letters

Initial Modesty

Authors "who believe that the use of *I* or *we* is immodest" were gently chided for their false modesty in the lead editorial, "Passive voice," in *Science* for 22 March 1957 [125, 529 (1957)]. But authors who prefer not to write in the first person are much more honest than those, like the author of the editorial in question, who write in the first person without signing their names.

An editorial, report, or article whose author is identified only by initials has an anomalous status. Does it represent the view or opinion of the editorial board, as competently expressed by one member? Or does the use of initials imply a disclaimer by the board as a whole, so that only the owner of the initials is to be held responsible?

If cryptic initials are used only for internal identification, they should be much less obtrusive—perhaps in 6-point type, or in the form of a code number or of initials run together without periods, even in reverse order. As used, full size, in Science, initials usually can be matched up with one of the names in the masthead, so they offer little anonymity. The editorial in question was signed "R.V.O."—presumably Robert V. Ormes, a member of the editorial staff. Was Ormes so ashamed of his editorial that he did not wish his full name attached to it?

(Perhaps he should be ashamed. For an essay on grammatical purity, its own purity leaves something to be desired. I was particularly set on edge by the sentence: "In the editorial office we still see gerunds and participles used in this manner, and it is discouraging." Is the manner discouraging?)

In addition to making an unclaimed orphan out of an editorial or note, the use of initials, rather than an honest name, imposes an unwarranted burden on the poor bibliographer. Forever more, this editorial must be listed as: "R(obert?) V. O(rmes?): Passive Voice," or "R.V.O. (Robert V. Ormes?): Passive Voice." Bibliographers should not be forced to pay thus for an unsure author's false modesty.

Arnold Court

Berkeley, California

Radiation Hazards

In the article entitled, "Mice, men, and fallout" [Science 128, 637 (1958)], M. P. Finkel presents some interesting results regarding the effects of low doses of Sr⁹⁰ on mammalian life expectancy and incidence of certain tumors. However, in discussing these results, the author draws far-reaching conclusions relating to the danger to man (or rather

lack of it) from present Sr⁹⁰ fallout. The concluding sentence states, "the present contamination with strontium-90 from fallout is... extremely unlikely to induce even one bone tumor or one case of leukemia." I would like to raise the following points with regard to this conclusion.

1) In the data presented, the uncertainty was such that a 7-percent shortening of life span in an experimental group did not represent a statistically significant deviation from the control, nor did a threefold increase in the incidence of osteogenic sarcomas. Yet the above statement refers to effects on the world's population which would amount to a small fraction of 1 percent.

2) No statistically justifiable extrapolation for determination of "threshold doses," or even demonstration that there is a threshold different from zero, seems possible from the data as presented. In fact, these data appear to indicate that the experimental design used is inadequate for this purpose.

3) At the present time, sober and accurate evaluations of the effects of chronic low-level irradiation of human populations, from internal and external radioisotopes, are essential for the formulation of safe and wise national and international policies regarding the testing of nuclear weapons and the development of nuclear power. It is unfortunate that at this time a statement such as that quoted above is published with the implication that it is based on experimental evidence, when actually it appears to be without objective, logical support. Unfounded statements minimizing radiation hazards can be especially harmful if they turn out later to have been false.

A more appropriate conclusion from the data would seem to be that drawn by Austin M. Brues from a discussion of other data relating to carcinogenesis [Science 128, 693 (1958)]—namely, that a linear dose-effect relation is less probable than a nonlinear relation, and that a threshold might occur.

CARL Moos

College of Medicine, University of Illinois, Chicago

I should like to comment on the article by Miriam P. Finkel. First of all, it is difficult to tell whether this article should be considered as an editorial or as a strictly scientific paper. If the latter is the case, I should like to strenuously object to the opening paragraph, which in a back-handed kind of way casts disrepute on some of the most eminent scientists of our time who have been concerned with the effects of fallout on human beings.

Aside from this, I particularly wish to criticize some of the scientific conclusions. The type of effect that one is looking for with respect to the action of fallout on man is such that it has been predicted that several tens of thousands

This unique combination of large capacity, higher speed and lower controlled temperature increases the value of centrifugal force as a basic research tool.

HIGH "G" HEADS: The 8-place 50 ml head delivers 40,000 x G; the 6-place 250 ml head, 26,000 x G. Adapters are available for use with smaller tubes. Additional heads and attachments are

being developed.

