
The Test of Simplicity 

Simplicity is a test of the effectiveness of scientific 

theories; but what is the test of simplicity? 

Nelson Goodman 

All scientific activity amounts to the 
invention of and the choice among sys- 
tems of hypotheses. One of the primary 
considerations guiding this process is 
that of simplicity. Nothing could be 

much more mistaken than the traditional 
-idea that we first seek a true system and 

-then, for the sake of elegance alone, seek 
a simple one. We are inevitably con- 

cerned with simplicity as soon as we are 
concerned with system at all; for system 
is achieved just to the extent that the 

basic vocabulary and set of first princi- 
ples used in dealing with the given sub- 

ject matter are simplified. When sim- 

plicity of basis vanishes to zero-that is, 
when no term or principle is derived 
from any of the others-system also van- 

ishes to zero. Systematization is the same 

thing as simplification of basis. 

Furthermore, in the choice among al- 
ternative systems, truth and simplicity 
are not always clearly distinguishable fac- 
tors. More often, simplicity is one test of 

truth. The martyr-bestrewn debate over 
what bodies in the universe are fixed has 
turned into the question: What choice of 

points of reference will give us the sim- 

plest description of their relative mo- 
tions? And by now, after Duhem and 
Poincare (1), it is almost a common- 

place that the refutation of a mode of 
scientific explanation such as the Ptole- 
maic or the Newtonian consists not in 

showing that it is inapplicable but in 

showing that its application would be 

intolerably complex. 
The case can be put even more 

strongly. We want to select a system or 

hypothesis that not only agrees with the 
established evidence but also predicts 
correctly the outcome of further obser- 
vations and experiments. Thus selection 
of a theory must always be made in ad- 
vance of the determination of some of 

the facts it covers; and, accordingly, 

some criterion other than conformity 
with such facts must be applied in mak- 

ing the selection. After as many points 
as we like have been plotted by experi- 
ment concerning the correlation of two 

functions (for example, of time and de- 

terioration of radioactivity), we predict 
the remaining points by choosing one 

among all the infinitely many curves that 
cover the plotted points. Obviously, sim- 

plicity of some sort is a cardinal factor 
in making this choice (we pick the 
"smoothest" curve). The very validity 
of the choice depends upon whether the 
choice is properly made according to 

such criteria. Thus simplicity here is not 

a consideration applicable after truth is 

determined but is one of the standards of 

validity that are applied in the effort to 

discover truth. 

Nature of the Problem 

But if simplicity is a test of truth and 

systematization, what is the test of sim- 

plicity? Explication of the standards of 

simplicity constitutes one of the most 

pressing current problems in the philoso- 
phy of science. The scientist, however, 

may be inclined to ask why there is any 
problem here. Given two alternative sys- 
tems covering the same subject matter, 
isn't it always pretty clear which, if 

either, is the simpler? How does any 
puzzle arise? There are two good an- 

swers. 
In the first place, the difficulty and 

significance of formulating precise gen- 
eral criteria of simplicity no more de- 

pend upon trouble encountered in mak- 

ing particular judgments of simplicity 
than the difficulty and significance of 

codifying deductive logic depend upon 
trouble encountered in ordinary reason- 

ing. The systematic logic developed by 
Aristotle, Boole, Whitehead and Russell 

(2), and others is only incidentally a 

tool for drawing or correcting inferences 

needed in ordinary life or in the labora- 

tory. Even the energetic investigation of 
inductive logic since Mill (3) aims much 
less at providing instructions for making 
predictions than at eliciting the laws of 
induction for their own sake. The utility 
that the results may have for the practic- 
ing natural scientist is as much a by- 
product as the utility that the scientist's 
results may have for the technologist. 
Investigation of the canons of deduction 
or induction or simplicity no more de- 
rives its main interest from the help it 

may give to physicists or biologists than 

investigation of the laws relating mass 
and energy derives its main interest from 
the help it may give to munitions-mak- 
ers or surgeons. 

