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Recent Advances i 

Rational Mechani4 

The search for underlying concepts and strict mat: 
matical proof deepens our understanding of mechan 

C. Trues 

I begin by answering the question 
that will occur to many a reader upon 
seeing the title: What is rational me- 
chanics? It is difficult to define rational 
mechanics, but no more so than to 
define chemistry or physics or mathe- 
matics. However, a chemist writing a 

survey of his field is not expected to be- 

gin by defining chemistry. The difference 
is that in the United States, at least, ra- 
tional mechanics is not a recognized sci- 
ence. Indeed, there are some who dis- 
believe in its existence (1). 

Relation to Other Disciplines 

First, rational mechanics is a part of 
mathematics (2). It is a mathematical 
science, and in its relation to experience, 
intuition, abstraction, and everyday life 
it does not differ in essence from other 
branches of mathematics. There is no 
need to offer here a general defense for 
mathematics; it should also be unneces- 

sary to point out that mathematics, how- 
ever abstract and however precise, is a 
science of experience, for experience is 
not confined to the gross senses. Also, 
the human mind can experience, and we 
need not be so naive as to see in an oscil- 
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Indeed it does; so does geometry, for 
lengths, surfaces, and volumes are 
equally related to physical experience. 
The geometer may visualize a surface in 

in terms of a twisted strip of paper, as in 
mechanics we may think of a force as a 
manual push, but whatever these moti- 

Cs vations, the symbols in the equations of 
geometry and mechanics are precisely 
defined mathematical quantities. Origin 

he- in broader experience should make me- 
chanics more interesting but not any less 

ics. i*cs. ~ exact. 
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part of theoretical physics? Indeed, it 
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but also of mass, where most modern researches occur, is 
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to explore other mechanical laws, usually 
we do not choose to exercise this liberty 
except in the limited and sober way I 
will explain later. 

That rational mechanics is a mathe- 
matical science does not mean that its 
standard is one of mathematical diffi- 
culty. Indeed, some great researches in 
rational mechanics are difficult and in- 
tricate, but others are simple. An inno- 
vation that is simple and easy to under- 
stand is especially prized. The problems 
are set by the subject; hard or easy, they 
must be solved, and their mathematical 
difficulty is just as much an incidental 
as is their physical application. After all, 
in this, rational mechanics is not differ- 
ent from other parts of mathematics, for 
only. to the novice is the seeming com- 
plexity or difficulty of a mathematical 
science a measure of its level. 

Is rational mechanics a part of pure 
mathematics? To most mathematicians 
today, pure mathematics means topol- 
ogy, abstract algebra, or analysis in ab- 
stract spaces. These, most certainly, ra- 
tional mechanics makes no attempt to 
imitate. While in spirit it is nearest to 
geometry, its problems, its aims, and its 
methods bear little evident similarity to 
those of other parts of mathematics. A 
theorem in topology is not evaluated in 
terms of its bearing on the theory of 
numbers. It is equally ridiculous, though 
unfortunately not infrequent, to dispar- 
age theorems in rational mechanics when 
they do not also contribute to the more 
popular branches of pure mathematics. 

Is rational mechanics a part of ap- 
plied mathematics? Most certainly not. 
While in some cases known mathemati- 
cal techniques can be used to solve new 
problems in rational mechanics, in other 
cases new mathematics must be in- 
vented. It would be as misleading to 
claim that each achievement in ra- 
tional mechanics has brought new light 
to other mathematical domains as to 
claim the opposite, that rational mechan- 
ics is a mere reflection from known parts 

of pure mathematics. It is a mistake to 
raise the issue of applied versus pure 
mathematics. Indeed, it is not the aim of 
rational mechanics to produce methods 
or results that rate per se as "new" in 
other parts of mathematics; neither is 
its aim to avoid them. Equally, it is not 
the aim of rational mechanics to produce 
applications, whether to physics, to en- 

gineering, or to other parts of mathe- 
matics; neither is its aim to avoid them. 
Rational mechanics is an independent 
branch of mathematics. When a research 
in rational mechanics predicts a new 

physical phenomenon or produces a new 

analytical method, as occasionally hap- 
pens, this is so much the better. But 
such by-products, while very welcome 

luxuries, are not essential. Rational me- 
chanics, like every other distinct science, 
has its own aims, its own standards, its 
own independent problems. 

Role of Rational Mechanics 

There is widespread belief that in 

physics the basic equations governing 
physical phenomena are established and 
then it is the duty of the mathematician, 
or the applied mathematician, to solve 
them. When this view is imposed upon 
mechanics, we are driven to conclude 
that the basic equations of mechanics 
are in the textbooks on classical physics 
and all that is left is for analysts to solve 

them, for engineers to apply them. This 
leaves no place at all for rational me- 

chanics, since rational mechanics rarely 
concerns itself with theorems of exist- 
ence and uniqueness or with calculation 
of numerical answers. While such a 

simple cooperative division of respon- 
sibilities between mathematician and 

physicist may be ideal, it is unreal. 

Surely we may admit that biologists 
study biology because they prefer it to 

physics; thus, that physicists nowadays 
study nuclear physics rather than classi- 
cal mechanics need not imply that classi- 

S_ e 

Fig. 1. Spin or "vorticity" of a fluid particle. 
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Fig. 2. (Top) vorticity zero; (bottom) 
vorticity not zero. In both cases, the cir- 
cular paths of the fluid particles are the 
same. However, in the case shown in the 
top diagram, there is no spin, while in 
the case shown in the bottom diagram, 
the spin is the same as if the fluid were 
a rigid wheel. 

cal mechanics is a dead field, but may 
be explained on more subjective grounds, 
less unflattering to those persons who 
do cultivate mechanics. (In simple fact, 
mathematicians who study mechanics 
today have rejected older views and 
have formulated the subject afresh; a 

part of their work has included discovery 
of new basic equations defining and 

explaining new classes of physical phe- 
nomena.) Moreover, we often hear com- 

plaints from the physicists that mathe- 
maticians study the wrong problems, 
neglecting those the physicists have set 
and pursuing, instead, flights of their 
own imagination. Mathematicians read- 

ily admit this charge. But if the mathe- 
maticians have failed so miserably in 
their half of the ideal bargain, it would 
be unjust to expect the other end to be 

supported in full. Finally, the historical 
fact is otherwise: The great achieve- 
ments in rational mechanics of two 
centuries ago, now imbedded in our 
instruction as "classical," were wrought 
by a small group of persons who, calling 
themselves "geometers," pursued the 
mathematical properties of their equa- 
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tions as vigorously as they pursued the 
mechanical principles the equations em- 

body. That mechanics has its experi- 
mental side is obvious, but the creators 
of the mechanics we learn today in 
physics courses resolutely and most 
openly refused to consider mechanics an 
experimental science. Had our forebears 

approached mechanics in the style and 

spirit often recommended nowadays as 
being "the scientific method," what to- 
day we call "classical mechanics" would 
have lain undiscovered. 