HIGH SPEEDS are obtained by a direct drive, special motor.

Speeds are set by a stepless autotransformer control.

TEMPERATURES BETWEEN -20°C and $+40^{\circ}\text{C}$ are kept constant within $\pm 1^{\circ}\text{C}$ by a 1 HP refrigeration unit, an exclusive fin-coiled evaporator, and a new combination of plastic foam and fibre glass insulation.

USE THE COUPON to get all the facts about this all-new and better high-speed refrigerated centrifuge from International . . Your Dependable Source for Centrifugal Force.

International (P) Equipment Co.

1219 SOLDIERS FIELD ROAD, BOSTON 35, MASS., STadium 2-7900 Please rush complete data, prices and delivery schedules on International's new HR-1 High-Speed Refrigerated Centrifuge.

Name	Title. *	
Institution		
Street & No	Zone State	

MEASUREMENT...

Extreme sensitivity — 5 mr for soft x and gamma rays; 10 mr for hard x and gamma rays

Wide exposure range — from 5/10 mr to 600R

Complete coverage—beta-gamma, x-ray, and neutron film packets are held in one badge

DESIGN...

Tamper-proof — special unlocking device required to open badge Combined film and security badge — has space for standard 1½ ×2 identification photo

Lightweight — sturdy, moulded plastic badge weighs less than 1 oz.

SERVICE...

Prompt weekly reports, supplemented by quarterly and annual cumulative report

For data on the newest advances in film-badge dosimetry write for Bulletin S-3

of individuals may develop tumors or leukemia. If the entire population of the world is considered, then only one individual in a few hundred thousand might be expected to show this damage, if the magnitude of the effect is what has been predicted. I do not see, therefore, how the figures given in Table 1 of Finkel's article are adequate to enable one to draw the conclusion that there will be no effect of the above-mentioned magnitude. At the lowest level of radiation used (group number 12 of Table 1), it seems to me, the number of animals used should have been approximately 200,000 instead of 150 in order to establish an effect of the magnitude we are seeking. Even with 200,000 animals it might be expected that only one mouse would develop a tumor as the aftermath of the radiation, and therefore the number utilized should be many times greater than 200,000 to establish a statistical significance of the effect at the low levels. In view of this I think the final sentence in the conclusion is extremely unwarranted and is not in accord with an objective scientific appraisal of the data presented.

Although the author points out that there are considerable differences to be expected in the response to radiation of a mouse and of man, I think this point should have been further stressed, particularly in view of the conclusion in the final sentence. One very obvious great difference is the fact that the mouse cells are exposed to the radiation for a period of not more than approximately 2 years, whereas human cells may be exposed to the radiation for a period of 60 to 70 years, with much more far-reaching consequences possibly accruing in the latter case.

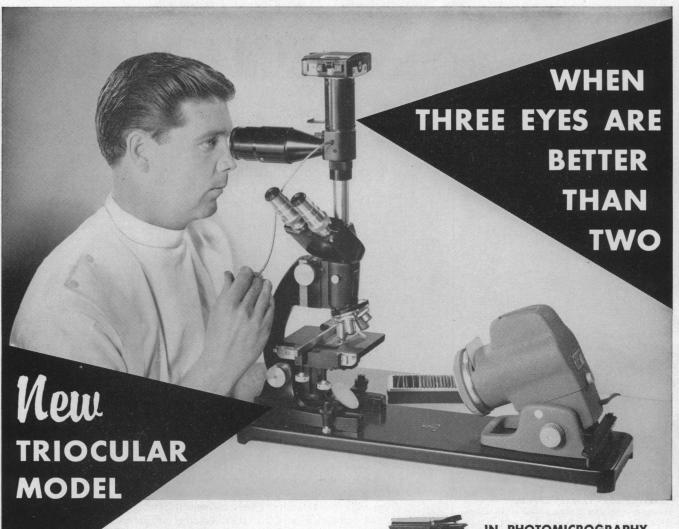
I feel that the great publicity given to the article in question in the newspapers has given perhaps an erroneous viewpoint to many laymen who are not familiar with some of the imponderables involved.