But in the second place, comparative 
simplicity is often not very readily and 

surely judged. Of course if we succeed 
in deriving one of a set of hypotheses or 

concepts from the others, the saving is 
obvious. But comparison of theories in- 

corporating different hypotheses or con- 

cepts can offer great difficulty. For exam- 

ple, just when does introduction of the 

concept of a new fundamental particle 
simplify and when does it complicate 
physics? Sometimes different aspects of 
over-all simplicity may set up competing 
claims. Is a genuine simplification 
achieved by deriving mathematics from 
a few logical concepts at the cost of three 

big volumes of complicated formulae? 
We may smugly reply "yes," on the 

ground that what counts is the simplicity 
of the basic notions and postulates, and 
that the derivation is bound to be com- 

plicated just to the extent that the basis 
is simplified. But we seem to take the 

opposite view when we rate description 
of the motions of astronomical bodies in 
terms of ellipses as simpler than that in 
terms of circles; for the advocate of epi- 
cycles might argue that the more elabo- 
rate constructions and computations re- 

quired by his system are the symptomatic 
result of the greater simplicity of his ele- 

mentary concepts. If we are tempted to 
dismiss the idea that circles are simpler 
than ellipses as a mere superstition, we 
shall be embarrassed by the fact that, as 
remarked above, we employ some such 
notion of the relative simplicity of dif- 
ferent curves when we choose one to fit 
to plotted points in order to extrapolate 
from determined data to untested cases. 

Plainly, simplicity is not a single easily 
estimated characteristic of systems but 
several different interrelated character- 

istics, few of them easy to estimate. Thus 

simplicity is a problem for the scientist 
as well as for the philosopher. Canons of 

simplicity need to be formulated not only 
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for their intrinsic interest but also as 
means for making needed judgments in 
actual scientific investigation. 

A more plausible excuse for neglecting 
the study of simplicity has been that the 
problem, far from being too easy, is 
hopeless. Simplicity, the argument runs, 
is vague, ambiguous, variable, and sub- 
jective, and therefore too elusive for 
measurement. But exactly the same argu- 
ment might have been urged in primitive 
times against the possibility of measur- 
ing temperature or size. Ordinary judg- 
ments of size vary with distance, perspec- 
tive, atmosphere, color, eyesight, and 
even with interest. Size may mean total 
bulk, or it may mean maximum diam- 
eter, or it may mean height and length 
and breadth or any of many other quan- 
tities. And size changes with tempera- 
ture, pressure, growth, and wear. The 
arguments against the measurability of 
simplicity would, indeed, have been 
equally strong against the measurability 
of almost anything. Precision, fixity of 
meaning, verifiability, and objectivity are 
the results of measurement, not precon- 
ditions of it. 

What the problem of simplicity needs 
is a lot of hard work. So far, just a little 
has been accomplished; the entire bibli- 
ography of contributions to the subject 
hardly lists more than a dozen items 

(4, 5), most of them published during 
the past 15 years. Thus the problem is 
not only one of the most important in 
the philosophy of science but also one of 
the newest to be tackled seriously. We 
are still seeking proper formulation of 
some aspects of the problem, still explor- 
ing avenues of approach to others. Yet 
this gives the whole matter added inter- 
est; for here we can observe philosophy, 
and therefore science, in the early, for- 
mative stages of a typical development 
from a nebulous cluster of difficulties 
into articulated questions and on towards 
an organized discipline. 

Simplicity of Basic Terms 

We must begin by staking out a very 
small part of the problem for concen- 
trated attention (5). A theory is a system 
of statements. I shall be concerned here 
solely with the simplicity of the set of 
concepts, or the vocabulary of terms, 
employed in these statements. Further- 
more, since some words and symbols- 
like "and," "or," "not," "if .... then," 
"all," "some," " =," or translations of 
these-are logical apparatus common to 
all the systems in question, we need con- 
sider only the remaining, extralogical 
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terms. Such of these as are not defined 
in the system are called "primitive" and 
constitute the extralogical basis of the 
vocabulary of the system. It is the sim- 
plicity of such extralogical bases that I 
want to examine here. 

Among the extralogical terms of a sys- 
tem may be property-terms like ". . .. is 

acid," and relation-terms of various de- 
grees, like ". .. is larger than " 
and ". .. lies halfway between 
and .." ........... The examples given are re- 

spectively a one-place, a two-place, and 
a three-place predicate and may be ab- 
breviated, in standard symbolic notation, 
as "A (x) ," "L (x,y)," and "B (x,y,z)." 
In general, an n-place predicate has n 
blanks or variables and stands for an 
n-adic relation. 

