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extracts 1 through 3 of the 28U-16A culture, was 
replaced with brom thymol blue indicator for the 
remaining extracts of both cultures since the latter 
gave a sharper end point (but somewhat low titra- 
tion values). 
f One unit of growth-promoting activity is an 
amount equivalent to the growth-promoting ac- 
tivity 1 Rtmole of D-lactic acid (used as standard 
in the microbiological assays). 
$ During the first extraction, part of the nonaque- 
ous solvents dissolved in the aqueous phase, and 
for this reason the first extract was smaller in vol- 
ume and otherwise is not directly comparable to 
the subsequent extracts. 
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grants from the National Multiple Sclerosis 
Society, the U.S. Public Health Service, and 
the University of California. We are indebted 
to Evelyn Brown and Audree Fowler for tech- 
nical assistance. 

4. The calculated acetic acid content of the acidi- 
fied cultures was 146 uzequivalent/ml derived 
from sodium acetate included in the medium. 
It appears, therefore, that 94 to 96 percent of 
the available acetic acid was removed by the 
steam distillation. Probably only negligible 
amounts of lactic acid and growth-promoting 
acid, if any, were removed by this process. 

4 October 1957 

Induction of Enzymes of the 
Galactose Pathway in Mutants of 
Saccharomyces cerevisiae 

Induced biosynthesis of enzymes is de- 
pendent on the presence of a stereospe- 
cific inducer, which is not necessarily a 
substrate (1). In Pseudomonas it was 
shown that a sequential adaptation of a 
series of enzymes of a metabolic pathway 
takes place in the presence of the first (or 
often an intermediary) substrate of a 
chain of inducible enzymes (2). In the 
pathway 

I II III 
A -> B C -> D 

enzyme II will arise in response to the 
formation of product B, and enzyme III 
will be formed when product C accumu- 
lates, and so forth. 

In the present study (3, 4) the in- 
ducible properties of the enzymes of 
galactose metabolism are considered in 
relation to the problem of sequential in- 
duction. The formation of these enzymes 
in response to galactose cannot be ex 
plained in terms of this pattern. 

The galactose pathway (the old "ga- 
lactozymase complex") which effects the 
complete transformation of galactose to 
glucose has now been completely estab- 
lished (5-8) and can be summarized as 
follows (4): 
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UDPGal-4-epimerase 

(DPN) 
UDPG (3) 

Sum: Galactose + ATP ;? G-1-P + ADP 

The initial formation of the catalyti- 
cal amount of uridine diphosphoglucose 
necessary to start reaction 2 is provided 
by a fourth reaction: 

UTP + G-1-P 
UDPG pyrophosphorylase 

UDPG+PP (4) 

In the present study two haploid mu- 
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tants of Saccharomyces cerevisiae which 
are not able to ferment galactose were 
used (9). One of the mutants was con- 
sidered to be galactokinaseless (genotype 
g1G2 (10), while the other one is appar- 
ently defective in a system involved in 
the transport of galactose (genotype 
G1g2 ) (11). 

The activities of the enzymes involved 
in the galactose pathway were deter- 
mined by means of recently developed 
methods (8, 12, 13). 

Galactokinase activity was found to be 
present in G1g2 cells when it was in- 
duced by galactose, but it was always 
completely absent in gjG2 cells (see 
Table 1). These results are in complete 
agreement with the finding that, in yeast, 
the galactokinase activity is under the 
control of the gene G1. The role of the 
G2 gene in the "active transport" of 
galactose is under investigation. 

By the addition of galactose either to 
the cells growing on glucose-salts medium 
or to cells suspended in buffered acetate 
solution, a very striking synthesis of the 
galactose enzymes takes place even in the 
galactokinaseless mutant (see Table 1). 
Although a-galactose-l-phosphate, the 
normal substrate for a-galactose-l-phos- 
phate uridyl transferase, is not formed, or 
at least not in detectable amounts, this 
enzyme and the subsequent enzyme, uri- 
dine diphosphogalactose-4-epimerase, are 
nevertheless induced. The absence of 
uridine diphosphogalactose-4-epimerase 
in unadapted yeast was unexpected, 
since uridine diphosphoglucose, the other 
substrate for this enzyme, is always 
present (6). The fact that the a-galac- 
tose-l-phosphate uridyl transferase was 
induced without the formation of any 
detectable amount of its substrates was 
also contrary to expectation; with tech- 
niques developed in this laboratory (12), 
less than 0.0002 'mole of a-galactose- 
1-phosphate or uridine diphosphogalac- 
tose formed per milligram of protein per 
hour could have been detected. 

It is, therefore, difficult to explain the 
observed phenomena on the basis of se- 
quential adaptation unless one assumes 
that a few molecules of a-galactose- 1- 
phosphate are able to induce a-galactose- 
1-phosphate uridyl transferase. Further- 
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more, an even smaller number of uridine 

diphosphogalactose molecules would, in 
turn, induce the uridine diphosphogalac- 
tose-4-epimerase. A more reasonable hy- 
pothesis is that free galactose itself acts 
as the "gratuitous," and multi-, inducer 
of the biosynthesis of two successive en- 

zymes of the galactose pathway in the 

galactokinaseless mutant. A more de- 
tailed paper describing additional data 
which support this hypothesis is in prepa- 
ration. 

It should be emphasized that in the 

present case galactose appears to initiate 
the induction of at least three enzymes, 
catalyzing entirely different types of re- 
actions: galactokinase, catalyzing phos- 
phorylation of the reducing group of ga- 
lactose; a-galactose-1-phosphate uridyl 
transferase, catalyzing the transfer of a 
uridyl group; and uridine diphosphoga- 
lactose-4-epimerase, catalyzing an inver- 
sion. Free galactose has already been 
shown to be an inducer for P-galactosi- 
dase (14) and 13-galactoside permease 
(15) in Escherichia coli. 

A number of other pentoses and hex- 
oses have been tried, but thus far only 
galactose has been found to serve as an 
inducer. 

Note added in proof: After the pres- 
ent paper was submitted, Mills et al. 
reported that uridine diphosphogalac- 
tose-4-epimerase is present in unadapted 
Saccharomyces fragilis [Biochim. et Bio- 
phys. Acta, 25, 521 (1957)]. We repeated 
the same type of experiments reported 
here, but used S. fragilis, and the results, 
in complete agreement with the present 
findings with S. cerevisiae, show that 
uridine diphosphogalactose-4-epimerase 
cannot be detected in unadapted yeasts. 
HUGUETTE DE ROBICHON-SZULMAJSTER* 
National Institute of Arthritis and 
Metabolic Diseases, National Institutes 
of Health, Bethesda, Maryland 
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Table 1. Specific activities of "galactose enzymes" in an uninduced and induced galacto- 
kinaseless strain of Saccharomyces cerevisiae. Cells were grown aerobically for 48 hours 
at 25?C in glucose synthetic medium (16) (with and without galactose); activities were 
determined on a dialyzed "Nossal" (17) extract; substrates for steps 1, 2, 3, and 4 were 
galactose, Gal-l-P, UDPGal, and UDPG, respectively. 

Specific activity [ (tmole x 104) / (min x mg)] 

Galactose G Gal-1-P UDP - UDPG 
in growth Galacto- uridyl UDPGal-4- pyrophos- 
medium kinase transf erase ep e phorylase 
(mg/ml) (step 1 ) (step 34) 

0 0 0.1 0 91.7 
1 0 89.6 57.0 125.0 

3 JANUARY 1958 
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