
Mass of the Moon from 
Satellite Observations 

Abstract. The four classical methods of 
determining the mass of the moon are 
noted, and a new use of an artificial earth 
satellite is proposed. The procedure, based 
on Kepler's law, is outlined, but at present 
the uncertainties in the observed data pre- 
clude an improved estimate of the lunar 
mass. 

One of the more difficult astrono- 
metric problems is the calculation of the 
mass of the moon (1). This particular 
measurement has been performed by 
making geocentric observations of the 
position of the sun, planets, or the as- 
teroid Eros. The monthly to-and-fro 
oscillations in the precise position of 
these objects are caused by the motion 
of the earth around the center of grav- 
ity of the earth-moon system. This dis- 
placement and the known distance of 
the moon are easily related to their 
relative masses. 

A second method is based on a deter- 
mination of the mass at the distance of 
the moon sufficient to cause the lunar 
component of the tides. A third method 
is based on a term in the expression 
for the motion of the equinoxes. The 
moon's attraction on the equatorial 
bulge causes a torque, or couple, about 
an equatorial axis, which exhibits itself 
in a monthly noding of the poles (the 
nutation). A similar torque, due to the 
sun, produces the equinoctial precession. 
The known distance of the sun and 
moon allows a comparison of the mass 
of the moon to that of the sun. 

A fourth method, based on the exact 
form of Kepler's law (Eq. 1) requires 
the precise measurement of the lunar 
parallax and the period and gives the 
sum of the masses of the earth and 
moon. 

With a satellite of very small mass we 
may take the ratio of the conditions for 
dynamic stability (Kepler's law), 

Mass of the Moon from 
Satellite Observations 

Abstract. The four classical methods of 
determining the mass of the moon are 
noted, and a new use of an artificial earth 
satellite is proposed. The procedure, based 
on Kepler's law, is outlined, but at present 
the uncertainties in the observed data pre- 
clude an improved estimate of the lunar 
mass. 

One of the more difficult astrono- 
metric problems is the calculation of the 
mass of the moon (1). This particular 
measurement has been performed by 
making geocentric observations of the 
position of the sun, planets, or the as- 
teroid Eros. The monthly to-and-fro 
oscillations in the precise position of 
these objects are caused by the motion 
of the earth around the center of grav- 
ity of the earth-moon system. This dis- 
placement and the known distance of 
the moon are easily related to their 
relative masses. 

A second method is based on a deter- 
mination of the mass at the distance of 
the moon sufficient to cause the lunar 
component of the tides. A third method 
is based on a term in the expression 
for the motion of the equinoxes. The 
moon's attraction on the equatorial 
bulge causes a torque, or couple, about 
an equatorial axis, which exhibits itself 
in a monthly noding of the poles (the 
nutation). A similar torque, due to the 
sun, produces the equinoctial precession. 
The known distance of the sun and 
moon allows a comparison of the mass 
of the moon to that of the sun. 

A fourth method, based on the exact 
form of Kepler's law (Eq. 1) requires 
the precise measurement of the lunar 
parallax and the period and gives the 
sum of the masses of the earth and 
moon. 

With a satellite of very small mass we 
may take the ratio of the conditions for 
dynamic stability (Kepler's law), 

and and 
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where Me, Mm, and Ms are the masses 
of the earth, moon, and satellite, respec- 
tively, and am, as, Tm, and Ts are the 
mean distances and periods of the moon 
and satellite, and rearrange, neglecting 
the mass of the satellite, 

Mm (am) (T) 1 (2) 

Obviously, the data used to compute 
the mass ratio must be observational. 
Note that, astronomically, the term 
mean distance does not mean the aver- 
age distance, but is the semimajor axis 
of the undisturbed elliptic motion. Fur- 
thermore, the period is not the observed 
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time of circumscription, since the period 
of a close body about an ellipsoid de- 
pends upon its inclination and orbital 
eccentricity as well as its major axis di- 
mension (2). 

The effect of the accuracy of the ob- 
served artificial satellite data on the 
value of the lunar mass obtained must 
be examined. Differentiating Eq. 2, we 
obtain 

(Mm/M.) _28T,s_ 38ba 
(Mm/Me) + 1 Ts as 

From Eq. 3 it is evident that the error 
depends upon the absolute magnitude of 
the ratio and therefore a small uncer- 
tainty in the measurement produces a 
large uncertainty in the ratio. The pres- 
ent accuracy of artificial satellite meas- 
urements is insufficient to warrant the 
presentation of such calculations. How- 
ever, the observations are capable of 
such precision, and the value of the 
lunar mass determination may be im- 
proved over the present 5 percent un- 
certainty. 

W. J. GALLAGHER 

W. W. Hansen Laboratories of Physics, 
Stanford University, Stanford, California 
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A pH Calculator Based on Linear 
Transformations of the 
Henderson-Hasselbalch Equation 

Titration curves of weak acids and 
bases are usually represented by sym- 
metrical sigmoid curves based on the 
Henderson-Hasselbalch equation. The 
equilibrium of hydrogen ions, neutral 
molecules, and the ionized form in buffer 
solutions is governed by the law of mass 
action. The logarithmic form of the rela- 
tion is 

pH=pK +log (B/A) 

where pK is the negative logarithm of 
K, the equilibrium constant; B refers to 
the base, defined as the proton-acceptor 
form of the weak electrolyte; and A re- 
fers to the acid, the proton-donor form. 

The equilibrium of the two forms with 
hydrogen ions is expressed by the rela- 
tion 
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For example, in the buffer system acetic 
acid-sodium acetate, acetate ion is the 
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For example, in the buffer system acetic 
acid-sodium acetate, acetate ion is the 

conjugate base, while the undissociated 
molecule is the acid. In the system am- 
monium chloride-ammonium hydroxide, 
ammonium ion is the acid and ammo- 
nium hydroxide the base. 

In either of these systems, if the acid 
is titrated with sodium hydroxide, the 
titration curve is calculated from the 
formula 

pH = pK + log [b/(a- b)] 
where a denotes the equivalents of acid 
initially present and b is the number of 
equivalents of added base. If, on the 
other hand, a strong acid, HC1, is used 
in the titration, the curve is represented 
by 

pH= pK + log[(b-a)/a] 
where b is constant. In either case the 
curve is symmetrically sigmoid when pH 
is plotted against added base, b, or acid, 
a. The point of inflection is at the mid- 
point, where pH is equal to pK, and B is 
equal to A. For any series of univalent 
weak acids and bases, a family of titra- 
tion curves exists in which all the curves 
are similar. The position of each curve 
with respect to the pH axis is determined 
by pK. 

If the negative logarithms of A and B 
are denoted respectively by pA and pB, 
the Henderson-Hasselbalch equation may 
be expressed in the form 

pH- pK = pA - pB 

In this form of the expression the titra- 
tion curves for any series of weak uni- 
valent acids and bases become linear and 
identical. At the midpoint of the line, pA 
and pB are equal, and pH is equal to 
pK. Transformation to the linear form 
has the advantage of eliminating the cal- 
culations necessary to construct the sig- 
moid form. Accurate construction of the 
sigmoid curve requires the calculation of 
four or more points on either side of the 
midpoint, a total of eight or ten points. 
For the linear form it is necessary only 
to draw a straight line on semilogarith- 
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Fig. 1. Linear transformation of Hen- 
derson-Hasselbalch equation. Ordinate: 
(pA - pB); abscissa: (pH- pK). On par- 
allel ordinate values of the ratio B/A are 
given on logarithmic scale. 
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