Many of the most familiar terms oc- 

curring in scientific theories are not pred- 
icates but rather nonassertive function- 
terms, like "the father of ....," "the 

temperature of ....," "the distance be- 

tween .... and ___ ." However, for 

every function of n arguments there is a 
corresponding n + 1-adic relation; and 
for uniformity, let us suppose that in the 
extralogical bases under consideration 
all function-terms have been eliminated 
in favor of corresponding predicates. 
Thus the function-term "the father of 
....," or "f," gives way to the predi- 
cate "__ is the father of . . . .," or 

"F(x,y) "; and the function-term "the 
distance between .... and ," or 
"d y" gives way to the predicate "........ 
is the distance between ... . and ," 
or "D( - 

Some predicates, like ". . . . is 

wooden" and "... is a more ancient 
fossil than ," are predicates of 
things or individuals. Others, like ".... 
are rare" and" .... is a subset of ," 
are predicates of classes of things. Still 
others are predicates of classes of classes, 
numbers, and so on. Some predicates, 
like ". ... is the temperature of " 

and ".... is a member of " are 

heterogeneous, relating numbers to 
things, or things to classes, and so forth. 
To avoid having to deal at the start with 
differences in simplicity arising from 
such differences in type, let us require 
that in every case under consideration 
all the predicates be of a single homo- 
geneous type-that is, that all apply 
solely to things, or all apply solely to 
classes of things, and so on. Our results 
can afterwards be extended to cover 
cases where predicates of differing types 
are involved. 

One more temporary assumption is 
that all predicates in a basis are appli- 
cable-that is, that none are like ". . . . 

is a centaur" or ".... is a square cir- 
cle" in applying to nothing. Although 
this may seem a common-sense restric- 
tion, we may sometimes want to deter- 
mine the simplicity of a predicate when 
we are not sure whether it applies to 
anything. However, the restriction can 
later be easily removed. 

Still further specification of our im- 
mediate problem is needed. We are not 
concerned with the purely grammatical 
construction of predicates or with their 
length. Nor are we concerned with their 
relative familiarity or the ease of com- 
prehending them. These aspects of sim- 
plicity and many others may be philo- 
sophically and scientifically significant, 
but our present concern is rather with 
that logical or structural simplicity of 
bases which pertains directly to the de- 
gree of systematization of theories 
founded upon them. Just what consti- 
tutes such structural simplicity is indeed 
part of our problem and will have to be 
made clearer as we proceed. But we may 
note here that predicates in different 
languages, or in entirely different words 
of the same language, or quite unlike 
in grammatical composition, may be 
equally simple in this sense, and that for 
two predicates to apply in exactly the 
same instances-that is, to have the same 
denotation or extension-is a sufficient 
though not necessary condition for their 
having the same degree of structural sim- 
plicity. 

In summary, then, we want to find a 
way of measuring the structural sim- 
plicity of the set of undefined extralogi- 
cal terms of a theory or system. That is, 
we want to be able to assign to any such 
set of terms a number that will indicate 
the complexity of that set and, accord- 
ingly, one significant aspect of the com- 
plexity of the theory. We begin by 
assuming that all the terms under con- 
sideration are applicable predicates be- 
longing to some one homogeneous type. 
But they may have any number of 
places, and of course the several predi- 
cates in a given basis need not have the 
same number of places. 

A Clue to an Answer 

The first step toward measuring the 
size of objects must have been to fix 
upon a single elementary clue: the ap- 
plication of a yardstick of some sort di- 
rectly to the object in a certain way. 
This at once abstracted from apparent 
differences resulting from variations in 
distance and perspective, picked out as 
standard certain among the innumerable 
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dimensions of familiar objects, and pro- 
vided a unit for the numerical expres- 
sion of size. We seek some comparable 
clue to the problem of measuring the 
simplicity of extralogical bases. 

From the primitive predicates consti- 
tuting the extralogical basis of a system, 
with the help of the specified logical ap- 
paratus, all other extralogical terms of 
the system are generated by definition. 
One might first think of measuring com- 
plexity by definitional yield, or defining- 
power, on the principle that if one set of 
predicates is definable from a second but 
the second is not definable from the first, 
then the second is more complex, and 
that interdefinable sets of predicates are 
equally complex. For example, we can 
define ". . . . differs by one from __," 
among the natural numbers, from . . . 
is the immediate successor of __ 

(as follows: "x differs by one from y if 
and only if x is the immediate succes- 
sor of y, or y is the immediate successor 
of x") but not vice versa; hence a basis 
consisting solely of the former predicate 
would be rated simpler, according to this 
proposal, than a basis consisting solely 
of the latter predicate. Yet, plausible as 
this idea may be in a few such cases, it 
is quite mistaken as a general principle, 
for it would have the consequence that 
no simpler basis could be found for a 
system than that arrived at by merely 
taking all the extralogical terms of the 
system as primitive! For, since any ade- 
quate basis for a system must yield, 
through definition, all the terms of the 
system, the set of all these terms would, 
by the proposed criterion, be as simple 
as any adequate basis of fewer of these 
predicates. What is actually maximal 
complexity would be accounted maximal 
simplicity. 

