similarity to the hybrid substance described by Irwin which occurs in doves (7), and, more particularly, to the extensive observations of Cohen on some of the red cell antigens in the rabbit in which genetic interaction has been amply demonstrated (8). These results may also be relevant to the problem of heterotic vigor and illustrate how this phenomenon might on occasion be due to the presence, in the heterozygote, of a substance not possessed by either homozygote (9, 10).

A. G. BEARN E. C. FRANKLIN

Rocketeller Institute, New York

References and Notes

- 1. O. Smithies, Biochem. J. 61, 629 (1955).
- O. Smithles, *Diochem. J.* 01, 029 (1933).
 G. C. Ashton, *Nature* 180, 917 (1957).
 O. Smithles and N. F. Walker, *ibid.* 176, 1265 (1955);
 F. Galatius-Jensen, *Acta Genet. et Statist. Med.* 7, 549 (1957).
 O. Smithles and N. F. W. W. L. M. (1997). 3.
- 4. O. Smithies and N. F. Walker, Nature 178, 694 (1956).
- 694 (1950).
 M. F. Jayle and J. Tonnelat, Bull. soc. chim. biol. 38, 343 (1956); S. Guinaud, J. Tonnelat, G. Boussier, M. F. Jayle, ibid. 38, 329 (1956).
 A detailed report of these findings is in prep-5.
- 6. 7.
- M. R. Irwin, Advances in Genet. 1, 133 (1947). ß
- (1947). C. Cohen, J. Immunol. 80, 73 (1958). J. B. S. Haldane, Proc. Roy. Soc. (London) B144, 217 (1955).
- 10. These studies were supported in part by a grant-in-aid (A-1542) from the National Institute of Arthritis and Metabolic Diseases, National Institutes of Health.

31 March 1958

Isotope Effect in Oxidation of D-Mannitol-2-C14 by Acetobacter suboxydans

Previous reports from this laboratory have described the preparation of D-mannitol-1-C14, its oxidation by Acetabacter suboxydans, and the carbon-14 assay of the resulting D-fructose-1,6- C^{14} (1-3). Because the two halves of the mannitol

molecule are stereomerically identical, oxidation by A. suboxydans can take place at either carbon 2 or carbon 5. It was pointed out that "if oxidation took place without either an isotope effect or breakdown of the D-mannitol and resynthesis of the fragments, the derived p-fructose would be labeled equally and exclusively at carbons 1 and 6" (3). The early work showed that, within the error of measurement, D-fructose-1,6-C14 was, indeed, labeled equally and exclusively at carbons 1 and 6.

Oxidation of glycitols by A. suboxydans is specific for the group

where R is either H or certain other substituents. Presumably, the enzyme responsible for the oxidation forms an intermediate complex that involves the three carbon atoms indicated. The presence or absence of an isotope effect in the oxidation of a labeled *D*-mannitol should provide information concerning the rate-determining step, and hence, the mechanism of reaction.

In a more extensive study of a possible isotope effect, both 1-C14- and 2-C14-Dmannitol have been oxidized by A. suboxydans. The distribution of carbon-14 in the resulting D-fructose-1,6-C¹⁴ and D-fructose-2,5-C14 has been determined by several chemical methods, selected to avoid isotope effects in the analysis.

The results, summarized in Table 1, confirm the earlier radioactivity analysis of D-fructose-1,6-C14; no isotope effect was detected. However, a small disproportionation in the distribution of carbon-14 was found for D-fructose-2,5-C¹⁴. This indicates that, in the oxidation of p-mannitol-2-C¹⁴ by A. suboxydans, there is a small isotope effect, and oxidation is

Table 1. Radioactivity analysis of D-fructose-1,6-C¹⁴ and D-fructose-2,5-C¹⁴.