JAY S. ROTH

Department of Biological Chemistry, Hahnemann Medical College and Hospital, Philadelphia, Pennsylvania

The article by Miriam P. Finkel of Argonne National Laboratory propounds very sweeping conclusions on the lack of danger from small doses of ionizing radiations, and particularly from strontium-90 fallout. An examination of the assumptions upon which these conclusions rest is called for. The chief of these is that the main danger of radiations in man's environment lies in their effects on the individuals exposed. The author states (page 637): "At lower levels [of radiation], tumor induction and shortening of life are the major signs of damage." This leads her to restrict her discussion of the evidence as follows: "The most useful criteria of radiation damage to the mammalian organism as a whole are decrease in life span and increase in incidence of certain tumors." Although she states that "these studies are concerned with the effects upon the exposed generation only," the article shows no sign whatever that the author is aware of the fundamental distinction between somatic and germinal radiation damage.

The undoubted fact that high-energy radiations induce mutations in germ cells would seem to be sufficient reason for at least using caution in discussing a question of such importance as the radiation damage to human populations. The data presented have obviously no bearing on the problem of direct proportionality between the radiation exposure and the number of germinal mutations induced. The question of linearity of response of somatic cells to radiation is treated in a paper by A. M. Brues, from the Argonne Laboratory, in the issue of Science following that in which Finkel's paper appeared [128, 693 (1958)]. The conclusion reached is that there is no evidence of linear relationship between carcinogenesis and the dosage of carcinogen, and that this makes a mutational origin of cancer doubtful. Whether or not this conclusion is accepted, the evidence for it is set forth clearly and examined critically. The same cannot be said for Finkel's presentation, which arbitrarily excludes from consideration the genetic radiation damage.

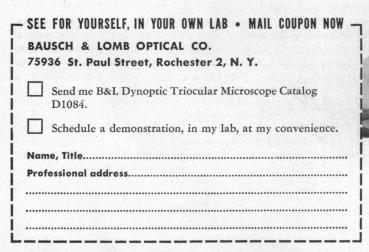

The neglect of elementary methods of critical examination of evidence leads us to doubt not only Finkel's main conclusion that "the present contamination with strontium-90 from fallout is so very much lower than any of these levels that it is extremely unlikely to induce even one bone tumor or one case of leukemia" but also the rationale on which the work was based. Surely understanding of the effects of radiation on populations of organisms, including man, is not likely to be advanced by willful neglect of one of the well-established effects of radiation.

L. C. Dunn T. Dobzhansky

Department of Zoology, Columbia University, New York, New York

Moos' comments are most pertinent to the complicated problem of the potential danger from very low doses of radiation. Since the major assumptions upon which the usual estimations of the human hazard have been based are not supported by animal experimentation, there is no reason to believe that straight lines drawn from the effects of moderate doses to zero effect at zero dose have any meaning. My conclusions have been based upon alternative methods of assessing the human hazard.

The objection is raised by Moos in point 1 that, in spite of the statistical uncertainties of the values at low levels, statements referring to large populations (Continued on page 1580)



BAUSCH & LOMB

LABORATORY MICROSCOPES

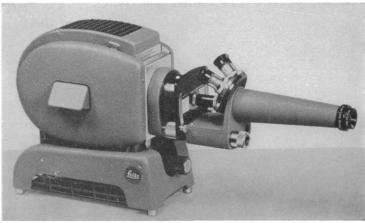
(Complete Triocular Microscope, or interchangeable Triocular body, available in B&L Dynoptic Laboratory and Research Microscope models.)

IN PHOTOMICROGRAPHY,

for example, when the third eye is that of the camera, the new B&L Triocular Microscope quickly gives visual and photographic results in sharp detail and vivid contrast. Combines comfortable binocular vision with a photographic tube; you scan, orient and focus in the usual way. To take a picture, just glance at the Camera Viewer for touch-up focus and CLICK! That's all there is to it! You photograph what you see—and you see today's brightest images.

IN CONSULTATION,

the B&L Triocular lets you and a colleague study the same subject, through the same microscope, at the same time. And you can get ample light for simultaneous viewing of normally hard-to-see images: phase contrast, dark-field, deeply stained specimens. You've got everything you need, right on the spot, for daily, practical applications ranging from instruction to research collaboration.


first in precision optics

PRADO *MICROPROJECTOR*

The extreme brilliance, clarity and definition in screen images from the well-known PRADO make it readily convertible from standard 2"x2" (Model 500) or 2¾"x2¾" (Model 66) slide projector to microprojector.