Why then is rational mechanics so un- 
familiar today? The term is not new. 
From Newton's generation until our 
grandfathers' time, it was in fairly com- 
mon use. The great American physicist 
Willard Gibbs (5) described his book 
on statistical mechanics as a contribution 
to rational mechanics. In several coun- 
tries of Europe, where academic tradi- 
tion was fixed earlier, each university 
has its chair of rational mechanics. The 
neglect of rational mechanics must be 
laid to fashion. In this country, espe- 
cially, about fifty years ago the main 
course of physics turned to the structure 
of matter; of mathematics, to abstract 
collections. Since matter is made up 
of many small particles, it is natural to 
expect that understanding of the phys- 
ics of these particles will lead to under- 
standing of the behavior of ordinary ma- 
terials. Since the collections of ordinary 
experience are very special cases of the 
abstract collections encountered in the 
mathematics of the last fifty years, it is 
natural to expect that the new mathe- 
matics will explain ordinary phenomena. 
As is now well known, both these expec- 
tations are ideal, not real. The physics 
and the mathematics of the last fifty 
years have led to very absorbing de- 
velopments of their own, but they 
have not brought us appreciably nearer 
to mastery of the basic problems of 
mechanics-for example, to the prin- 
ciples governing failure of metals under 
load or to solution of the equations 
which describe this phenomenon. It 

would be wrong to condemn the last 
half century for failure to solve the 
problems it did not really attempt. But 
the basic problems of mechanics re- 
main, and they are being attacked 
again. It is some of the brilliant suc- 
cesses of the past decade that I wish to 
describe here. I say the past decade, but 
the list of references in a modern article 
on mechanics is likely to begin with 
some studies fifty or more years old and 
then skip to the last six or eight years. 
With relatively little injustice the dis- 
cussion that follows could be presented 
as a summary of progress in the 20th 
century. 

I have said that rational mechanics is 
a branch of mathematics with its own 
objective and that this objective is con- 
fined neither to the existence theorems 
typical of the theory of differential 
equations nor to the calculation of nu- 
merical answers for comparison with ex- 
periment. Rather, the objective is to 
understand mechanics. Understanding, 
after all, is the objective of every branch 
of mathematics. The measure of under- 
standing in any field is partly aesthetic, 
and it is difficult to explain in general 
terms what a mathematician means 
when he says he understands or does not 
understand a given subject. 

Fluid Motion 

After these preliminaries, it is best to 
enter into cases. Let us begin with 
an old research whose value and quality 
are uncontestable, because from such an 

example one can most readily see the 
kind of result that is prized. No one ex- 

ample can illustrate every possible ex- 
cellence in rational mechanics, but I 
select a single classic specimen before 
passing on to the most recent work. 

In a fluid motion, each small part of 
the fluid may be considered as a body in 
motion. Such a body may or may not be 

spinning. If it is spinning, it spins about 
an axis at a definite rate, and thus its 

~c=-- 

Fig. 3. (Left) vorticity field; (right) vortex lines. 
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Fig. 4. (Top) vortex tube; (bottom) 
strength of vortex tube. 

spin may be represented by an arrow 
(Fig. 1). The arrow, which points along 
the axis of spin and has length equal 
to the angular speed, is the "vorticity." 
In one fluid motion different particles 
may have different vorticities, and the 
vorticity of a given particle may change 
as the particle moves. On the surface 
of a fluid, the vorticity may be observed 
by following a cork marked with a 
cross (Fig. 2). If the arms of the cross 
do not rotate, the vorticity is zero; if 
they do rotate, there is vorticity. Now 
the theory of fluid motions in which the 
vorticity is zero is mathematically much 
easier than that for the general case, 
when the particles are spinning. While 
the case of no spin is appropriate to 
some applications, particularly for waves 
on water and for aeronautics, in other 
cases it is not. For example, without vor- 

ticity we could not have the variety of 
winds actually observed. For a century 
after the discovery of the fundamental 
equations for ideal fluids, the nature of 

spinning motions remained mysterious. 
In 1858 an entirely new approach was 

created by Hermann von Helmholtz (6). 
At each point of the spinning motion, 
draw the arrow representing vorticity 
(Fig. 3). Then connect these arrows by 
curves tangent to them. Such curves are 
called "vortex lines." If we drop a loop 
in the fluid, the vortex lines through it 
will sweep out a tube, called a "vortex 
tube" (Fig. 4). At a given cross section, 
project the vorticity upon the direction 
normal to the surface and then add to- 
gether these projections at each point of 
the cross section. The resulting quantity 
is called the "strength" of the vortex 
tube at that section. After introducing 
these new ideas, Helmholtz proved three 
great theorems about them: 

1) The strength of each vortex tube is 
the same at all cross sections. 

2) A fluid particle outside a vortex 
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tube never crosses into it, and a fluid 
particle inside never escapes. 

3) The strength of the vortex tube re- 
mains constant during its motion. In 
these theorems, we observe that (i) no 
new physical laws are proposed; Helm- 
holtz used only the equations of a theory 
established one hundred years earlier; 
(ii) the results are not based on experi- 
ment but are mathematical theorems; 
(iii) no equations are solved; (iv) no 
numerical predictions for comparison 
with experiment are obtained. Never- 
theless, these theorems are universally 
accepted masterpieces of hydrodynamics. 
In publishing them, Helmholtz remarked 
that while complete solutions of the 
problems to which they are related re- 
mained possible only in a few of the 
simplest cases, his theorems made the 
entire class of these motions "approach- 
able in concept." I think this is what 
we mean by saying we "understand" a 
subject mathematically. Understanding 
is just what Helmholtz' theorems give 
us. We picture the entire fluid composed 
of vortex tubes; as the motion proceeds, 
these tubes may be bent and twisted 
every which way, yet they continue to 
separate the fluid into distinct parts. 
Moreover, the strength of a tube is a 
measure of the amount of spin within 
it, and each tube preserves its strength 
unaltered as the tube itself is transported 
and deformed. That is, if the fluid spins 
faster, the tube must shorten, while if 
the spin decreases, the tube must stretch. 
Spin once started can never be lost en- 

Fig. 5. Circulation of a loop. 

