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Heat Inactivation of Catalase 
in Deuterium Oxide 

\Ye ha\ c mcasurcd the kinetics of hcat 
inactivation of the enzyme catalasc in 
H,O and D,O over a range of tempcra- 
tures Thc  results show a considerable 
differencc in both the hcat and the en-
tropy of activation, both being higher for 
heating in D,O. 

T h c  enzyme ( I )  was dissol\~ed in 
0.05M phosphate buffcr, madc up in 
either H,O or D,O (>99.6 per cent) 
a t  pH 7.0 in W,O. T h c  D,O buffer read 
6.85 on the pH meter ( 2 ) .  The  concen- 
tration of catalase during. hcating \\as 
300 pg./nil. At appropriate intervals, 
0.1-ml samples nerc  taken, diluted to 
15 &g/ml in buffcr made in EI,O. and 
assaycd by obscrving the breakdown of 
H,O, by measurements of optical den- 
sity a t  2300 A in a Beckman model D'L' 
spcctrophotomcter ( 3 ) .  T h c  D,O con-
centration during. assay \\as 1.4 percent. 
Standing. in D,O buffcr for periods up to 
2 \\ccks a t  8OC had no mensurable effect 
on the rate of subscqucnt inactivation in 
D,O or on the absolute enzymatic ac-
tivity as cornpared with frcsh samples 
in H,O. 

T h e  inactivation curves followed first- 
order kinetics within the prccision of the 
data, with rcaction times from a few 
seconds to several hours. From the ob- 
served rate constants, the free encrgies 
of activation wcrc calculatcd from the 
theory of absolute reaction ratcs 14) ac-
cording to the equation 

Figure 1 shows the temperature de-
pendence of thc free cncrgy of activation 
(AFZ). From the relation 

AFt = A H *- TAS* 

we find, for heating in H,O, AH: = 87 
kcal/mole and AS: = 191 cal/mole . deg, 

and for heating in D,O, AH$= 145 
kcal/mole, and ASX=360 cal/ mole.  deg. 

\Yibcrg f 5 )  and AtIorocvitz and Bra\\-n 
f 6 )  havc rccently rrvir~ved the effect of 
dcuterium on rcaction ratcs. Since the 
zcro-point cnergy of a covalent bond to 
dcutcriuni is locvcr than that of thc cor- 
rcspondlng onc to hydroqrn by about 1.2 
to 1.5 kcal/niolc (because of thc greatcr 
mass and conscqucnt lo\\ er frcqcnry ) , 
reactions which in\yol\~c breaking such 
bonds arc usually slo\\er in D,O, and 
deuteratcd conipounds in gcncral react 
rnorc slo\\-ly than hydrogcnated oni.5. 
Enzymatically catalyzed reactions havc 
been obscrvcd to go both faster and 
slower in D,O, and somc of the reports 
are conflicting. blacht and Bryan ( 7 )  
report a "noticeablc acceleration" of the 
action of catalasc on H,O, in 0.05- to 
1.0-pcrccnt D,O, \\-hereas Fox ( 8 )  re-
ports no changc in 1-pcrccnt D,O. Our  
results tend to confirm Fox, although it 
is possible that a change of a few perccnt 
may have bccn unnoticed. 

Caldwell, Doebbling, and Manion ( 9 )  
rcported that pancreatic amylase drna-
tured morc rapidly a t  25OC in D,O than 
in \vatcr, whercas Fox ( 8 )  reported no 
differencc in the daily loss of catalasc 
activity bet\vcen D,O and H,O.  I t  scems 
likely that ncither of these cases repre-
sents thermal inactivation of thc kind 
obser\~cd here. We found loss of catalasc. 
activity in H,O at  25OC and 37OC to be 
much more rapid than consistent with 
thc higher tcmperaturt: drtta, and tvc 
suspcct that bacterial grortth was thc 
cause. Extrapolation of the curve in Fig. 
1 would ~ i e l d  a timc of about 10 years 
at 25OC, for the same rcaction in H,O. 

More\\-itz and Chapman ( 1 0 )  reported 
that dcuterium substitutes rapidly 
(within 20 minutes) in all bonds of pro- 
tcins cxccpt C-H. Linderstrgni-Lang 
(11) found that in some proteins therc 
is a continucd slower cxchangc following 
the initial rapid one. Our  etsidencc sug- 
gcsts no further effect on hcat stability 
of 	 catalase betlveen about I/2 hour and 
2 	weeks. 

The  mechanism of thcrmal inactiva- 
tion of enzymes is still ohscure, although 
it is presumably closcly rclated, if not 
identical, to denaturation. The  high val- 
ues of the heat and entropy of activation 
obscrvcd here are typical of enzyme in- 
activations and have suqgcsted a proces5 
involving the breaking of a numbcr of 
\\eak intcrchain hydrogcn bonds, with 
accompanying high entropy chanqcs as 
the molecule becomes more disorderccl 
( 1 2 ) . I t  may be expected that deuterium 
bonds are related to hydrogen bonds 
qualitatively as the respective covalent 
bonds, and that they will he sornewhat 
stronqer. I t  is not surprising, therefore, 
to find AH: hiqher for inactivation in 

Fig. 1. The free energy of activation 
( A F * )  for inactivation of catalase in Hz0 
and D20  at various temperatures. The 
lines represent the equation AF'I =AH* ---
TAS*, where AH: and AS: are the heat 
and entropy of activation, respectively. 
For HrO, AH* = 87 kcalimolc, AS: = 191 
cal/mole . deg; for DzO, AH$= 145 ltcali 
mole. AS: = 360 calimole . d e ~ .  

D,O. Furthel, jlnw the vibrational 
cnergy levcls of a dcuteriuni bond a r t  
more closcly spaccd, the partition func- 
tions are affcctcd, and thcrcby the en-
tropy terms are cxpectcd to be changed 
In the frcc cnerqiecl of reactants, products, 
and activated complex. I t  is difficult, 
hoccel~er, to prcdlct a p ~ i o r i  the effect of 
this on the AS1 of thc inacti\~ation proc- 
ess, except to say that it is likely to bc 
diffcrcnt (13) .  

t V .  R. GUIID 
R. P. VAN TUBERGEL\ 

Dcpart?~lent of Biophysics, 
Yale  Universit31, 
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