Counting the predicates in a basis 
seems, offhand, a better test of simplicity, 
but this likewise fails. For if the number 
of predicates in a basis were the sole 
measure of complexity, ultimate sim- 
plicity would always; be achieved in a 
purely trivial way. Any number of 
predicates can be readily combined, so 
to speak, into a single predicate. A basis 
consisting of a one-place predicate (say 
" .... is copper") and a two-place predi- 
cate (say, "___ is more durable than 
........... ") can always be replaced by a sin- 
gle three-place predicate (say, ". . . . is 
copper, and is more durable 
than . "...........). And, taking all the predi- 
cates in a system, we can immediately 
construct a single many-place predicate 
from which all are definable by a rou- 
tine procedure. If the total number of 
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places in those original predicates is m, 
the single primitive thus'arrived at will 
have m places. Obviously, no genuine 
increase in simplicity is effected in this 
way; many simpler predicates are re- 
placed by a single correspondingly more 
complex one. The proposal to measure 
the complexity of bases by a mere count- 
ing of the predicates they contain fatally 
ignores all differences of complexity 
among predicates. 

The idea that inevitably suggests itself 
next is to measure complexity by the 
total number of places in all the predi- 
cates in a basis. The spurious simplicity 
effected by artificially combining several 
predicates into one will thus be properly 
discounted. But the new proposal is 
again too hasty. While we have clear 
grounds for not regarding an m-place 
predicate as simpler than a set of several 
predicates with a total of m places, we 
have no such grounds for not regarding 
the set of predicates as simpler than the 
single predicate. Replacement of set by 
single predicate is always possible, but 
not replacement of single predicate by 
set. For example, the two one-place 
predicates ".. . is a parent" and ".... 
has a parent" will not serve instead of 
the two-place predicate ". . . . is a par- 
ent of . .. "; to say that x is a parent 
and y has a parent is not to say that x is 
a parent of y. The complexity of bases 
seems to vary not only with the num- 
ber of places but also in some manner 
with the way this number is distributed 
among predicates in the basis. Several 
plausible formulas for this variation can 
easily be devised, but there is no im- 
mediately obvious method for choosing 
among them. 

Not only have our efforts been un- 
successful so far, but trying out one rule 
of thumb after another begins to look 
like an unpromising method of attacking 
our problem. Yet, all the time, the clue 
we want has lain ready in our hands. In 
rejecting the mere counting of primitives 
as a measure of complexity, we argued 
that any set of predicates can always be 
replaced by a single predicate. We tacitly 
appealed to the principle that replace- 
ment of a basis by another effects no 
genuine simplification where such a re- 
placement can always be made by a 
purely routine procedure. Other appli- 
cations of the same principle come 
quickly to mind. Predicates can always 
be added to a basis without destroying 
its adequacy, and a predicate can always 
be replaced by another having more 
places; obviously, in neither case is sim- 
plicity increased. In other words, an ele- 

mentary principle applied in judging 
proposed measures of complexity is this: 
If every basis like a given one can al- 
ways be replaced by some basis like a 
second, then the first is not more com- 
plex than the second. This may seem too 
meagre and negative a principle to carry 
us very far, but it is the key to our prob- 
lem. More carefully formulated, clari- 
fied, and supplemented, it will constitute 
the fundamental axiom of a calculus of 
simplicity. 

First Axioms of Simplicity 

Let us, then, adopt as our first postu- 
late: 

P1. If every basis of a relevant kind K 
is always replaceable by some basis 
of a relevant kind L, then K is not 
more complex than L (that is, K 
does not have a higher complexity 
value than L-or, briefly, when "v" 
stands for "the complexity-value 
of," vK vL). 

Now a good many points here call for 
explanation. In the first place, to say 
that every basis of kind K is always 
replaceable by some basis of kind L is 
to say not only that there always is some 
equivalent basis of kind L but also that 
we can always find one; that is, that 
given any basis B of kind K, with no fur- 
ther information than that B is of kind 
K, we can define in terms of B and the 
stated logical apparatus alone some basis 
B' of kind L such that we can redefine 
B from B' and the logic alone. 

In the second place, our postulate 
speaks of the complexity of kinds rather 
than of bases. A kind has the highest 
complexity-value possessed by any basis 
of that kind, and a basis has the com- 

plexity-value of the narrowest relevant 
kind to which the basis belongs. 