Fig. 6. Ertel's circulating motions. 
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tirely, nor can spin be created in a par- 
ticle that was not initially spinning. 
While Helmholtz' theorems do not solve 
any special problem, they have proved 
treasures in subsequent study of spin- 
ning motions. They are taught in every 
beginning course on the mechanics of 
fluids. While they do not explain the 
phenomena of turbulence or atmospheric 
winds, they furnish tools that are used 

habitually by every student of those 
fields. In looking back on the theorems 
of Helmholtz, in addition to some quali- 
ties peculiar to them alone, we see also 
two that are necessary for any great work 
in rational mechanics: (i) new concepts, 
and (ii) strict mathematical proof. 

Helmholtz' theorems were cast into a 
new form by Lord Kelvin (7) in 1869. 
Kelvin introduced a still more impor- 
tant new concept. Consider a closed loop 
of fluid particles, and at each point pro- 
ject the velocity of the fluid onto the 
tangent to the loop. The sum of all these 
projections Kelvin called the "circula- 
tion" of the loop (Fig. 5). The circula- 
tion is a measure of the average rate of 
turning of the loop. Kelvin proved then 
that Helmholtz' theorems are equivalent 
to a single statement: The circulation of 
a loop of fluid particles remains the 
same throughout its motion. That is, 
however the fluid loop is turned, pulled, 
and twisted as the spinning motion pro- 
ceeds, its circulation is unaltered. Kel- 
vin's theorem plainly exhibits qualities 
i and ii above. 

Helmholtz' and Kelvin's theorems re- 
fer to a problem that was one hundred 

years old when they wrote; these theo- 
rems are now themselves nearly one hun- 
dred years old. A beautiful addition to 

precisely this same subject-spinning 
motions of ideal fluids-was made in 
1950 by the German meteorologist Hans 
Ertel (8). Consider a steady spinning 
motion whose paths are closed circuits 

perpendicular to a certain surface (Fig. 
6). The character of this motion is as- 
sumed not to change in time. That being 

the case, any one particle on one of the 
circuits takes as long to go around it as 
does any other particle on the same cir- 
cuit. Thus, each circuit has a definite 
time of travel, or period. For two hun- 
dred years it has been known that each 
path has a definite energy; Kelvin's 
theorem asserts that each path has a defi- 
nite, constant circulation. Ertel had the 
insight to perceive that circulation, 
energy, and period must be related, and 
for two neighboring circuits he proved 
that 

Difference of circulations 
Period = .-.- Difference of energies 

While the theorems of Helmholtz and 
Kelvin provide a geometrical picture, 
Ertel's theorem gives us the first insight 
into the time a fluid requires to execute 
a spinning motion. 

Small Elastic Deformations 

Next to fluid mechanics, the oldest 
branch of the mechanics of materials is 
elasticity, the science of the deformation 
of bodies under load. The basic equa- 
tions for slight changes of shape have 
been established for 125 years. For about 
seventy-five years we have known two 
alternative ways of stating these funda- 
mental laws in terms of economy: (i) 
Among all changes of shape consistent 
with given displacement on the boun- 
dary, that which occurs according to 
linear elasticity yields the least stored 

energy. (ii) Among all statically possible 
interior forces consistent with given 
forces applied on the boundary, those 
which occur according to linear elasticity 
yield the least complementary energy. 

In the second theorem, "complemen- 
tary energy" means stored energy less 
the work done by the surface loads in 

producing the surface displacements. 
Both these statements are what are 
called "variational principles." In com- 

paring different conceivable states of a 
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deformed body, they assert that the state 
actually occurring is such as to give to 
a certain quantity the least possible 
value. Variational principles are prized 
for four reasons: (i) they characterize 
an entire theory in terms of a single 
simple concept; (ii) they are equally 
valid for all methods of description; (iii) 
they may often be used to prove analyti- 
cal theorems regarding the subject; (iv) 
they may often be used to calculate nu- 
merical solutions in special cases. 

For the linear elasticity theory, the 
two classical variational formulations are 
different. One refers to displacements, 
the other to interior forces. If, as often 

happens (Fig. 7), on a part of the boun- 

dary the displacement is given, while on 
another part the loads are given, neither 

principle can be applied. For each prin- 
ciple, one half of the equations of the 
theory are regarded as known, while the 
other half are consequences of the prin- 
ciple; in the two principles, the two 
halves of the basic equations play inter- 

changed roles. This is unfortunate, since 
a variational principle should express 
the situation in its entirety. 

In 1950 Eric Reissner of Cambridge, 
Massachusetts, established a new varia- 
tional principle in which nothing is pre- 
sumed. On part of the boundary the 
loads may be given; on other parts, the 

displacement; on still other parts, a por- 
tion of the load and a portion of the dis- 

placement. In the comparison of differ- 
ent possible states, all six measures of 
internal force and all six measures of 
deformation are varied. In 1914 Ernst 

Hellinger (9) had defined what might 
be called a new type of stored energy, 
depending on all 12 of these quantities, 
and he had proved a variational theorem 
for it. Reissner rediscovered Hellinger's 
result and completed it by considering 
every possible type of boundary condi- 
tion. He proved that giving this new 

energy the smallest value consistent with 
the given loads and displacements on 
the boundary is equivalent to satisfying 
the entire set of equations of elasticity 
theory. Thus, a fully general variational 
expression, including as special cases 
both the old ones, has been proved. 

Just over a century ago Barre de St. 
Venant (10) created an ingenious 
method for finding the interior forces 
and deformations when a bar is twisted. 
In this method, the total torque twist- 

ing the bar may be assigned, but the 
detailed distribution of load on the ends 
of the bar is determined by the method 
and cannot be assigned at will. Thus, 
the method does not yield a fully gen- 
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Fig. 8. Equivalent end loads twisting a bar. 

eral solution of the elastic problem. St. 
Venant reasoned that this should make 
no difference. When a bar is twisted in 
an experiment, it is usually impossible 
to ascertain the distribution of load. 
All that is known, usually, is the over-all 
torque (Fig. 8). Near the end itself, 
different loadings may produce consider- 
ably different effects, but far down the 
bar no difference is perceptible, pro- 
vided that the total torque is the same. 
Thirty years later Jean Boussinesq (11) 
expressed St. Venant's suggestion essen- 
tially as follows: The difference between 
the effects produced by two different 
but equivalent loads applied in a given 
part of the body becomes very small at 
great distances from that part. Two 
loads are "equivalent" if they would 
have exactly the same effect on the body 
if it were rigid. The notion just expressed 
has been generally accepted and is called 
"St. Venant's principle." 

