
7 March 1958, Volume 127, Number 3297 

Distance and Relativit 

G. C. McVi 

What does an astronomer mean when 
he says that the sun and the earth are, 
on the average, 92,900,000 miles apart? 
And what bearing can the two theories 
of relativity have on the matter? It is 

questions of this kind that I shall try to 
answer in this article, but I must first 
warn you that I have been described by 
my scientific colleagues as an uncom- 

promising empiricist. I daresay that this 
is true, but it is also a little strange, for 
all my training and all my research work 
have lain in theoretical astronomy and 
not at all in the extremely difficult and 
fundamental task of making astronomical 
observations. Perhaps, however, the theo- 
retician does have an advantage over his 

colleagues who are engaged in observa- 
tional or experimental work. He can 
stand slightly to one side and ask him- 
self: What exactly are these men doing, 
what kind of significance can be attached 
to the results of their efforts, and in what 

way are their data really conditioned by 
theories? To speak in generalities would, 
I think, be profitless, and it is for this 
reason that I propose to concentrate on 
the question of distance in the solar sys- 
tem and to leave aside the equally in- 
tricate and fascinating problem of dis- 
tance in the universe at large. 

Large-Scale Distances 

It might be thought at first sight that 
the distance between two objects was 
such an obvious physical idea that there 
could be little to say about it. Two marks 
have been made on a certain bar of plati- 
num that is carefully preserved in 

France; the separation of the two marks 
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arises in astronomy, nearly every astro- 
nomical object being in motion relative 
to ourselves on earth. Clearly, a distance 
determination for a moving object is 
meaningless unless we are also told the 
time to which the determination refers. 
Thus, two more elements are involved 
when the distances of moving objects are 
concerned-that is, we must know what 
is meant by the time of occurrence of an 
event and we must also know how the 
motions of bodies are governed, what the 
theories of dynamics and of gravitation 
may be. 

But even if these complications have 
been allowed forj there is an additional 
one that enters into distance determina- 
tions in astronomy. Up to the present, 
it has not proved possible for an astron- 
omer to leave the earth and go to any of 
the bodies whose distances he would like 
to find. In this respect, he differs from 
the terrestrial surveyor who can, at a 

pinch, actually proceed from one point 
to another on the earth's surface. The 
astronomer has to rely almost entirely 
for his knowledge of the astronomical 
universe on the information conveyed to 
him through the medium of electro- 

magnetic radiation, whether in the form 
of optically visible light or in that of 
radio waves. The behavior of electromag- 
netic radiation in the astronomical uni- 
verse is partly determined by experi- 
mental evidence in the laboratory but 
also very largely by a liberal use of the- 

ory. In the application to the solar-sys- 
tem distance problem, it can be estab- 
lished experimentally on the terrestrial 

laboratory scale that light rays travel in 

straight lines in Euclid's sense of this 
term. The belief that this is a property 
of all electromagnetic radiation and that 
it continues to hold as the radiation trav- 
els over the vast spaces between astro- 
nomical objects is based on theory, and 
a theory is something which is con- 
structed by the human mind and which 
therefore need not enshrine some ever- 

lasting truth. When we come to discuss 
the phenomenon of the bending of light 
rays, we shall see that this laboratory 
conclusion about the nature of the paths 
of light rays cannot always be sustained. 

Distance in the Solar System 

After this brief survey of the main dif- 
ficulties of principle that confront the 
astronomer when he tries to determine 
the distances of the objects in which he 
is interested, let us examine the proce- 
dures that he in fact employs. The fa- 
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mous astronomer Johannes Kepler, who 
lived from 1571 to 1630, showed how it 
was possible to set up a scale model of 
the solar system without having any ac- 
curate notion of the distances involved 
in terms of miles or kilometers. Suppose 
that Kepler came back to earth today 
and that we carefully concealed from 
him all the accumulated astronomical 
knowledge of the past 327 years. But 
suppose that we showed him how to 
work our modern telescopes and clocks 
and then suggested that he go ahead and, 
with this greatly improved instrumenta- 
tion, repeat the investigations that made 
him famous. Kepler would no doubt be- 
gin by measuring, each day, the angular 
diameter of the sun. By methods which 
would be familiar to him, even if they 
are not to all of us today, he would, by 
measuring certain other angles at noon 
each day, determine the sun's position 
relative to the background of the stars. 
Note the important point that his obser- 
vations consist entirely of measuring 
angles and not at all of measuring dis- 
tances. 