In the third place, what are the rele- 
vant kinds? Structural kinds, certainly, 
since we are concerned with structural 
complexity. But not every structural dif- 
ference constitutes a difference in rele- 
vant kind; for if that were the case, then, 
since definition from a basis always de- 
pends upon structural features, our pos- 
tulate would in effect reduce to the test 
in terms of defining power that we have 
already rejected. What will constitute a 
relevant kind depends upon the fact that 
our postulate is intended to express the 
principle that purely routine replacement 
effects no genuine simplification. 

Now, replacement of a basis B by an- 
other, B', is purely routine if every basis 
like B, or of the same broad sort or gen- 
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eral kind as B, is always replaceable by 
some basis of the same general kind as 
B'. The ordinary notion of a "broad 
sort" or "general kind" is vague and has 
to be supplanted by something much 
more clear-cut. As a first approximation, 
we may define such a relevant kind as 
any class of bases delimited by specifying 
the number of predicates in a basis and 
the number of places in each predicate, 
together with any or no information con- 
cerning the three most commonplace 
properties of predicates: reflexivity, 
transitivity, and symmetry. (At the mo- 
ment, the reader need not understand 
what these properties are; they will be 
explained presently, and our tentative 
definition of relevant kinds will be some- 
what revised). Thus, for example, the 
class of all bases consisting of a two- 
place and a one-place predicate is a 
relevant kind; so also is the narrower 
class of bases consisting of a symmetric 
two-place predicate and a one-place 
predicate. Our tentative definition of 
relevant kinds will presently be further 
explained and somewhat revised. 

One may ask what justifies this par- 
ticular interpretation of "broad sort" or 
"general kind," this particular decision 
in spelling out the imprecise notion of 
purely routine replacement. Quite 
plainly, no precise interpretation can 
claim to be uniquely indicated. Devel- 
oping any method of measurement is a 
process of forging a sharp and effective 
tool from rough practice. We must look 
to the practice where it offers us guid- 
ance and, at the same time, remove ob- 
scurities, resolve conflicts, and fill in 
gaps, by rulings designed to yield the 
most significant results. A method of 
measuring anything must meet taxing 
but somewhat elusive demands of faith- 
fulness and serviceability, but no method 
is exclusively correct. Thus our chosen 
definition of relevant kinds must find its 
justification in the combination of its 
plausibility as a translation of the rough 
notion of "general kinds" with the over- 
all acceptability of the calculus of meas- 
urement to which this interpretation is 
a contributing factor. 

From postulate 1, we can show that 
two kinds are equally complex if every 
basis of each kind is always replaceable 
by some basis of the other kind, and we 
can derive complexity-value equations 
for many kinds of bases. But in order to 
derive inequalities-to show that certain 
kinds are more complex than certain 
others-we need something more. This 
is provided by a prosaic postulate to the 
effect that a basis consisting of some 
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predicates is more complex than a basis 
consisting of none, and that the value of 
a basis can be computed by adding the 
complexity-values of the predicates 
in it. 

P2. Every predicate in an extralogi- 
cal basis has a positive complexity- 
value, and the value of the basis is 
the sum of the values of the predi- 
cates in it. 

The second clause operates to ex- 
clude from consideration, in determin- 
ing complexity-values, any interconnec- 
tions among the predicates in a basis. 
But such interconnections will be taken 
into account later, after a primary scale 
of complexity-values has been estab- 
lished. 

Development of a Calculus 

Easily proved from these postulates 
are certain elementary theorems, such as 
that where m is less than n, the com- 
plexity-value of the class of m-place 
predicates (that is, of the kind of basis 
that consists of a single m-place predi- 
cate) (6) is less than the complexity- 
value of the class of n-place predicates. 
But the further development of the cal- 
culus requires treatment of more specific 
properties of predicates and becomes 
highly complicated. I shall describe it 
here very sketchily, merely to suggest 
its general character and the results ob- 
tained. 

1) Two-place predicates are irreflex- 
ive if they never relate anything to itself. 
Thus, ".... is a parent of _ " is 
irreflexive. On the other hand, the predi- 
cate ". . . . has the same blood type as 
~____" is reflexive, since everyone has 
the same blood type as himself. Some 
predicates, like ".... has a brother in 
common with ," are neither re- 
flexive nor irreflexive; every person with 
a brother, but no person without, has a 
brother in common with himself. One- 
place predicates are, degenerately, both 
reflexive and irreflexive. 

Reflexive predicates are interreplace- 
able with irreflexive predicates and hence 
they are equal in complexity. A two- 
place predicate "P" that is neither re- 
flexive nor irreflexive has the same com- 
plexity-value as a set of two irreflexive 
predicates: a two-place predicate that 
relates every two distinct elements, x and 
y, related by "P," and a one-place predi- 
cate applying to every x that "P" relates 
to x itself. 