Compound assayed	Carbon atoms of original D-fructose	Radioactivity after successive recrystallizations (µc/mmole)	Av. % of original radio- activity
Analysi	s of D-fructose-1,6-	C^{14}	
D-Fructose-1,6-C ¹⁴	1, 2, 3, 4, 5, 6	2.62*	100
Potassium D-arabonate	2, 3, 4, 5, 6	1.32*	50.4
"D-Glucose" phenylosotriazole [†]	1, 2, 3, 4, 5, 6	4.35, 4.33, 4.34	100
4-Formyl-2-phenylosotriazole‡	1, 2, 3	2.15, 2.17, 2.16	49.8
Dimedon-formaldehyde compound§	6	2.17, 2.18	50.1
Analysi	s of D-fructose-2,5-	C^{14}	
D-Fructose 2,5-C ¹⁴	1, 2, 3, 4, 5, 6	1.93, 1.96, 1.93	100
"D-Glucose" phenylosotriazole†	1, 2, 3, 4, 5, 6	1.94, 1.90, 1.91	
4-Formyl-2-phenylosotriazole‡	1, 2, 3	0.93, 0.94, 0.93	48.4
Erythritol	3, 4, 5, 6	0.97, 0.98, 0.99	51.4
Erythritol tetrabenzoate	3, 4, 5, 6	1.01, 1.00, 0.99	
Dimedon-formaldehyde compound§	6	none	

* Value taken from Frush and Isbell (3). ‡ *p-arabino-Hexose* phenylosotriazole. ‡ Phenyl-2H-1,2,3-tria-zole-4-carboxaldehyde. § 2,2'-Methylenebis(5,5-dimethyl-1,3-cyclohexanedione).

12 SEPTEMBER 1958

slightly less rapid at carbon 2 (C^{14}) than at carbon 5 (C^{12}).

Because of the extensive use of C14labeled products in biochemical studies, the demonstration of an isotope effect in a biological oxidation is particularly significant. Although the effect is small, it shows the need for caution in the use of biological oxidations for determining the distribution of carbon-14 in carbohydrates.

All of the compounds listed in Table 1 were recrystallized to constant radioactivity, and samples were assayed in solution (4).

HARRIET L. FRUSH

LORNA J. TREGONING

Division of Chemistry, National Bureau of Standards, Washington, D.C.

References and Notes

- 1. This is part of a project on the development of methods for the synthesis of radioactive carbohydrates, sponsored by the Division of Research of the U.S. Atomic Energy Commission.
- H. S. Isbell and J. V. Karabinos, J. Research Natl. Bur. Standards 48, 438 (1952).
 H. L. Frush and H. S. Isbell, *ibid.* 51, 167 (1953).

(1555). A. Schwebel, H. S. Isbell, J. D. Moyer, *ibid*. 53, 221 (1954). 4.

7 April 1958

Iodine-131 Fallout in

Bovine Fetus

Iodine-131 from radioactive fallout is concentrated in thyroid glands of grazing animals (1, 2) and the distribution suggests that I¹³¹ spreads over the hemisphere in which it is released (2). A study of the fallout of I¹³¹ in the thyroids of fetal animals will serve two purposes: (i) It will be helpful in evaluating the maximum biological accumulation of radioactive fallout; and (ii) it might give useful information regarding iodine distribution during pregnancy.

Gorbman et al. (3) injected I¹³¹ into two cows during the ninth month of pregnancy, sacrificed them 24 hours later, and studied the I131 distribution. They found that the I¹³¹ concentrations in the thyroid of the fetuses were 6 to 7 times those of the dams. Autoradiographs showed uniform distribution of radioactivity in fetal glands but nonuniform concentrations in the adult thyroids. Wolff et al. (4) showed that bovine fetuses began to concentrate iodine at 53 days of gestation and that the amount of iodine increased rapidly after the fifth month.

Barnes et al. (5) have studied I¹³¹ distribution in pregnant sheep which were chronically fed the radioisotope. They showed that the near-term fetal thyroid I¹³¹ concentration was 1 to 2 times that of the dam.

Part of one lobe of the thyroid gland from each of 40 pregnant cows was removed along with the laryngothyroid