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Density of the Upper Atmosphere 

An atmospheric density at an altitude 
of about 368 km has been inferred from 
the orbital behavior and physical charac- 
teristics of the American artificial earth 
satellite Explorer I, also denoted as 1958 
Alpha. The orbital data as of 1 February 
1958 were (1, 2): eccentricity, 0.139; 
inclination, 33?.2; argument of perigee, 
120?.0; anomalistic period, Od.0798274; 
decrease of period 3.9 x 10-7 day per 
period or about 0s.42 per day. From 
these one finds a mean distance of 
1.22757 earth radii, corresponding to a 
perigee height above the international 
ellipsoid of 368 km. 

The satellite is a cylinder 80 in. long 
and 6 in. in diameter, and it has a mass 
of about 14 kg (3). The area of such an 
object that is relevant to its air resistance 
is its area projected on a plane normal 
to its direction of motion. The average 
over all possible orientations, for random 
tumbling, is one fourth of the total su- 
perficial area, or 2520 cm2. The same 
value is obtained if the cylinder spins 
about a transverse axis, randomly ori- 
ented with respect to the orbit plane. 
Averaged over a spin period, over orien- 
tations of the spin axis with respect to 
the orbit plane, and over the motion of 
perigee, the same projected area has 
been obtained as for random tumbling, 
and has been employed. The aerody- 
namic drag coefficient has been taken to 
be 2. The density has been inferred by a 
method described elsewhere (4) from 
this value, the mass, the average area, 
the eccentricity, the mean distance, the 
rate of decrease of period, and the log- 
arithmic derivative of density near peri- 
gee given by the ARDC model atmos- 
phere (5). 

The density thus found, 1.5 x 10-14 

g/cm3 at a geometric altitude of 368 km 
(348 geopotential) is about 14 times 
that predicted by the ARDC model at- 
mosphere. It falls nearly on the middle 
curve, No. 2, in a study (6) that tenta- 
tively suggested a modification of the 
ARDC atmosphere to satisfy a density 
4.5 x 10-13 g/cm3 at 220 km (213 geo- 
potential) that had been inferred (7) 
from observations of the U.S.S.R. satel- 
lite 1957 Alpha 2. This value was about 
9 times the ARDC density. The values 
4.5 x 10-13 and 1.5 x 10-14 g/cm3 depend 
somewhat on the gradients of density of 
the ARDC model employed in the re- 
ductions. It seems better to infer the 
densities at both altitudes from the ob- 
servations without recourse to model at- 
mospheres, and to proceed by successive 
approximations until the gradients and 
densities are consistent. In this way, from 
the observations of both satellites to- 
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the observations of both satellites to- 
gether, densities have been inferred of 
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These values do not agree well with den- 
sities predicted by Harris and Jastrow 
(8) as extrapolations from altitudes of 
about 220 km and below, but they seem 
to be in surprisingly good agreement 
with curve No. 2 of reference (6). 
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Density Determinations 
Based on the Explorer and 

Vanguard Satellites 

Minitrack observations on the orbits 
of Explorer I and Vanguard I permit 
us to make a rough determination of the 
density of the atmosphere at latitudes 
between 33?N and 33?S (1, 2). Our 
analysis is based on the orbit elements 
and rate of change of period obtained 
from Minitrack data for these satellites 
by the Vanguard Computing Center. 
The change in period is the direct re- 
sult of the drag exerted by the atmos- 
phere, which causes the satellite to lose 
energy continuously during its lifetime. 
As the energy of the satellite decreases, 
it falls towards the center of the earth, 

Table 1. Orbital periods for Explorer I, 
derived by the Vanguard Computing 
Center from Minitrack data. The third 
column gives the average value of dP/dt, 
obtained from the tabular differences in 
the first and second columns. 

P dP/dt lDate (min) (min/day) 

5 Feb. 114.95 
0.0073 

2 Apr. 114.54 
0.0097 

2 May 114.25 
0.0150 

17 May 114.13 

These values do not agree well with den- 
sities predicted by Harris and Jastrow 
(8) as extrapolations from altitudes of 
about 220 km and below, but they seem 
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