In the attitude toward St. Venant's 
principle we may illustrate a difference 
between engineering, or applied mechan- 
ics, and rational mechanics. St. Venant's 
principle can be subjected to partial test 
by experiment. It has been tested and 
found good. Therefore it is used with 
confidence by engineers. Every time they 
design a bridge or ship they apply St. 
Venant's principle repeatedly, if often 
unconsciously. In rational mechanics, 
however, elasticity is a mathematical 
theory whose basic equations are fixed 
once and for all. If St. Venant's prin- 
ciple is true, it should be proved as a 
mathematical theorem. Indeed, there 
have been many unsuccessful attempts 
to prove it. 

If proof of St. Venant's principle were 
a problem in pure analysis, I should not 
mention it here. Like other real prob- 
lems of rational mechanics, it required 
a preliminary searching of concepts. My 
statement of it above is vague, and sev- 
eral different statements have been pro- 
posed. All these were reviewed in 1945 
by the late Richard von Mises (12) of 
Cambridge, Massachusetts, and he 
showed all to be either trivial or false. 
Von Mises proposed to consider the case 
when loads are applied within a small 
sphere of radius r, which is then allowed 
to shrink (Fig. 9). At a fixed point 
within the body, we should try to show 

that, as r approaches zero, the effects of 
two equivalent loads in the sphere are 
of more nearly the same order of mag- 
nitude than are the effects of two non- 
equivalent loads. By examples of a spe- 
cial kind, von Mises showed that this 
formulation could not be correct, and 
he proposed a stronger one. 

In 1954 Eli Sternberg (13) of Chi- 
cago put von Mises' views into general 
mathematical form and thus at last pro- 
duced a definite enunciation, capable 
of proof or disproof. Notice that what 
was involved in the first 99 years of 
this problem's history was search of 
the concepts preliminary to use of the 
analytical tools usually associated with 
mathematics. Sternberg proceeded to 
construct a strict proof, and he proved 
St. Venant's principle false. However, he 
was able to show that additional restric- 
tions, similar to those suggested by von 
Mises and realized in many cases of ap- 
plication, render it true. For example, 
if the loads are parallel to a fixed direc- 
tion, and if the two loadings remain 
equivalent when rotated, St. Venant's 
principle is true. 

Large Elastic Deformations 

While the foregoing researches fall 
within the theory of small elastic defor- 
mations, that theory itself is insufficient 
to describe the behavior of materials 
such as rubber, which may be stretched 
severely yet springs back to its former 
shape. Some seventy or eighty years ago, 
a mathematically proper theory for 
large elastic deformations was formu- 
lated. However, although this theory is 
an old one, its status is different from 
that of the only-a-little-older theory of 
small deformation. University courses in 

xed pot1nt 

Fig. 9. Von Mises' formulation of St. 
Venant's principle. 
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the theory of small deformations are 
standard; thousands of papers concern- 
ing it have been published; for a century 
there have been textbooks and even re- 
liable treatises upon it. The theory of 
large deformations, on the other hand, 
has been known by only a few; few have 
been the papers concerning it, and from 
1900 to 1948 general knowledge of it 
declined to the point where many spe- 
cialists in mechanics were partially un- 
aware of its existence. It was not until 
1948 that the first book concerning it was 
published, in Russian. 

An exception to the foregoing state- 
ments is provided by the work of Antonio 

Signorini (14) in Rome. Of all the per- 
sons I shall mention in this article, Sig- 
norini is the only one whose position is 
that of "professor of rational mechan- 
ics." From the 1930's until the present 
time, Signorini and his pupils have sus- 
tained classical knowledge and have 
made important additions. First I men- 
tion a beautiful and simple theory of 
mean values, noticed by Signorini in 
1933 and later extended. For any kind 
of material, whether elastic or not, this 

theory enables us to estimate the aver- 
age internal forces if we know the loads 

applied. Hence result very simple bounds 
for the greatest internal force. 

In elasticity itself, the approach of 
Signorini has been to conjecture the 
particular manner in which the stored 

energy depends upon the deformation. 
Adopting one or another form as a hy- 
pothesis, Signorini explores the proper- 
ties of such a material and checks them 
against experimental behavior of real 
materials. Signorini has obtained some 
success with certain particular theories. 

>6=4~~ 

Fig. 10. (Top) twisting a circular rod; 
(bottom) bending a rectangular block. 
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Fig. 11. Compression and shear in a linear theory. 

While superficially this attack may re- 
semble that of the many semiempirical 
engineering studies on large deforma- 
tions, in fact Signorini's work is different 
in character and very precise. In my 
opinion, later researches show this ap- 
proach to be inadequate, but there are 
by-products for which no counterpart is 
yet known in the more general work to 
be described presently. These by-prod- 
ucts are restrictions on the manner in 
which the various measures of elasticity 
of a body may depend upon its tempera- 
ture. Naturally such restrictions arise 
in part from the laws of thermodynam- 
ics, which are included in the general 
system of mechanics. In particular, re- 
strictions upon the internal energy are 
shown to be consequences of the form 
of the stored elastic energy. 