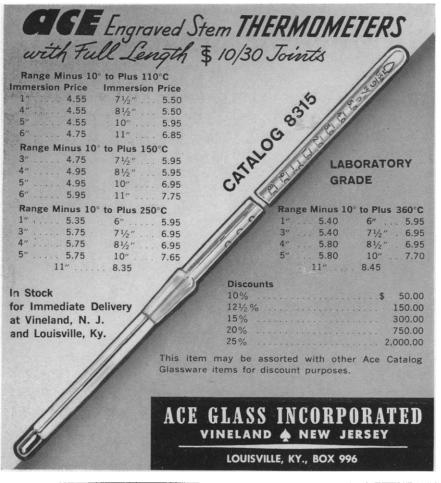
This portable unit may be carried easily from room to room and used wherever there is an electrical outlet. Light from the 500-watt lamp, projected through aspheric condensers in the blower-cooled PRADO, gives an image quality ideal for use in classroom or conference room.

For microprojection, the special microattachment simply slides onto the powercondenser housing. The attachment provides an object stage and adjustable condenser lens with helical focusing. A similar attachment is available which allows the stage to be placed in a horizontal position to accommodate wet mounts. The revolving nosepiece holds three objectives: 3.5x, 10x, and 25x. The high power objective is equipped with a springloaded mount.

PRADO, as microprojector

PRADO, as standard slide projector

20257


A reputation for integrity and a tradition of service have led thousands of scientific workers to bring their optical problems to Leitz. If you have problems in this field, why not let us help you with them?

See your Leitz dealer and examine these Leitz instruments soon. Write for information.

E LEITZ, INC., Dept. SC-12 468 Fourth Avenue, New York 16, N.Y.	
Please send me the Leitz	brochure.
NAME	·····
STREET	
CITYZONESTAT	E

E. LEITZ, INC., 468 FOURTH AVENUE, NEW YORK 16, N.Y. Distributors of the world-famous products of Ernst Leitz G. m. b. H., Wetzlar Germany – Ernst Leitz Canada Ltd. LEICA CAMERAS • LENSES • MICROSCOPES • BINOCULARS

19 DECEMBER 1958 1579

ENGINEERING CO

2023 West Wisconsin Ave. Milwaukee, Wis.

PSYCHOPHARMACOLOGY

AAAS Symposium Volume edited by Nathan S. Kline

6" x 9", clothbound, 175 pp., bibliographies, index, 1956 \$3.50 (\$3.00 for cash orders by AAAS members)

This volume consists of material presented at the first major conference on the remarkably successful use of new drugs such as chlorpromazine in the treatment of mental disease.

"The authors are competent and careful workers who have approached this problem with a scientific attitude . . . Throughout the volume runs the thread of caution . . . New vistas are being opened for the psychiatrist, the neurologist, the physiologist, the psychologist, the pharmacologist, and the chemist." Foreword, Winfred Overholser.

"This volume is not a reference intended for use at the introductory student level. It can be reviewed with interest, however, by any serious member of the reading public." American Journal of Pharmaceutical Education, July 1956.

At all book stores or write

American Association for the Advancement of Science

1515 Massachusetts Ave., NW Washington 5, D.C.

(Continued from page 1534)

are made. On the contrary, my conclusions are not based on the results at these low levels. They stem from the extrapolation of tumor data from mice through cats and dogs to man, and from comparisons of radium and strontium-90 toxicity in mouse and man.

In point 2 Moos objects that the experimental design is inadequate to demonstrate a threshold dose. That is certainly true. However, the design is adequate for the intended purposes of the experiment—namely, to examine the effects of a range of doses and to investigate the shape of the dose-response curve.

One consistent difficulty in assessing the fallout situation is exemplified in point 3 of Moos's letter. The first sentence is one with which any intelligent person could agree whole-heartedly. The second sentence is a consequence of the charged, emotional approach so often apparent in discussions of the hazards of fallout. This attitude has unconsciously influenced many interpretations of radiobiological data. We need honest, objective, unemotional evaluations of the experimental results, which can then be applied to problems of world-wide contamination. It is very important that concern over these problems not be permitted to distort the appraisal of the experimental results.

