ing on dead flies, a source of error in oviposi-tion studies recently examined; see K. R. S. Ascher and Z. H. Levinson, *Riv. parassitol.* 17, 217 (1956).

- P. A. Woke, Ann. Entomol. Soc. Amer. 48, 39 (1955). 6. P.
- 7. CDS Summary of investigations, January-June 1955, No. 8, p. 43; S. E. D. Afifi and H. Knutson, J. Econ. Entomol. 49, 310 (1956); Knutson, Ann. Entomol. Soc. Amer. 48, 35 (1955)
- H. J. Hueck, dissertation, University of Leiden, 1953, pp. 1–148; H. J. Hueck et al., Physiol. comparata et Oecol. 2, 371 (1952). 8. H. 9. F. Tattersfield and J. R. Kerridge, Ann. Appl.
- Biol. 43, 630 (1955). 10
- *Biol.* 43, 650 (1955). I wish to express my thanks to my colleague S. Reuter for the majority of compounds tested, and to A. Ben-Shmuel and D. Roch for excellent technical help.
- Present address: Department of Parasitology, Istituto Superiore di Sanità, Rome, Italy.

7 February 1957

Heat Inactivation of Catalase in Deuterium Oxide

We have measured the kinetics of heat inactivation of the enzyme catalase in H₂O and D₂O over a range of temperatures. The results show a considerable difference in both the heat and the entropy of activation, both being higher for heating in D₂O.

The enzyme (1) was dissolved in 0.05M phosphate buffer, made up in either $\hat{H_2O}$ or D_2O (>99.6 per cent) at pH 7.0 in H₂O. The D₂O buffer read 6.85 on the pH meter (2). The concentration of catalase during heating was 300 µg/ml. At appropriate intervals, 0.1-ml samples were taken, diluted to 15 µg/ml in buffer made in H₂O, and assayed by observing the breakdown of H₂O₂ by measurements of optical density at 2300 A in a Beckman model DU spectrophotometer (3). The D_2O concentration during assay was 1.4 percent. Standing in D₂O buffer for periods up to 2 weeks at 8° C had no measurable effect on the rate of subsequent inactivation in D₂O or on the absolute enzymatic activity as compared with fresh samples in H₂O.

The inactivation curves followed firstorder kinetics within the precision of the data, with reaction times from a few seconds to several hours. From the observed rate constants, the free energies of activation were calculated from the theory of absolute reaction rates (4) according to the equation

$$k = \frac{\overline{k}T}{h} e^{-\Delta F \ddagger /RT}$$

Figure 1 shows the temperature dependence of the free energy of activation (ΔF^{\ddagger}) . From the relation

$$\Delta F^{\ddagger} = \Delta H^{\ddagger} - T \Delta S^{\ddagger}$$

we find, for heating in H₂O, $\Delta H^{\ddagger} = 87$ kcal/mole and $\Delta S^{\ddagger} = 191$ cal/mole deg, and for heating in D_2O , $\Delta H^{\ddagger} = 145$ kcal/mole, and $\Delta S^{\ddagger}=360$ cal/ mole \cdot deg.

Wiberg (5) and Morowitz and Brown (6) have recently reviewed the effect of deuterium on reaction rates. Since the zero-point energy of a covalent bond to deuterium is lower than that of the corresponding one to hydrogen by about 1.2 to 1.5 kcal/mole (because of the greater mass and consequent lower frequency), reactions which involve breaking such bonds are usually slower in D₂O, and deuterated compounds in general react more slowly than hydrogenated ones. Enzymatically catalyzed reactions have been observed to go both faster and slower in D₂O, and some of the reports are conflicting. Macht and Bryan (7) report a "noticeable acceleration" of the action of catalase on H₂O₂ in 0.05- to 1.0-percent D₂O, whereas Fox (8) reports no change in 1-percent D₂O. Our results tend to confirm Fox, although it is possible that a change of a few percent may have been unnoticed.

Caldwell, Doebbling, and Manion (9) reported that pancreatic amylase denatured more rapidly at 25°C in D₂O than in water, whereas Fox (8) reported no difference in the daily loss of catalase activity between D₂O and H₂O. It seems likely that neither of these cases represents thermal inactivation of the kind observed here. We found loss of catalase activity in H₂O at 25°C and 37°C to be much more rapid than consistent with the higher temperature data, and we suspect that bacterial growth was the cause. Extrapolation of the curve in Fig. 1 would yield a time of about 10 years at 25°C, for the same reaction in H₂O.