A basically new attack upon large 
elastic deformations was initiated in 
1948 by Ronald Rivlin (15), then in 
London. For bodies whose volume can- 
not change, no matter how they are de- 
formed, he sought exact solutions for 
simple but important problems. His fun- 
damental departure was to leave the 
form of the stored energy function en- 
tirely unrestricted. The equations of the 
theory are so complicated that an ap- 
proach of such generality would seem 
hopeless. In fact, only the idea had been 

wanting; the calculations turned out to 
be easy. Rivlin found the fully general 
solutions for twisting a circular rod (Fig. 
10, top) for bending a rectangular block 
(Fig. 10, bottom) and for several other 
cases. These solutions were compared 
with experimental measurements on 
rubber, and in this way the form of the 
stored energy function for rubber was 
determined. The measurements showed 
that none of the forms which had been 
guessed at various times by various per- 
sons were physically correct. In particu- 
lar, forms suggested by the common 
argument that the effects of certain 
"small" quantities may be neglected 
were shown to be inadequate. By substi- 
tuting the experimental form in other 
particular solutions, Rivlin was able to 
predict the behavior of rubber in cases 
when it was stretched to twice and even 
three times its initial length, with an ac- 
curacy of a few percent. This is a re- 
markable achievement. Here I must add 
that "small" in the old theory of small 
deformations means "almost invisibly 
small": a change in length of 1 percent 
is usually too great for adequate, descrip- 
tion by the theory in books on elasticity. 
Second, it had been known for a century 
that rubber does not follow the predic- 
tions of the theory of small elastic de- 
formations, and many researches of a 
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physical or chemical nature had been 
devoted to attempts to get a proper the- 
ory for rubber from hypotheses regard- 
ing its molecular structure. The new 
researches in elasticity show that the 
mechanical behavior of rubber is fully 
and precisely predicted by purely me- 
chanical principles, providing they are 
not degraded by so-called "approxima- 
tions." In respect to application to phys- 
ical phenomena, this was a triumph of 
the principles of mechanics and of gen- 
erality. Out of Rivlin's work has grown 
a new branch of engineering which 

might be called "applied mechanics for 
rubber." 

Other Nonlinear Theories 

In 1945 a new pathway was opened 
by Marcus Reiner (16), in Haifa. Origi- 
nally he dealt with fluids rather than 

solids, but it was soon realized that a 
new general method in the mechanics of 
nonlinear materials was available. Before 

going further I must explain the terms 
linear and nonlinear. In a linear theory, 
two causes applied at once produce the 
same effects as if first one, then the 
other, were applied singly. For example, 
if we first shear, then compress, a block, 
in a linear theory the result is the same 
as if we reverse the order or compress 
and shear simultaneously (Fig. 11). In 
a nonlinear theory, this need not be so. 
In fact, in a nonlinear theory it is gen- 
erally necessary to apply compressive 
force in order for a shear without com- 

pression to be possible (Fig. 12). The 

compressive force appears to do nothing 
whatever, but if it is not applied, the 

body will expand. A more familiar effect 
of nonlinearity is seen in the gyroscope, 
which usually swings over in a direction 

quite different from that in which it is 

pushed. Mechanics as a whole is non- 
linear; the special parts of mechanics 

Fig. 12. Compression and shear in a non- 
linear theory. Compressive forces are re- 
quired to effect a shear without change 
of volume. 

Fig. 13. (Left) rest; (center) rotation, linear fluid; (right) rotation, nonlinear fluid. 

which are linear may seem nearer to 
common sense, but all this indicates is 
that good sense in mechanics is uncom- 
mon. We should not be resentful if ma- 
terials show character instead of docile 
obedience. 

Although mechanics is essentially non- 
linear, it is little exaggeration to say that 
for 150 years only linear mechanics and 
its mathematics were studied. It became 
standard practice, after deriving the 
equations for a phenomenon, to replace 
them at once by a linear so-called "ap- 
proximation." It would be wrong to re- 
gard this mangling as being in the origi- 
nal tradition of mechanics. In fact, only 
after a century of development was it 
generally recognized that linearity is 
synonymous with easiness. The lineariz- 
ing set in about 1780 but did not gain 
undisputed mastery until toward the end 
of the last century, under the influence 
of Lord Rayleigh. Indeed, there are 
many physical situations in which a 
linear theory is adequate. This does not 
alter the fact that in many other situa- 
tions linearization is unjustified; and 
both the mathematics and the mechani- 
cal principles associated with nonlinear 
phenomena are much more interesting. 

While a century of linearization may 
have largely exhausted its capacities for 

explaining physical phenomena and have 
allowed its mathematics to be explored 
almost to the full, it has fostered a cer- 
tain rigidity of approach which might 
be called "linear thinking." This has 
made a return to nonlinear problems 
more difficult in fact than perhaps a 
few years hence it may appear to have 
been. In particular, it has engendered an 
emotion somewhere between apathy and 
fear in the reception that nonlinear stud- 
ies are accorded by the great majority 
of researchers, who today remain ab- 
sorbed in conventional linear problems. 

The work of Reiner in 1945 and simi- 
lar work by William Prager (17) in 
1945 and by Rivlin (18) in 1948 put into 
our hands a new tool for exploration of 
nonlinear phenomena in materials. Basi- 
cally, their major result is a revival of an 
old but little-known theorem in algebra, 
having broad usefulness in mechanics. It 
is applicable to any material, whether 

fluid or solid, so long as the internal 
forces arise solely in response to a single 
measure of deformation. The example 
above concerning simple shear is an en- 
tirely typical consequence of this new 
approach. Another application, in es- 
sence the same, is this: When an elastic 
rod is twisted a little, it will elongate 
proportionally to the square of the angle 
of twist. Another application of the same 
principle is this: When a fluid is ro- 
tated about a fixed cylinder, it will climb 
up the cylinder, the force required to 
prevent such a rise being proportional 
to the square of the rate of rotation (Fig. 
13). The former effect had long been 
known experimentally. While the latter 
had been observed specifically only at 
about the same time, it was quickly rec- 
ognized as familiar. In the paint indus- 
try, for example, rotary stirrers were 
found to have little effect because the 
paint agglomerated upon them. Vari- 
ous physical and chemical explanations 
were given for this effect, but the theory 
of nonlinear fluids accounts for it easily 
and naturally on purely mechanical 
grounds. Rivlin calculated exact solutions 
for the configurations occurring in vis- 
cometers, and when viscometers which 
could measure the new effects had been 
constructed, experimental agreement was 
found. 

It would be misleading to emphasize 
unduly the success of the nonlinear the- 
ory in predicting these phenomena. To 
form a particular theory such as to 
agree with any particular measurement 
is not nearly so difficult as it might 
seem. Indeed, special theories of non- 
linear elasticity and nonlinear fluids had 
been constructed in some number during 
the 1930's and 1940's, and it is only the 
rule that such researches always include 
experimental data fully confirming the 
theory. What is new in the work just 
described is its independence on experi- 
ment. The new approach gives us a uni- 
fied view, a grasp upon a whole class of 
nonlinear theories. The major result es- 
tablished, in respect to experimental ap- 
plication, is that virtually any reasonable 
nonlinear theory will predict these ef- 
fects, so that their experimental occur- 
rence, while indeed showing nonlinearity 
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in real materials, does not confirm any 
of the numerous special theories. 