Moos has suggested that I temper my conclusions. None of the animal data have produced linear dose-response curves. The obvious conclusion is not "that a linear dose-effect relation is less probable than a nonlinear relation" but that the relationship probably is not linear. Regarding the evidence for a threshold, I agree that the only justified conclusion at this time is that a threshold might exist. I so stated in my article.

Roth's reaction to the opening paragraph of "Mice, men, and fallout" beautifully illustrates one of the primary reasons for that article's having been written. Too many of us expect the distinguished authority in some specialized field to be an unquestioned authority in all fields.

It has been objected that not enough animals were used to predict events that might happen one time in a few hundred thousand. This is certainly true. If Roth will reread the third paragraph of the article in question, he will find that my objective was not to test such frequencies but to examine the two major assumptions upon which the previous predictions of damage from fallout have been based. The 960 mice provided doseresponse curves with characteristics contrary to these two assumptions. That is, they are not linear, and they suggest that a minimum dose must be exceeded before the response is manifest. Consequently, extrapolations along straight lines from effects at moderate or high doses to no effect at no dose are unwarranted. Our best information, based on experimentation rather than speculation, is that ". . . the present contamination with strontium-90 from fallout . . . is extremely unlikely to induce even one bone tumor or one case of leukemia."

Roth calls attention to the very short life span of the mouse contrasted to that of man. This difference, along with the great dissimilarity in size, is the main obstacle to transferring mouse data directly to man. He will note, in the tentative extrapolations given in Fig. 5 of the article, that both of these factors have been taken into account.

Apparently Dunn and Dobzhansky feel that my article should have encompassed all of radiobiology. On the contrary, it was deliberately limited to one small aspect of this subject-namely, considerations of the methods that have been used and that can be used to predict the consequences to exposed individuals of low levels of radiation. A discussion of inheritable damage was not pertinent, and I expressly stated that the exposed generation only would be considered. If one announces that he is going to investigate the effects of temperature upon mitosis, for example, should he be accused of "willful neglect" if he does not include the effects of temperature upon gene mutation? I have had no experimental experience with radiation genetics, and it would be presumptive for me to pose as an authority on that subject. I am confident that the geneticists themselves will eventually be able to tell us whether the linear relationship between gene mutation and exposure holds at doses lower than 25 roentgens.

Dunn and Dobzhansky say that I have assumed "that the main danger of radiations in man's environment lies in their effects on the individuals exposed." There is no basis in my article for this statement. The sentences they quoted were not intended to justify the omission of a discussion of genetic consequences, as they suggest. These quotations merely describe the kind of changes that are most apparent and most easily measured in exposed animals.

I agree wholeheartedly that the data I presented have no bearing on the problem of radiation exposure and germinal mutations. It also was not my purpose to discuss somatic mutations or possible mechanisms of carcinogenesis. Why should a reader be surprised that these subjects were not covered? I also did not include any mention of the effect of radiation upon the sexual behavior of Paramecium.

It is difficult to understand how two distinguished scientists could so misread my paper that they should accuse me not only of ignorance of the distinction between somatic and germinal radiation damage but also of "neglect of elementary methods of critical examination of evidence." My main thesis was that most

Brand New Concept in Molecular Models

THE GODFREY MOLECULAR MODE

FOR RESEARCH AND PROCESS CHEMISTS, TEACHERS AND STUDENTS

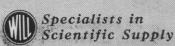
Construct all existing organic forms ... many inorganic forms ... easily and quickly . . . and with less expense. First to realistically show the flexibility and compressibility of actual atoms using pliable PVC.

FEATURES:

- Most Accurate Representation of Van der Waal's and Co-valent Radii
- * Correct Presentation of Small Ring Compounds
- Clear Demonstration of Hydrogen Bonding, Steric Hindrance and Atomic Weight
- ★ Easy Construction of Bicyclic Compounds
- Atoms Magnified 165,000,000 Times! *U. S. Patent Applied for

Simple to Assemble The pliable PVC atoms are brought together using spe-cial polyethylene connectors, easily inserted to give posi-tive connection. Large mole-

cules do not fall apart. No special tools required.