With predicates of more than two 
places, the varieties of reflexivity-prop- 

erties multiply rapidly, for a many-place 
predicate may be reflexive or irreflexive 
or nonreflexive with respect to all or to 
any given selection of its places. But for- 
tunately, the complexity of any basis can 
be proved to be equal to that of a certain 
basis consisting solely of thoroughly irre- 

flexive predicates (that is, irreflexive with 
respect to all their places). Every other 
predicate of n places in the basis gives 
way to a set of one or more thoroughly 
irreflexive predicates, each having not 
more than n places. Thus we can confine 
our attention to thoroughly irreflexive 
predicates. 

2) A two-place predicate, like ".... 
is greater than ," is said to be 

transitive, since if x is greater than y and 
y is greater than z, then x is greater than 
z. However, transitivity proves to be less 
pertinent to complexity measurement 
than (and is now to be supplanted as a 
defining property of relevant kinds by) 
a stronger property of predicates that 
may be called self-completeness. If two 
one-place predicates-say, "... . is red" 
and "____ is white"-are compounded 
into one two-place predicate-say, ".... 
is red, and __ is white"-the latter 
is self-complete. In general, a self-com- 
plete two-place predicate is such that if 
it joins x to y and also z to w (and if all 
these except possibly y and z are differ- 

ent), then it joins x to w. Predicates of 
more places may likewise be self-com- 
plete with respect to all their places: for 

example, the predicate ". .... is red, 
and ._ is white, and ............ is square." 
Such predicates (whatever their number 
of places) are, figuratively, rather un- 
stable; they break down easily into one- 
place predicates. For that reason, thor- 
oughly self-complete predicates do not 
often occur in actual systems; but for the 
same reason, their consideration is im- 
portant for our present purposes. Their 
resolubility enables us to show that the 
complexity-value of an n-place thor- 
oughly self-complete predicate is equal 
to the complexity-value of n one-place 
predicates. This is a crucial step towards 
determination of the general relationship 
between the complexity-values of predi- 
cates differing in number of places. 

3) A two-place predicate is symmetric 
if it pairs elements in both directions 
whenever it pairs them in either; for ex- 
ample, ". . . . is a sibling of __ is 

symmetric, since everyone is a sibling of 
anyone he or she has as a sibling. The 
three-place predicate ". . . . and 
and .................. are triplets" is also sym- 
metric with respect to all its places, and 
a predicate of more places that is simi- 
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larly entirely order-indifferent is like- 
wise thoroughly symmetric. 

We saw that a self-complete two-place 
predicate has the same complexity-value 
as two one-place predicates; but a sym- 
metric self-complete two-place predicate 
has the same value as a single one-place 
predicate. Such a predicate merely pairs 
in both directions every two elements of 
a set. Likewise, an n-place thoroughly 
symmetric and thoroughly self-complete 
predicate merely combines in all direc- 
tions (or applies to all permutations of) 
every n elements of a set, and such an 
n-place predicate has the same complex- 
ity-value as a single one-place predicate. 

4) Complications pile up fast when 
we consider predicates that are only 
partially, rather than thoroughly, self- 
complete or symmetric. For instance, 
many-place predicates may be symmetric 
with respect to some rather than all of 
their places. If x lies on a straight line 
between y and z, it follows that x lies on 
a straight line between z and y, but not 
that y lies on a straight line between x 
and z. Thus the three-place predicate 
".... lies on a straight line between 

and ............" is symmetric with re- 
spect to the last two, but not with re- 
spect to all, of its places. 

Again, a predicate may be symmetric 
with respect to sequences of its places 
rather than with respect to its places 
severally. For example, if x is exactly as 
much greater than y as w is greater than 
z, then w is also exactly as much greater 
than z as x is greater than y. The four- 
place predicate in question here is not 
symmetric with respect to any, two or 
more of its places severally but is sym- 
metric with respect to pairs of its places: 
the pair of its first two and the pair of its 
last two places. 

Similarly, self-completeness may occur 
with respect to sequences of places rather 
than with respect to places severally. 
And a single predicate may exhibit many 
varieties of symmetry and self-complete- 
ness at once. 

All this makes the full treatment of 
our problem very intricate. Briefly, what 
we do is define the symmetry index of a 
predicate as a certain function of all the 
symmetries the predicate has, and also 
define the self-completeness index of a 
predicate in a comparable way. We then 
examine how complexity varies in rela- 
tion to these indices. 