You will notice that my tone has 
changed. While the advances I first dis- 
cussed concerned specific problems in 
established theories, now I am surveying 
the discovery of new theories of me- 
chanical behavior. This-the most ab- 
sorbing aspect of modern mechanics- 
dominates the field today. 

While I have praised generality, we 
must have a care of its dangers. It is 
easy to think of a material which, in- 
stead of using up work when it is de- 
formed, gives it out. Such a material, 
indeed, we can think of, but, at least so 
far, it is not interesting in mechanics. 
This and more subtle misbehaviors we 
wish to exclude in the theories we create. 
In 1948 I showed (19) that, without sur- 

rendering the inclusiveness of the work 
'of Reiner and Rivlin, we can classify 
dnonlinear materials by dimensional 
-analysis. The results enable us to discard 
;at one stroke many materials that might 
otherwise seem reasonable. In regard to 

elasticity, in 1952 I proposed a more 

specific requirement (20): When a 

body has been deformed, additional de- 
formation requires additional stored 

energy. This is not so trivial as it sounds, 
since what is meant by "additional de- 
formation" is not obvious. This principle 
turned out to imply restrictions on the 
stored energy function. In 1942, M. 
Baker and Jerald Ericksen (21) of 

Washington replaced this idea by a more 
general one applicable to fluids as well 
as to solids. In 1955 I pointed out (22) 
that requirements of this type are closely 
connected with wave propagation: A 
body so unreasonable as to refuse passage 
to waves may also do other and more 
obviously objectionable things. At the 
same time, Ericksen and Richard Toupin 
(23) of Washington established a con- 
nection between these requirements and 
those of uniqueness. According to one 
of their results, a deformed body prop- 
erly receptive toward waves is also un- 
willing to deform further in more than 
one way in response to given small addi- 
tional displacements upon its boundaries. 
This class of problems, whose objective 
is to distinguish liberty from license, is 
still under study. 

Here I pause to answer a heartfelt 
question of many a reader: Why don't 
we measure all these things? First, meas- 
urement in mechanics is not so easy as 
it might seem. Despite objections from 
philosophers of science, mechanics has 
always been expressed largely in terms 
of quantities that are 'themselves usually 
not measurable. Had there been opera- 
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tionalists alive in 1750, the design of a 

bridge in 1958 would proceed more awk- 
wardly than it does in any engineering 
office today. Second, we have had more 
than a century of experimentation, often 
on a large scale and at great cost, re- 
garding the mechanical behavior of ma- 
terials. Had experiment settled these 
matters, I should not be writing about 
them here. Experimental mechanics is 
a recognized field which needs no de- 
fense; it has its own problems, its own 
methods, its own results, its successes, 
and its failures. It may, but need not, 
cooperate with applied mechanics and 
with rational mechanics; these, in their 
turn, may, but need not, cooperate with 
it. Without experience there would be 
no rational mechanics; but I should mis- 
lead you if I claimed that experiment, 
either now or two hundred years ago, 
has greatly influenced those who study 
rational mechanics. In this connection 
experiment, like alcohol, is a stimulant 
to be taken with caution: to consult the 
oracle of a fine vintage at decent inter- 
vals exhilarates, but excess of the com- 
mon stock brings stupor. 

Students of rational mechanics spend 
much effort thinking how materials 
might possibly behave. These thoughts 
have not been unproductive of informa- 
tion on how some materials do behave. 
Real materials are not naive; neither are 

they irrational. 
In their behavior, materials always act 

in just the same way, no matter who 

happens to be looking. The response of 
a material is independent of the observer. 
Now this statement becomes less trivial 
than it might seem when we make two 
further observations: first, the laws of 
classical mechanics themselves change 
most noticeably when the same body is 
regarded by different observers; second, 
to express the response of a body in 
mathematical language we always em- 
ploy the reference frame of some ob- 
server. The problem, then, is to find how 
to limit our ideal materials to those 
whose response is properly invariant 
with respect to change of observer. 

For the old, linear theories, this prob- 
lem is trivial and is solved automatically 
by using well-known principles of tensor 
analysis. For the nonlinear theories I 
have just discussed, the problem is rela- 
tively easy. But when the interior forces 
depend on more than one measure of 
deformation, or when the basic laws con- 
nect time rates, the problem becomes 
relatively difficult. For a very special case 
of time rates, the problem was set and 
solved by Augustin Cauchy (24) a cen- 
tury ago; in rather more general but still 

limited circumstances, by Stanislas Za- 
remba (25) in 1903. The nature of the 
general problem and a correct solution 
of it was first indicated in 1950 by J. G. 
Oldroyd (26), then working in Maiden- 
head. A more satisfying treatment was 
given in 1955 by Walter Noll (27), then 
in Bloomington. Noll's formulation is in 
terms of a principle he calls "the iso- 
tropy of space," by which the basic equa- 
tions of any proposed ideal material can 
be tested for invariance. Similar meth- 
ods, somewhat different in detail and 
scope, were introduced in two papers 
written by Rivlin (28) jointly with 
Ericksen and with Barbara Cotter of 
Providence; the method of Zaremba was 
rediscovered and extended by Tracy Y. 
Thomas (29) of Bloomington. 

By use of his principle, Noll was able 
to construct the first adequate theory of 
the continuity of the solid and fluid states 
(27). In this unified theory appear ma- 
terials which show the responses both of 
solids and of fluids, the nonlinear theo- 
ries of pure elasticity and pure fluidity 
being included as extreme possibilities. 
The idea of such materials had been put 
forward a century earlier by James Clerk 
Maxwell (30) and had been explored 
with partial success by Zaremba (25), 
but Noll's work is the first to combine 
exactness and completeness. Noll ob- 
tained exact solutions for certain special 
deformations and showed that his theory 
implies breakdown of smooth motion at 

high speeds. A possible theory of con- 
tinuous transition from ordinary behavior 
to ultimate failure or breakage has thus 
been initiated. 