The changes in the angular diameter 
of the sun from day to day he would 
interpret by saying that it was the (un- 
known) distance of the earth from the 
sun that was varying; the apparent mo- 
tion of the sun relative to the distant 
stars, sometimes faster and sometimes 
slower during the course of the year, 
would eventually lead him to the con- 
clusion that the earth was moving round 
the sun in an ellipse, with the sun in one 
focus. He would draw on a piece of 
paper an accurate reproduction of this 
ellipse, with all the distances relatively 
correct but with not one of them known 
in terms of miles or kilometers. Having 
completed this operation he would take 
each planet in turn and, again observing 
angles only, find that each planet moved 
in an ellipse with the sun in one focus, 
the reproduction of each ellipse being 
on the same scale as that used for the 
earth's orbit. 

But in all this there is one point of 
theory that would seem self-evident to 
Kepler, though it would not be so to a 
modern mathematician looking over his 
work. He would take it for granted that 
the interrelations between the angles he 
was measuring and the distances in- 
volved were those of Euclidean geometry 
and that, moreover, the light rays reach- 
ing him from the objects he was studying 
traveled along Euclidean straight lines. 
To this day astronomers, in dealing with 
the solar system, make, for most pur- 
poses, the some geometrical assumptions 

that Kepler did. And they express the 
distances in terms of the astronomical 
unit of distance, which is nearly, though 
not quite, the same as the earth's mean 
distance from the sun. 

Turning the astronomical unit into 
miles or kilometers is a separate prob- 
lem. Since a scale model of the solar sys- 
tem is at our disposal, all that is required 
is the measurement of one distance in 
the system in order to fix the scale. To 
obtain this, the earth must first be sur- 
veyed and the distances between astro- 
nomical observatories must be deter- 
mined. The base lines from which the 
survey starts are measured, not with the 
standard meter-bar, but with flexible 
metal tapes stretched to a given tension, 
and the belief that a consistent system 
of distance relations between points on 
the earth's surface can be established on 
such a basis depends on a good deal of 
theory. There must be a theory of the 
nature of a metal and theories of dynam- 
ics and of elasticity-here the classical 
Newtonian theories are employed-be- 
fore the surveyors can be sure that using 
the metal tapes in the way they do is 
likely to provide an internally self-con- 
sistent network of distances. It is also 
taken for granted that the geometry 
which interrelates the measurements is 
the Euclidean, the surface of the earth 
being regarded as a mathematical surface 
in a three-dimensional Euclidean space. 

Suppose then, that the Euclidean 
straight-line distance between two widely 
separated observatories A and B has been 
thus established, partly by measurements 
and partly by geometrical calculation. A 
planet P having been selected, the angles 
between the lines AP and AB and be- 
tween BP and AB are observed simul- 
taneously at A and B. Again by means 
of Euclidean geometry, the distances 
from A and B to the planet can be cal- 
culated and the scale of the solar system 
determined. In all this procedure, the 
important elements of principle are: 
firstly, that all measurements are angu- 
lar measurements, except for the dis- 
tances between the ends of the base lines 
on earth that are established by use of 
flexible metal tapes; secondly, that cal- 
culations are performed through the for- 
mulae of Euclidean geometry; thirdly, 
that the paths of light rays are straight 
lines in the Euclidean sense; and 
fourthly, that it must be possible to at- 
tach a meaning to the statement that 
two widely separated events are simul- 
taneous, the two events in question being 
the observations of the planet from the 
observatories A and B. 
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Time and Distance 