Morowitz and Chapman (10) reported that deuterium substitutes rapidly (within 20 minutes) in all bonds of proteins except C-H. Linderstrøm-Lang (11) found that in some proteins there is a continued slower exchange following the initial rapid one. Our evidence suggests no further effect on heat stability of catalase between about 1/2 hour and 2 weeks.

The mechanism of thermal inactivation of enzymes is still obscure, although it is presumably closely related, if not identical, to denaturation. The high values of the heat and entropy of activation observed here are typical of enzyme inactivations and have suggested a process involving the breaking of a number of weak interchain hydrogen bonds, with accompanying high entropy changes as the molecule becomes more disordered (12). It may be expected that deuterium bonds are related to hydrogen bonds qualitatively as the respective covalent bonds, and that they will be somewhat stronger. It is not surprising, therefore, to find ΔH^{\ddagger} higher for inactivation in

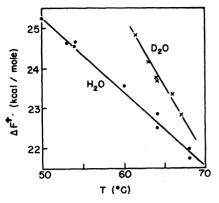


Fig. 1. The free energy of activation (ΔF^{\ddagger}) for inactivation of catalase in H₂O and D₂O at various temperatures. The lines represent the equation $\Delta F^{\ddagger} = \Delta H^{\ddagger}$ - $T\Delta S^{\ddagger}$, where ΔH^{\ddagger} and ΔS^{\ddagger} are the heat and entropy of activation, respectively. For H₂O, $\Delta H^{\ddagger} = 87$ kcal/mole, $\Delta S^{\ddagger} = 191$ cal/mole \cdot deg; for D₂O, $\Delta H^{\ddagger} = 145$ kcal/ mole, $\Delta S^{\ddagger} = 360$ cal/mole \cdot deg.

 D_2O . Further, since the vibrational energy levels of a deuterium bond are more closely spaced, the partition functions are affected, and thereby the entropy terms are expected to be changed in the free energies of reactants, products, and activated complex. It is difficult, however, to predict a priori the effect of this on the ΔS^{\ddagger} of the inactivation process, except to say that it is likely to be different (13).

W. R. Guild R. P. VAN TUBERGEN Department of Biophysics, Yale University, New Haven, Connecticut

References and Notes

- Crystalline beef liver catalase, lyophiled, Worthington Biochemical Corp., Freehold, 1. N.J.
- Beckman model G, glass (No. 270) and Calo-2.
- beckman model G, glass (No. 270) and Calomel (No. 290) electrodes.
 R. F. Beers and I. W. Sizer, J. Biol. Chem. 195, 133 (1952).
 S. Glasstone, K. J. Laidler, H. Eyring, The Theory of Rate Processes (McGraw-Hill, New Varth 104). 3.
- York, 1941). K. B. Wiberg, Chem. Revs. 55, 713 (1955).
- H. J. Morowitz and L. M. Brown, The bio-I. J. Molowitz and L. M. Brown, 'The biological effects of deuterium compounds," Natl. Bur. Standards (U.S.) Rept. 2179 (1953).
 D. I. Macht and H. F. Bryan, Proc. Soc. Exptl. Biol. Med. 34, 190 (1936).
 D. L. Fox, J. Cellular Comp. Physiol. 6, 405 (1925)
- 7
- 8. (1935).
- M. L. Caldwell, S. E. Doebbling, S. Manion, 9. J. Am. Chem. Soc. 58, 84 (1936). H. J. Morowitz and M. W. Chapman, Arch.
- 10.
- K. J. Molowitz and M. W. Chapman, Her.
 Biochem. and Biophys. 56, 110 (1955).
 K. Linderstrøm-Lang, Soc. Biol. Chemists India 191 (1955); "Symposium on peptide chemistry," Chem. Soc. London Spec. Publ. 11. No. 2 (1955). A. E. Stearn, Advances in Enzymol. 9, 25
- 12. 1949.).
- (1949). We thank H. J. Morowitz, for suggestions concerning, and discussions of, these experi-ments, and E. M. McKelvey and R. M. Gib-son, who performed some of the preliminary 13. experiments.

1 March 1957