2014ON GODFREY MOLECULAR MODEL KIT

Complete in sturdy box with instruction manual, colorful atom models and connectors. Atoms contained: Tetrahedral carbon 17, Trigonal carbon 15, Digonal carbon 5, Hydrogen 32, Digonal oxygen 5, Carbonyl oxygen 5, Quaternary nitrogen 5, Nitrogen amine cap 5, Trigonal nitrogen 5, Chlorine 4, Digonal \$4.9.50 sulphur 2.

Separate Atoms of above

SEND FOR DESCRIPTIVE COLOR FOLDER

CORPORATION and subsidiaries

ROCHESTER 3, N.Y. . ATLANTA 1, GA. . NEW YORK 52, N.Y. . BALTIMORE 24, MD. BUFFALO 5, N. Y. . SO. CHARLESTON 3, W. VA.

19 DECEMBER 1958 1581 predictions of the effect of fallout on tumors and life shortening have been based on very scanty evidence and unsupported assumptions. I proposed alternative methods of prediction that use information from animal experiments as well as available human data. I am forced regretfully to conclude that the fallout problem elicits such an emotional response that many otherwise sagacious and objective scientists lose their ability to read accurately and think clearly.

MIRIAM P. FINKEL

Argonne National Laboratory, Lemont, Illinois

Forthcoming Events

January

12-14. Reliability and Quality Control, 5th natl. symp., Philadelphia, Pa. (W. T. Sumerlin, Philco Corp., 4700 Wissahickon Ave.. Philadelphia 44.)

18-31. Bahamas Serendipity Session, Nassau, Bahamas. (B. L. Frank, 1290 Pine Ave., W. Montreal, Canada.)

20-22. American Mathematical Soc., annual winter, Philadelphia, Pa. (E. G. Begle, Leet Oliver Hall, Yale Univ., New Haven, Conn.)

21-22. American Group Psychotherapy Assoc., 3rd annual institute, New York,

N.Y. (C. Beukenkamp, Public Relations Chairman, 993 Park Avc., New York 28, N.Y.)

22-23. Mathematical Assoc. of America, 42nd annual, Philadelphia, Pa. (H. M. Gehman, MAA, Univ. of Buffalo, Buffalo 14, N.Y.)

23-24. American Group Psychotherapy Assoc., 16th annual conf., New York, N.Y. (C. Beukenkamp, Public Relations Chairman, 993 Park Ave., New York 28.)

23-24. Reproductive Physiology and Protein Nutrition, 15th annual conf. on protein metabolism, New Brunswick, N.J. (J. H. Leathem, Rutgers Univ., New Brunswick, N.J.)

24-29. American Acad. of Orthopedic Surgeons, Chicago, Ill. (C. L. Compere, 720 N. Michigan Ave., Chicago, Ill.)

26-29. American Meteorological Soc., New York, N.Y. (K. C. Spengler, AMS, 3 Joy St., Boston 8, Mass.)

26-29. American Soc. of Heating and Air Conditioning Engineers, 65th annual, Philadelphia, Pa. (W. M. Vidulich, ASHACE, 62 Worth St., New York 13.)

26-29. Institute of the Aeronautical Sciences, 27th annual, New York, N.Y. (IAS, 2 E. 64 St., New York 21.)

26-30. Writing and Publication in Industry, conf. and workshops, Brooklyn 1, N.Y. (T. L. Donahue, Writing and Publication Conf., Polytechnic Inst. of Brooklyn, 333 Jay St., Brooklyn 1.)

27-30. Society of Plastics Engineers, Inc., 15th annual tech. conf., New York, N.Y. (L. A. Bernhard, SPE, 65 Prospect St., Stamford, Conn.)

28-29. Nuclear Fuel Elements, 1st intern. symp., New York, N.Y. (H. H. Hausner, 1st Intern. Symp. on Nuclear Fuel Elements, 730 Fifth Ave., New York 19)

28-31. American Physical Soc., annual, New York, N.Y. (E. R. Fitzgerald, Dept. of Physics, Pennsylvania State Univ., University Park.)

29-31. Western Soc. for Clinical Research, 12th annual, Carmel-by-the-Sea, Calif. (W. N. Valentine, Office of the Secretary, Univ. of California Medical Center, Department of Medicine, Los Angeles 24.)

February

1-6. American Inst. of Electrical Engineers, winter general, New York N.Y. (N. S. Hibshman, 33 W. 39 St., New York 18.)