It is not only by way of this question 
,of simultaneity that time has reared its 

ugly head; our resurrected Kepler had 
already tacitly incorporated the notion 
of time intervals into his scale model of 
the solar system through his procedure 
(of making observations on successive 
days and in successive years. He must 
;have known what a day was and what a 
year was before he could act in the way 
ihe did. And, indeed, the astronomers of 
ttoday introduce the notion of time into 
(distance computations in the solar sys- 
tem in a much more indirect and yet 
fundamental way. They have at their dis- 
posal all the dynamical theory and the 
theory of gravitation which were first in- 
vented by Isaac Newton in the second 
half of the 17th century and whose de- 
tailed consequences have engaged the 
attention of mathematical astronomers 
ever since. As G. M. Clemence (1) has 
pointed out, the unit of time employed 
in these theories is the average value of 
the mean solar day during the 18th and 
19th centuries, and the astronomical unit 
of distance is defined as the theoretically 
predicted radius of the circular orbit 
:around the sun of a planet of very small 
mass moving at an angular rate, ex- 
pressed by a fraction given to 11 places 
(of decimals. Now the Newtonian theory 
of planetary motion contains two very 
important principles which underlie the 
three laws of motion. These are, firstly, 
the postulate that all angular and dis- 
tance measurements in the universe can 
be manipulated by the rules of Euclid- 
ean geometry and, secondly, that there 
exists an absolute time. The absolute 
time is pragmatically defined with ref- 
erence to the mean solar day during the 
two centuries referred to, and it is one 
of the merits of the Newtonian theory 
that distance measurements and time 
measurements can be manipulated sepa- 
rately-the first, as I have said, by the 
rules of Euclidean geometry; the second, 
on the principle that time is a scalar and 
that time intervals are not affected by 
the geometry that is being employed for 
distances. 

I would like to put forward here the 
view that astronomers are not engaged 
in discovering eternal truths about the 
dimensions of the solar system relative 
to the selected base lines on earth, or 
even relative to an unknown mean dis- 
tance of the earth from the sun. They 
are not even achieving approximations 
to these truths within some limit of ex- 
perimental error. In my opinion, the 
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combination of measurements, geometri- 
cal argument, and dynamical theory 
serves to establish an internally self-con- 
sistent scheme of distance relationships 
with which time relations are inextri- 
cably intermingled. The magnitudes of 
the errors do not measure the departure 
of the scheme from some ideal eternal 
truth laid up in heaven; rather do they 
establish a measure of the degree of self- 
consistency. The adequacy of the scheme 
can be tested by using it to make pre- 
dictions of future events-for example, 
to predict in what part of the sky the 
planet Mars will be at some date in the 
future. The prediction can eventually be 
checked by observation, and this obser- 
vation in turn will be incorporated into 
the scheme and will modify it. That the 
modification may be very slight is irrele- 
vant; its acceptance by astronomers as a 
natural corollary of their work is the 
interesting point. 

Special Relativity 

You will be wondering by this time 
why I included in my title the subject 
of relativity, since I have so far made no 
reference to this theory. The reason is 
that, in my opinion, the theories of spe- 
cial and general relativity cannot be dis- 
cussed in vacuo but must be envisaged in 
some context of observational data. You 
will remember that special relativity 
owed a good part of its origin to the 
Michelson-Morley experiment, which 
was intended to measure the velocity of 
the earth in its orbit by a purely optical 
experiment performed in a laboratory 
from which no celestial object could be 
observed. The expectation of success de- 
pended on calculations based on the 
principles of the Newtonian theory of 
motion applied both to the motion of 
the earth and to the motion of light. 
The experiment revealed that the expec- 
tation was unjustified-that the orbital 
speed of the earth could not be meas- 
ured in this way and that this was not 
due to errors of observation but was a 
genuine null result. 

The special relativity interpretation of 
this conclusion idealized the situation to 
the extent that the effect of gravitation 
was omitted and the earth was regarded 
as moving in a Euclidean straight line, 
with constant speed, during the very short 
time interval occupied by the experi- 
ment. It was then shown, firstly, that the 
hypothesis of the validity of Euclidean 
geometry could be retained but that, sec- 
ondly, the assumption of a single abso- 

lute time would have to be rejected. On 
the basis of these two postulates, a new 
theory of motion could be worked out 
from which the null result of the Michel- 
son-Morley experiment could be pre- 
dicted. More precisely, if there are two 
frames of reference for distance meas- 
urements, distances in each being estab- 
lished by identical procedures, and if the 
frames of reference are in constant rela- 
tive motion as judged from either frame, 
then to each frame there must be asso- 
ciated a system of timekeeping of such 
a kind that the velocity of light has the 
same value relative to either frame. 