5) This examination, carried out with 
the help of two supplementary postu- 
lates, yields the means for determining 
the complexity-value of any relevant 
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kind of basis as a function of two con- 
stants (either but not both of which may 
occur vacuously): the complexity-value 
of one-place predicates and the com- 
plexity-value of two-place irreflexive 
predicates. In order to achieve a fully 
quantitative measure, a final postulate 
is needed to fix the numerical value of 
these constants. This postulate stipulates 
that all, and only, those kinds of bases 
that can be shown by preceding postu- 
lates to have the same value as one-place 
predicates shall have the value 1, and 
that all other kinds shall have the lowest 
integral value consistent with this re- 
quirement and with preceding postu- 
lates. Assignment of the value 1 is a 
mere convenience; we might have used 
some arbitrary constant c. The choice of 
integral values is always indicated in any 
scheme of measurement where, as here, 
use of nonintegral values can be avoided. 

Resultant Simplicity Formulae 

Some of the resulting complexity-val- 
ues are given by the following formulae: 

1) The class of n-place thoroughly ir- 
reflexive predicates has value 2n- 1. 

2) The class of n-place thoroughly ir- 
reflexive and thoroughly self-complete 
predicates has the value n. 

3) The class of n-place thoroughly ir- 
reflexive and thoroughly symmetric pred- 
icates has the value n. 

4) The class of n-place predicates that 
are thoroughly irreflexive, self-complete, 
and symmetric has the value 1. 

More generally, the value of any kind 
of n-place irreflexive predicate is 2n- 1 
minus the sum of its symmetry and self- 
completeness indices. 

When the limitation to irreflexive 
predicates is dropped, the values of rele- 
vant kinds are obtained, as suggested 
earlier, by computing the value of corre- 
sponding kinds of bases consisting of ir- 
reflexive predicates. These values rise 
very rapidly with the number of places; 
the class of all two-place predicates has 
the complexity-value 4, and that of all 
three-place predicates, the value 15. 

Some temporary exclusions made ear- 
lier can now be removed. In the first 
place, the restriction to applicable predi- 
cates is easily eliminated without affect- 
ing any of our results; for since inappli- 
cable predicates have zero complexity, 
adding them to a relevant kind cannot 
increase its complexity-value. In the sec- 
ond place, where the predicates in ques- 
tion are not all of one homogeneous type 

(but meet certain conditions of finitude), 
available methods of correlating each 
predicate with a set of predicates of the 
lowest type may be applied, and the 
complexity-values may then be readily 
calculated. Finally, our temporary exclu- 
sion from consideration of interconnec- 
tions between predicates is compensated 
for by adoption of a secondary rule for 
choosing in certain cases between bases 
of different structure but of equal com- 
puted complexity-value. 

Present Status of Simplicity Study 

The calculus I have outlined is virtu- 
ally complete; proofs for all theorems 
are currently being checked. However, 
some possibilities for improvement still 
need consideration, and other writers 
have entered some objections and have 
proposed modifications and alternatives 
(7). Investigation of the measurement 
of the structural simplicity of the extra- 
logical bases of theories is unlikely to 
reach its stage of ultimate stagnation for 
some time. But that can also be said of 
many an older scientific inquiry. I hope 
enough has been said to show that our 
problem has at least been carried some 
steps away from its stage of initial con- 
fusion. 

We have been dealing, it must be re- 
membered, with a very small corner of 
the big problem of simplicity. We have 
considered the simplicity of terms but 
not of postulates framed in these terms. 
We still have no measure of the over-all 
simplicity of theories. Nor does our cal- 
culus answer the crucial questions in- 
volved in the fitting of curves and in 
induction generally (8). But perhaps the 
progress made on one aspect of the prob- 
lem will somewhat alleviate despair con- 
cerning the rest. If some of the remain- 
ing questions seem too vague to be amen- 
able to precise formulation and treat- 
ment, we may well reflect that most sci- 
entific problems seemed that way once. 
The obscurities of problems are due less 
to the subject matter than to short-com- 
ings in its investigation. 
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On 12 April 1958, Richard Gold- 
schmidt was 80 years old. He was re- 
covering from a nearly fatal illness which 
had struck a few weeks earlier. Letters 
from friends and well-wishers arrived 
from many lands, praising his achieve- 
ments as a biologist, a zoologist, and a 
geneticist, expressing amazed admiration 
for his continued scientific productivity, 
and professing warm personal feelings of 
affection. That birthday, quietly spent 
with his family, was a happy day in a 
period of years in which physical pain 
and fear that the body might force the 
mind into inactivity were ever-present. 
Less than two weeks later, on 24 April, 
the end came. 