3-5. Reinforced Plastics Conf., 14th, Chicago, Ill. (Soc. of Plastics Industry, Inc., 250 Park Ave., New York 17.)

6-7. American College of Radiology, Chicago, Ill. (W. C. Stronach, 20 N. Wacker Dr., Chicago 6.)

9-11. American Acad. of Allergy, Chicago, Ill. (B. Rose, Royal Victoria Hospital, Montreal, P.Q., Canada.)

9-11. Nature of Coal, symp., Bihar, India. (Director, Central Fuel Research Inst., P. O. Fuel Research Inst., Dhanbad District, Bihar.)

11-13. American Acad. of Occupational Medicine, Boston, Mass. (L. Blaney, 1608 Walnut St., Philadelphia, Pa.)

12-13. Solid State Circuits Conf., Philadelphia, Pa. (A. B. Stern, General Electric Co., Bldg. 3, Syracuse, N.Y.)

BENCH-TOP CHROMATOCAB

for Paper Chromatography

Replace your breakable jars with a permanent cabinet of like size and cost.

- Thermally insulated, all sides
 superior to glass jars
- Vapor Seal gasket & locks, no grease
- All-glass Solvent Assemblies

 interchangeable in 12"

 square jars
- Solvent Refill Holes polyethylene capped
- Easy portability compact size, light weight

TELEPHONE: BEACON 5-9110
TELETYPE TWX: RICH CAL 1433

RESEARCH SPECIALTIES CO.

200 SOUTH GARRARD BLVD.

RICHMOND, CALIFORNIA

The '58 McCollum-Pratt Institute Symposium

The Chemical Basis of Development

Edited by William D. McElroy and Bentley Glass

Like its predecessors in the now famous McCollum-Pratt Series in Biochemistry, this book provides a broad, authoritative, and up-to-date foundation in a selected area; in this case, developmental biology. For those interested in the chemical aspects of growth and development in plants, animals, and microorganisms, the present volume offers the most recent developments.

960 Pages, 185 Illustrations, Author & Subject Index

\$15.00

The Johns Hopkins Press

Baltimore 18, Maryland

PHOTOVOLT Line-Operated Multiplier FLUORESCENCE METER Mod. 540 High-sensitivity for measurement of low concentrations (full-scale setting for 0.001 microgram quinine sulphate)

- Micro-fluorimetry with liquid volumes as low as 1 ml
- Low blank readings, strict linearity of instrument response Universally applicable due to great variety of available fil-ters, sample holders, adapters and other accessories
- Interference filters for high specificity of results and for determining spectral distribution of the fluorescent light
- High-sensitivity nephelometry for low degrees of turbidities
- Fluorescence evaluation of powders, pastes, slurries, and solids, also for spot-tests on filter paper without elution

Write for Bulletin #392 to

PHOTOVOLT CORP.

95 Madison Ave.

New York 16, N. Y.

KRUGER AUTOMATIC CHEMICAL ANALYZER

Performs continuous chemical analyses by titration or colorimetric methods, and presents the data on a recorder.

Chemical analysis data is quickly available. Proven analytical methods may be made automatic.

Unitized design makes the analyzer adaptable to a variety of analyses of liquids and gases.

Please send for literature.


HAROLD KRUGER INSTRUMENTS

BOX 164

SAN GABRIEL, CALIF.

19 **DECEMBER** 1958 1583

for work in a controlled atmosphere

BLICKMAN **VACUUM DRY BOX**

Designed for safe handling of radio-isotopes, reactor fuel containing Plutonium or U233 and other hazardous substances. With air-lock, it can be sealed to create a vacuum. Fabricated of stainless steel plate-34" long x 26" high x 24" wide at base. Air-lock measures 18" x 12". Send for Technical Bulletin A-2.

FOR SAFE HANDLING OF RADIOACTIVE MATERIALS

BLICKMAN FUME HOOD

Originally designed and developed for the AEC, this Fume Hood assures maximum safety in the handling of radioactive materials and radioactive isotopes. Sturdy 14-gauge stainless steel, round corner construction provides long life...easy cleaning and decontamination. Send for Technical Bulletin E-3. S. Blickman, Inc., 6911 Gregory Avenue, Weehawken, N. J.