The important points that are brought 
out by special relativity are, firstly, that 
there is no absolute theory of motion and 
of the associated dynamics; secondly, 
that time and distance measurements 
can be much more closely interwoven 
than they are in the Newtonian theory 
of motion; and thirdly, that as a result 
of this closer interweaving, two events 
can be simultaneous in one frame of 
reference but not in another and, con- 
comitantly, that the distance between two 
events is not an absolute but depends on 
the frame of reference relative to which 
it is measured. The device that is em- 
ployed in relativity theory for interlock- 
ing closely time and distance measure- 
ments is to use what may be called a 
four-dimensional geometrical represen- 
tation for all the events under contem- 
plation. Each event is "plotted," so to 
speak, as a "point" having four, instead 
of the usual three, coordinates; three of 
these fix the position in space of the 
event relative to some frame of refer- 
ence, the fourth is a coordinate specify- 
ing the instant of occurrence of the event 
in the same frame of reference. 

My own personal view of this proce- 
dure is that a geometrical manifold used 
for such a representation is a mathe- 
matical device that is very valuable for 
purposes of calculation, but I am not 
convinced that it is anything more than 
this. A convenient name for the four- 
dimensional manifold is "space-time," 
but as for its "reality" or its "physical 
existence," I would not like to commit 
myself because I do not know what these 
terms mean. What I do know, as a theo- 
retician, is that I can make calculations 
and predict the circumstances of the 
motions of bodies by using the mathe- 
matical technique of the space-time rep- 
resentation. 

Let us return to the astronomers in 
the observatories A and B who are en- 
gaged in determining the distance of the 
planet P. You will remember that an 
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essential part of the procedure was that 
their observations had, in principle, to 
be made at the same instant. But this 
simultaneity is now dependent on the 
selection of one of the reference frames 
of special relativity; there is no absolute 
definition available. Nor is there any ab- 
solute definition of the distance between 
the two observatories. We might think 
that we could select the frame of refer- 
ence relative to which A and B were at 
rest, which I will call the zero frame, 
and assume that the time associated with 
the zero frame was the time kept by the 

observatory clocks. But if we imagine a 
second frame of reference moving with 
uniform speed u with respect to the zero 

frame, then, in terms of the time appro- 
priate to this new frame, the astrono- 
mers at A and at B would not be carry- 
ing out their observations simultaneously 
and the distance from A to B would have 
a value that differed from that in the 
zero frame. This difference would de- 

pend on the ratio of the square of u to 
the square of the velocity of light, c. 

Now it might be thought that we 
could eliminate these difficulties by sim- 

ply asserting that the zero frame had 

priority over all the other possible ones, 
but this cutting of the Gordian knot will 
not do, for there is another principle in- 
herent in relativity theory to which I 
have not yet referred. It is this: Refer- 
ence frames, even of the combined space 
and time variety used in relativity, are 
elements introduced into the description 
of the physical situation by the investi- 
gator and are therefore alterable at will. 
Nothing essential must therefore be 
made to depend on the choice of one 
reference frame rather than another; all 
reference frames must be on an equal 
footing, and we should fix attention on 
those conclusions that can be demon- 
strated to be equally valid in every ref- 
erence frame. It happens that the nu- 
merical value of a distance between two 
events is not an invariant quantity in 
special relativity but depends on the se- 
lected reference frame, and the same 
applies to the time interval between any 
pair of events. This is not to say that 
measures of distances and of time inter- 
vals are valueless but that the conditions 
of measurement must be carefully stated 
and the relativity of the results must be 
firmly kept in mind. 

If you have followed me so far, you 
will no doubt have noticed that there 
is an apparent contradiction between 
what I have just said about special rela- 
tivity and what I said earlier about the 
procedure actually employed by astrono- 
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mers in establishing distances in the solar 
system. I have emphasized that, in doing 
so, these scientists take it for granted 
that distance is an absolute in the Eu- 
clidean sense and that time is also an 
absolute in the sense of Newtonian dy- 
namical theory. 