In 1953 I proposed (31) a more mod- 
est but at the same time more definite 
theory of elastic behavior. My idea was, 
instead of relating the interior forces to 
the deformation, to connect the rate 
of change of the interior forces with the 
rate of change of shape. The resulting 
theory, called "hypoelasticity," agrees 
with the old linear theory for small 
changes of shape but for large changes 
is entirely different. This new theory has 
turned out to be fairly general; in 1955 
Noll (27) proved that it includes the 
classical theory of large elastic strain, 
and in 1955-56 Albert Green (32) of 
Newcastle and T. Y. Thomas (33) 
proved that, apart from an assumed con- 
dition of yield, it contains all the usual 
theories of plastic flow, provided those 
theories are corrected in several respects. 
The reservation "apart from an assumed 
condition of yield" is important. For 
decades, theories of plasticity had em- 
ployed a specially assumed condition to 
express plastic flow-a semiempirical 
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Fig. 14. Primary and secondary yield predicted by hypoelasticity. 

compromise between experiment and 
theory unrelated to other parts of me- 
chanics. I had long felt that this was 
unfortunate; that in fact yield is a phe- 
nomenon which should be predicted, not 
assumed, by a proper theory; that a true 
mechanical theory should include plas- 
tic flow not as a primary condition but 
as the result of previous circumstances 

leading up to elastic failure. In 1955 I 
showed (34) that, in certain cases, hypo- 
elasticity furnishes a smooth and simple 
theory of just the type desired. For cer- 
tain hypoelastic bodies in shear, the force 
required to effect the shear has been 
proved to follow a curve such as that 
shown in Fig. 14. 

Statistical Mechanics 

To conclude the list of advances, I 
wish to return from exploration of new 
theories and consider progress in an old, 
established theory: statistical mechanics. 
In statistical mechanics, apparently con- 
tinuous matter is represented as a very 
numerous assembly of little points called 
"molecules," which are in rapid and 

largely independent motion. The object 
is to relate quantities of experience, such 
as force and velocity, to averages over 
the molecular assembly. Averages of this 
kind are called "phase averages." The 
conditions defining a particular motion 
of the molecules are not known. Rather, 

Fig. 15. Scheme to suggest ergodic mo- 
tion. 
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a whole class of such motior 
down as being possible, and eac 
within this class is assigned a p 
of occurrence. 

In introducing such averag 
eighty years ago, Maxwell 
marked on the difficulty of c 
oneself that such purely mat] 
quantities are appropriate for 
son with physical measurement 
particular kind of phase averag 
ommended, every motion adm 
the same energy, and all such 
are equally probable. He sugge 
a complicated mechanical syste 
to itself, would eventually assur 
every configuration consistent 
assigned energy. If we think of 
tion as a curve, this curve woi 
tortuous as to occupy, at one tii 

other, nearly every point on th 
consisting of its possible confi 
(Fig. 15). For such a motion, 
age behavior of a given syster 
long time would equal the ave: 
all possible motions at any one 

Time average = phase aver, 

Motion of the type Maxwell 
was quickly shown to be impos 
the possibility remained that hi 
sion could be true. 

The "ergodic problem," as 1 

lem of proving this conjecture 
be called, drew the attention 
mathematicians, and in the 193 
solved. The conclusion, as fa 
chanics is concerned, was neg 
order that the time average b 
equal to the phase average, I 
quantity and for all but utterly 
able ways of setting the syster 
tion, a condition emerged whic 
appropriate to the mechanical 
and not reasonably to be 
While an extensive and interes 
of pure mathematics grew from 
no progress in mechanics resulte 

In any case, Maxwell's type of aver- 
age (which came to be called "micro- 
canonical"), for reasons of mathematical 
difficulty usually could not be evalu- 
ated. Even before Maxwell's work, Lud- 
wig Boltzmann (36) had introduced an- 

'ry yd' other kind of phase average, later called 
"canonical." No mechanical principle or 
idea lies behind this kind of average. 
Rather, its reason for existence is mathe- 
matical simplicity: With canonical aver- 
ages, a patient person can get answers, 
and virtually all explicit statistical me- 

S4',i AR chanics as applied to chemistry and 
physics has rested upon canonical aver- 
ages from that day to this. Nowadays 
many scientists are willing to compare 

is is laid canonical averages with measurements 
:h motion and, finding them valid, to accept the 
robability theory based upon them as being justified 

directly by experiment. This was not 
,es about Boltzmann's idea at all. Boltzmann at- 
(35) re- tempted to prove that, as the number 

onvincing of molecules in the system becomes very 
hematical large, 
compari- 
ts. In the Microcanonical average - 

canonical average ,e he rec- 
litted has In several attempts, Boltzmann claimed 

motions to give analytical proofs (37) of this 
*sted that conclusion, which is called "Boltzmann's 
im, if left law." One of these proofs is often repro- 
ne nearly duced in courses today, but, like the 

with its others, it is unsound. Such was the in- 
f the mo- security of the conclusion that, in his 
uld be so book on statistical mechanics (5), Gibbs 
me or an- did not even mention it. In the 1920's, 
.e surface Darwin and Fowler achieved a satisfac- 
igurations tory but rather difficult proof. 
the aver- This was the situation when the Rus- 
n over a sian mathematician A. Y. Khinchin (38) 
rage over took up the subject in 1943. First, he 

instant: gave a new, somewhat simpler, proof of 
Boltzmann's law along lines nearer to 

age the ideas of the classical theory of prob- 
suggested ability. If this were all, I should not be 
ssible, yet mentioning it here, but this was an es- 
is conclu- sential preliminary to his solving a much 

deeper problem-the true ergodic prob- 
the prob- lem of statistical mechanics. 
came to In looking back on the ergodic prob- 
of many lem, Khinchin realized that the mathe- 
O's it was maticians of the 1930's had asked too 
r as me- much. First, they had required that the 
rative. In time average be exactly equal to the 
e exactly phase average, while for mechanics it 
for every would be enough that the error be small. 
v improb- Second, they had required that equality 
n in mo- hold with only utterly improbable ex- 
h was in- ceptions, while it would be enough that 

problem the exceptional cases be rather improb- 
expected. able. Third, they had required that the 
sting part equality hold for every sort of quantity 
this idea, that might be averaged, while in fact 
Id. only a limited class of quantities are ap- 
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propriate for averaging in a mechanical 
system. The third idea gave the real 
clue. A quantity that has nearly the 
same value for all possible configura- 
tions will certainly have a nearly con- 
stant average in time for a given system. 
It is almost trivial to remark that, for 
such a quantity, the phase average and 
the time average are almost the same. 
But what Khinchin was apparently the 
first to realize is that Boltzmann's law 
itself implies that the quantities which 
are to be averaged are indeed nearly con- 
stant over most possible configurations! 
He then went back over his proof of 
Boltzmann's law and sharpened it suffi- 
ciently to estimate the average error. 
With this estimate, he was then able to 
establish the ergodic principle along the 
lines just indicated. In the sequence 

Time average--> 
microcanonical average -> 

canonical average 

proof of the second stage was shown 
very elegantly to yield proof of the first 
stage as a by-product. Khinchin's result, 
in full, may be put as follows: The cases 
when the time average differs very much 
from the canonical average become, as 
the number of molecules in the system 
is taken larger and larger, of arbitrarily 
small probability. In this statement we 
perceive another difference from ergodic 
theory, which is just as applicable to two 
marbles in a box as it is to a solid body 
with trillions of molecules; Khinchin's 
result, like Boltzmann's law, is a theorem 
appropriate only to complicated and nu- 
merous systems. 