BLICKMAN LABORATORY EQUIPMENT

Look for this symbol of quality

14. Short Range Navigation Aids., Montreal, Canada. (Intern. Civil Aviation Organization, Maison de l'Aviation Internationale, Montreal.)

15-19. American Inst. of Mining, Metallurgical, and Petroleum Engineers, annual, San Francisco, Calif. (E. O. Kirkendall, AIME, 29 W. 39 St., New York

16-19. Problems in Field Studies in Mental Disorders, intern. work conf., New York, N.Y. (J. Zubin, American Psychopathological Assoc., 722 W. 168 St., New York 32.)

20-21. Epidemiology in Mental Disorders, annual meeting of the American Psychopathological Assoc., New York, N.Y. (J. Zubin, APA, 722 W. 168 St., New York 32.)

25-26. Midwest Industrial Radioisotopes Conf., Manhattan, Kan. (J. Kitchens, Dept. of Continuing Education, Kansas State College, Manhattan.)

26-28. Genetics and Cancer, 13th annual symp. on fundamental cancer research, Houston, Tex. (Editorial Office, Univ. of Texas, M. D. Anderson Hospital and Tumor Inst. Texas Medical Center, Houston 25.)

27-1. National Wildlife Federation, 23rd annual convention, New York, N.Y. (NWF, 232 Carroll St., NW, Washington

March

1-5. Gas Turbine Power Conf., Cincinnati, Ohio. (O. B. Schier, ASMÉ, 29 W. 39 St., New York, N.Y.)

8-9. American Broncho-Esophagological Assoc., Hot Springs, Va. (F. J. Putney, 1712 Locust St., Philadelphia, Pa.)

8-9. American Laryngological Assoc., Hot Springs, Va. (J. H. Maxwell, University Hospital, Ann Arbor, Mich.)

8-12. Aviation Conf., Los Angeles, Calif. (O. B. Schier, ASME, 29 W. 39 St., New York, N.Y.)

10-12. American Laryngological, Rhinological and Otological Soc., Hot Springs, Va. (C. S. Nash, 708 Medical Arts Bldg., Rochester 7, N.Y.)

13-14. American Otological Soc., Hot Springs, Va. (L. R. Boies, University Hospital, Minneapolis 14, Minn.)

15-20. American College of Allergists, San Francisco, Calif. (M. C. Harris, 450 Sutter St., San Francisco.)

16-20. American Inst. of Chemical Engineers, Atlantic City, N.J. (F. J. Van Antwerpen, AICE, 25 W. 45 St., New York 36.)

16-20. National Assoc. of Corrosion Engineers, 15th annual conf., Chicago, Ill. (NACE, Southern Standard Bldg., Houston, Tex.)

17-19. National Health Council, Chicago, Ill. (P. E. Ryan, 1790 Broadway, New York, 19.)

18-25. International Social Science Council, 4th general assembly (by invitation), Paris, France. (C. Levi-Strauss, Secretary-General, International Social Science Council 19, avenue Kleber, Paris.)

19-21. Society for Research in Child Development, NIH, Bethesda, Md. (Miss N. Bayley, Laboratory of Psychology, National Inst. of Mental Health, Bethesda 14, Md.)

For every requirement-**MICROSCOPY** at its finest

Here is the WILD*M-20, internationally renowned for its superb optics, traditionally fine Swiss craftsmanship and almost unbelievable versatility.

The M-20 microscope is unexcelled for research and scientific exploration in any field of microscopy. It is available with sextuple revolving nosepiece if desired, 20-Watt built-in illumination, beam-splitting phototube for binocular focusing for photomicrography, and a full range of attachments for all observation methods.

Attachments include Camera II (shown in illustration), Cinetube, Universal Lamp, Episcopic Equipment, Phase Contrast and Incident Light.

Camera II permits continuous binocular observation. The phototube deflects 25% of light to the binocular tube. A special format indicating eyepiece permits rapid, perfect focusing.

Your consideration of the WILD M-20 will prove most rewarding. Write for Booklet M-20 today.

*The FIRST name in Surveying Instruments, Photogrammetric Equipment and Microscopes

Full Factory

INSTRUMENTS, INC.

Main at Covert Street • Port Washington, New York POrt Washington 7-4843

In Canada

Wild of Canada Ltd., 157 Maclaren St., Ottawa, Ontaric

1584 SCIENCE, VOL. 128