Since astronomers are acquainted with 

special relativity, why do they continue 
to act as if they were not? The answer 
is that the differences inherent in the 
use of one frame of reference rather than 
another depend on the ratio of the square 
of the relative velocity of the frames to 
the square of the velocity of light. Now 
the velocity of light is 186,000 miles per 
second, and the relative velocities of ob- 

jects in the solar system rarely attain, 
say, 70 miles per second. Thus, the ratio 
of the squares of these velocities will be 
found to introduce changes in the dis- 
tances that amount at most to one part 
in ten million. But the astronomical unit 
of distance is determined to within the 

very much larger error of one part in 
five thousand. Thus, if this is the kind of 

accuracy we are working to, or, as I 
would prefer to put it, if this is the 
measure of the internal self-consistency 
we aim at, special relativity can be dis- 

regarded in direct calculations of dis- 
tances. But it is not self-evident that 
the effects of relative velocity on our 
distance and time computations may not 
give rise to observable differences from 
the predictions of Newtonian theory 
when these effects can be shown to be 
cumulative in time. To consider this 
type of question we must pass on to 
general relativity. 

General Relativity and the 
Solar System 

Expositions of general relativity very 
often give the impression that the only 
difference between this theory and spe- 
cial relativity lies in the character of the 
relative motion of the "time and space" 
frames of reference employed. Whereas 
in special relativity the frames are in 
uniform relative motion, in general 
relativity mutually accelerated frames 
are considered. This is certainly one 
aspect of general relativity, but, by 
itself, the introduction of mutually ac- 
celerated frames is not sufficient. The 
essence of the difference between the 
two theories is more subtle; it lies in a 
change of character of the four-dimen- 
sional geometrical representation of the 
events under contemplation. Whereas 
in special relativity this representation 

has the geometrical characteristic known 
technically as "flatness," in general rela- 

tivity the representations are "curved." 
It is not easy to explain this essential 

difference to nonmathematicians, espe- 
cially as the terms flat and curved have 
so many connotations that their very use 
in this technical connection is mislead- 
ing. One can but try to use an analogy 
drawn from geometrical manifolds of 
two, instead of four, dimensions. The 
Euclidean plane is one such two-dimen- 
sional manifold, the surface of a sphere 
is another; the former possesses the geo- 
metrical attribute of flatness, the latter, 
that of curvature. 

This difference manifests itself in the 

geometries appropriate to the two sur- 
faces. Thus, in the Euclidean plane, 
straight lines are of infinite length, the 
three angles of a triangle have a sum 
equal to at, the sum of the squares of the 
two sides of a right-angled triangle is 
equal to the square of the hypotenuse, 
and so on. On the surface of a sphere, 
great circles are the analogs of straight 
lines, and they are of finite length; the 
angles of a spherical triangle do not have 
a sum equal to a; and Pythagoras' theo- 
rem in the form I have stated it is no 

longer true. 
The four-dimensional space-times of 

general relativity differ from one an- 
other and from that employed in special 
relativity in analogous but far more com- 

plicated ways. This is not only because 
four, as against two, dimensions give 
rise to greater intricacy but also because 
one of the dimensions is interpreted 
physically as referring to the time rela- 
tions between events. The time and dis- 
tance measurements made by astrono- 
mers are thus interwoven in a more 
elaborate way than they are in special 
relativity, and they lead to a new the- 
ory of motion and of dynamics. In gen- 
eral relativity it is postulated that each 

physical situation has its own appropri- 
ate space-time, the connection between 
the two being made through Einstein's 

gravitational equations. Moreover, the 

only effects that are taken into account 
are those of relative velocity (as in spe- 
cial relativity), gravitational attractions, 
and a peculiar force which is either one 
of repulsion or of attraction, according 
as the so-called cosmical constant is a 
positive or negative number. The physi- 
cal situation, consisting of a very mas- 
sive sun around which move planets of 
relatively infinitesimal mass, has one 
space-time representation; the whole as- 
tronomical universe of galaxies has an- 
other, with quite different properties of 
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curvature. Thus, once again, I would 
regard these space-times as devices for 
calculation purposes, rather than as en- 
tities having any kind of "physical ex- 
istence." 