Khinchin's brilliant success has been 
little appreciated. On the one hand, 
most physicists have lost interest in the 
problem. On the other hand, mathema- 
ticians trained in ergodic theory find the 
case too special to be interesting. In my 
opinion, Khinchin's analysis is a master- 
piece in rational mechanics, fully justi- 
fying the original view of Boltzmann. It 
shows that every time a chemist calcu- 
lates a canonical free energy, he is cal- 
culating in fact the average free energy 
in a system of fixed total energy left to 
itself for a long time. 

While the foregoing analysis refers to 
systems in equilibrium, the statistical 
mechanics of deforming media furnishes 
even more interesting problems. Until 
recently the statistical mechanics of 
fluids, for example, was regarded as 
different and presumably more accurate 
than theories representing fluids as con- 
tinuous. That this is not the case was 
shown in 1950 by Jack Irving and John 
Kirkwood (39) of Pasadena. They con- 
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tributed the basic idea, but their proof 
was not entirely satisfactory and their 
approach was not as general as it might 
have been, and in 1955 a better treat- 
ment was given by Noll (40), then in 
Berlin. His form of the result will now 
be summarized. Given any assembly of 
molecules, be they alike or different 
from one another, few or numerous, 
free or subject to any outside forces or 
forces of interaction, consider a selection 
of probability according to any admis- 
sible rule. Then, by appropriate phase 
averages, it is possible to define mean 
velocity, mean internal force, mean in- 
ternal energy, and mean flow of energy 
in such a way that they satisfy exactly 
the field equations for continuous mate- 
rials. Thus, statistical mechanics and 
field mechanics are united. By consider- 
ing a fluid or solid as an assembly of 
molecules, it is impossible to derive any- 
thing that is in contradiction to the view 
of matter as continuous. Conversely, 
there is nothing in the continuous view 
of matter that is not also in accord with 
a molecular picture. With this beautiful 
unification of the two apparently oppos- 
ing views of matter, I close the list of 
examples. 

Apology 

What I have presented shows the 
power and versatility of modern rational 
mechanics. You may expect me to say 
now that these achievements are only a 
small part of the great things that have 
been done, but that would be mislead- 
ing. Indeed, in a longer article I would 
describe the work of Eberhard Hopf on 
turbulence, of T. Y. Thomas on the 
paths of dynamical systems and on the 
stability of shock waves, of Otto Ring- 
leb, Walter Tollmien, and Kurt Fried- 
richs on transsonic gas flows, of Paul 
Nemenyi and Robert Prim on rotational 
gas flows, of Bruce Hicks, Prim, and 
Ericksen on the streamlines of gas flows, 
of Lavrentiev, David Gilbarg, and James 
Serrin on water flows past cavities, of 
Einstein, S. N. Bose, and Vaclav Hlavaty 
on the new unified field theories, and of 
Toupin on elastic dielectrics; I would 
describe some further studies of vortic- 
ity, and some other things. However, 
the list would not be very long. 

Indeed, I must conclude with an 

apology for rational mechanics. It is not 
likely to become a popular field. No 

prizes are awarded for rational mechan- 
ics, and it would make a poor showing 
in a poll of the public or of scientists in 
general. The monetary cost of a century 

of rational mechanics will not equal the 
hundredth part of what is spent this 
year on computing machines. The work 
I have described was done slowly, by 
individuals working alone or with a 
single other individual of like tastes. 
The great teams that produce bombs 
and vaccines would not have multiplied 
or deepened the output here. In an age 
and country where numbers, cost, and 
statistics count, rational mechanics will 
never gain much notice. In itself, notice 
is not what we need, but nowadays he 
who is not noticed is not likely to sur- 
vive. In rational mechanics the financial 
need is on so small a scale that often it 
goes entirely unrecognized, in favor of 
more costly and more glittering proj- 
ects. Whether in universities or outside 
them, several of the persons whom I 
have named lack a proper library, secre- 
tarial help, and even adequate station- 
ery, not to mention a reasonable allow- 
ance of time for work free of teaching 
or other community responsibility. There 
is no society for rational mechanics, nor 
are its individualist students likely ever 
to be numerous enough to afford one or 
cooperative enough to establish one. For 
at least twenty-five years no one has 
been elected to membership in the Na- 
tional Academy of Sciences for achieve- 
ment in rational mechanics. 

As far as costs and numbers go there 
has been little change. It would be 
quite incorrect to assume either that the 
"classical" mechanics we learn today as 
the first step in physics and engineering 
was produced by a cooperative effort of 
organized science or that, in those old- 
fashioned days, no large projects existed. 
Indeed, two hundred years ago much 
money was spent on science: on the cal- 
culation of great numerical tables, on 
extensive experiments for the betterment 
of mankind, on the design of warships, 
on the establishment of boards and com- 
mittees to organize science. But these 
efforts did not produce the "classical" 
mechanics; this was the work of a hand- 
ful of men, scattered over a continent 
and a century-men who were willful, 
uncompromising, quarrelsome, arrogant, 
and creative. 
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established lines of products. The spe- 
cific variables of interest are capacity 
costs and bus-bar costs. Capacity costs 
are given in dollars per kilowatt of in- 
stalled generating capacity. Bus-bar costs 
are the costs of power at the generating 
station-that is, the costs exclusive of 
transmission and distribution costs; they 
are usually given in mills (0.1 cent) per 
kilowatt hour. 

There have been many predictions 
about the costs of nuclear power. The 

reasoning behind the growth rate they 
propose is not, however, generally set 
forth. The predictions of costs, and 
hence of break-even points-that is, the 
time when nuclear and conventional 

power will cost the same-usually assume 
that the present conventional power 
plant capacity and bus-bar costs will re- 
main stable within rather narrow limits. 
It follows from this view that the price 
reductions of the future will have to 
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