Richard Goldschmidt's ancestors be- 
longed to respected families who had 
lived for centuries in Frankfurt am Main. 
He received an excellent education at 
the Gymnasium and at an early age de- 
cided to become a naturalist. In 1896 
he entered the University of Heidelberg 
where, to use his own words, he "had 
such glorious teachers as Biitschli, Geg- 
enbaur, Kiihne, V. Meyer, Kossel, Rosen- 
busch." After a short period in Munich 
under Richard Hertwig, he returned to 
Heidelberg and obtained the Ph.D. de- 
gree in 1902. From 1903 to 1913 he 
worked and taught in Munich. In 1914 
Goldschmidt was selected by Boveri to 
join him as a member of "the newly 
founded . . . wonderful Kaiser Wilhelm 
Institut fiir Biologie, Berlin-Dahlem." 
Soon after, for reasons of health, Boveri 
had to give up his projected move to 
the Institut. Goldschmidt accepted his 
appointment, which extended over 22 
years; for the last 15 of these he served 
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as a director. In 1936, after the passage 
of the "Niirnberg Laws," he was invited 
to join the zoology department of the 
University of California. "This turned 
out to be one of the most happy events 
of my life, crowned by becoming an 
American citizen in 1942"-thus he 
wrote in an autobiographical sketch 
filed, by request, with the National 
Academy of Sciences in Washington 
(1948). By then he had, according to 
American custom, included a middle 
name in the by-line of his publications-- 
Richard Benedict Goldschmidt. 

In Berkeley he taught genetics and 
cytology for more than a decade and 
uninterruptedly continued his research 
for 22 years. Reports on experiments 
and books on wide-ranging subjects fol- 
lowed one another. Even after his death 
two papers appeared in print. 

Goldschmidt's work covers nearly 60 
years of tireless productivity. When, in 
1954, he compiled a list of his 17 books 
and approximately 250 papers, he di- 
vided the latter into the following 
classes: protozoology (1904-07); cytol- 
ogy (1902-50); embryology (1900-35); 
histology and neurology (1903-10); 
acrania (1905-33); gynandromorphism 
(1922-37); intersexuality (1911-51); 
general sex determination, sex-controlled 
heredity (1910-53); genetics and evo- 
lution (1911-53); genetics: Mendelian 
analysis and general (1913-54); physio- 
logical genetics (1916-52); human he- 
redity (1927-53); biographical, popu- 
lar science, varia (1916-53). 

He listed his books under "technical," 
"textbooks," "popular," and "travel." 
Among these were such books as Die 
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quanititativen Grundlagen von Vererbung 
und Artbildung (1920); Mechanismus 
und Physiologie der Geschlechtsbestim- 
mung (1920); Physiologische Theorie 
der Vererbung (1927); Die sexuellen 
Zwischenstufen (1931); Physiological 
Genetics (1938); The Material Basis of 
Evolution (1940); Theoretical Genetics 

(1955); Einfiihrung in die Vererbung- 
swissenschaft (first edition, 1911; fifth 
edition, 1928); Ascaris, eine Einfiihrung 
in die Wissenschaft vom Leben (first 
edition, 1921; third edition, 1953); and 
Neu-Japan (1927). Translations of his 
books appeared in English, French, He- 
brew, Japanese, Polish, Russian, Span- 
ish, and Yugoslavian. His latest volume, 
the charming Portraits from Memory, 
Recollections of a Zoologist (1956), is 
in the process of being translated into 
German. An autobiography went to press 
this spring. 

Goldschmidt's influence on the biology 
of the 20th century rested on observation 
and experiment as well as on the theory- 
building sweep of his imagination. His 
outstanding experimental accomplish- 
ment was the long series of crosses be- 
tween geographical races of the gypsy- 
moth Lymantria. It led to an analysis 
of the phenomenon of intersexuality 
which went far beyond the framework 
of classical genetics. He had early 
trained himself to be a revolutionary of 
science. He reached his height in his 
endeavors to build a dynamic physiolog- 
ical genetics on the static and material 
basis which Mendel and Morgan had 
laid, and which he admired, as such, 
without reservation. He raised his voice 
in warning of a too ready acquiescence 
in apparently established concepts of the 
gene and some widely held genetic inter- 
pretations of evolution. He was willing 
to face the strong opposition to his un- 
popular ideas, but he lived to see them 
move into the forefront of contemporary 
thought. 

He lectured before thousands of eager 
listeners-students, colleagues, men of 
other professions, and interested lay 
people-in Europe, America, Asia, and 
Australia. Three periods which he spent 
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