But to return to our astronomers 

studying the solar system. The space- 
time representation appropriate to this 

physical situation was worked out almost 

immediately after Einstein had pro- 
pounded, in 1917, the general theory of 

relativity. The geometry of space, by 
which the relations between the angles 
and distances that the astronomers meas- 
ure are calculated, can be shown to be 
so nearly Euclidean that this classical 
geometry can be safely employed for 
most purposes. Similarly, there is a kind 
of time appropriate to the physical situ- 
ation which possesses nearly, but not 

quite, the properties of absolute New- 
tonian time. 

But do not let us be hasty and jump 
to the conclusion that, if the departures 
from the Newtonian theories of dynam- 
ics and gravitation are so small, we can 

dispense with general relativity. For 
these departures can have cumulative 
effects when we are concerned with pre- 
dicting how a body in the solar system 
will move. Observations of the planet 
Mercury, which has an orbit lying fairly 
close to the sun, where the gravitational 
field is strongest, and which also moves 
with a relatively high orbital speed, had 
revealed, long before the advent of gen- 
eral relativity, an unexplained motion 
in space of the planet's point of closest 
approach to the sun. The amount of this 
motion was some 43 seconds of arc per 
terrestrial century, and it was found that 
general relativity could interpret it in 
terms of the mass of the sun and the 
dimensions of the orbit of Mercury. 

You might be interested to know what 
the corresponding figure for an artificial 

satellite of the earth would be. Let us 

suppose that the earth is perfectly spher- 
ical-which it is not-and that the maxi- 
mum and minimum distances of the 
satellite from the surface of the earth 
are 200 and 600 miles, respectively; and 
let us ignore the frictional resistance of 
the earth's atmosphere. Then the point 
of closest approach of the satellite's orbit 
would move in space through 1324 sec- 
onds of arc in a century. The figure is 

large compared with that for Mercury 
in spite of the fact that the earth's gravi- 
tational field is incomparably weaker 
than the sun's and that the satellite's 
average speed in its orbit is only about 
one-sixth of Mercury's. The cumulative 
gain lies in the number of revolutions: 
in 100 years Mercury goes round the 
sun about 414 times, whereas in the 
same period the satellite would cir- 
cumnavigate the earth nearly 540,000 
times. 

But to return to the sun. Another 
striking effect of the non-Euclidean char- 
acter of the space-time appropriate to 
the solar system is the phenomenon of 
the bending of light rays. When the stars 
beyond the sun are photographed during 
a total solar eclipse and when the pic- 
ture is compared with one taken at 

night, it is observed that the stars ap- 
pear to be relatively further apart in the 

eclipse picture than in the other. An 
effect of this kind is predicted by gen- 
eral relativity, because the paths of 
light rays in the space-time can be re- 
garded as Euclidean straight lines only 
in regions remote from the sun, where 
its gravitational effect is weak. Near the 
sun itself the geometry departs suffi- 

ciently from the Euclidean to give an 
observable difference. The theoretical 

prediction is that the distortion of 
position for a star seen at grazing inci- 
dence beyond the sun's disc would be 

1.75 seconds of arc. As far as I am able 
to judge from the results of observations 
made during six total eclipses since 1919, 
this figure corresponds to that found 
from observation. 

Conclusions 

Let me now try to summarize, in con- 
clusion. Distance determinations in the 
solar system have always, in the main, 
consisted of the measurements of angles 
and of time intervals. Determinations of 
the positions occupied by a celestial body 
at successive instants of time have neces- 
sarily involved some theory of dynamics 
and of gravitation. The theories of rela- 
tivity have shown that time measure- 
ments can be interconnected with the 
distances deduced from the angular 
measurements in a more intimate way 
than that postulated by Newton. This 
has had as a consequence the develop- 
ment of dynamical and gravitational 
theories different from his. In addition, 
each physical situation has its own 
system of time and distance intercon- 
nections, obtained through the mathe- 
matical device of four-dimensional geo- 
metrical representations in which time 
is regarded as a fourth coordinate inter- 
woven with the three spatial coordinates. 
General relativity has achieved an inter- 
pretation of phenomena in the motions 
of the planets and of light which had 
escaped the Newtonian net. I wish I 
had the space to explain, and that you 
had the endurance required to absorb, 
the further applications of these ideas to 
the universe at large, where distances 
are measured in millions of light-years 
instead of in millions of miles. 
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