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Biological Response Curves 

W. W. Westerfeld 

Many growth and biological response 
curves have a sigmoid shape or can be 
considrred to be portions o f  S-shaped 
curves. Such curves are similar to the  
graphic representations o f  electron and 
proton transfers ( w h e n  all are plotted i n  
an  analogous w a y ) ,  and such curves can 
be described mathematically by  using a 
general equation that is based on  the 
mathematical expressions governing elec- 
tron and proton exchanges. T h e  purpose 
o f  this article is to identi fy the existing 
analogies and to show hou  certain growth 
and biological response curves conform 
to  this relationship. 

T h e  general equation for the  sigmoid 
curves under consideration is 

X = K t f  log ( A / B )  (1) 

\\.here X is one o f  the variables i n  t he  
system; K is a co~lstant characteristic o f  
the mid-point o f  the  curve; f is a con-
stant characteristic o f  the "spread" o f  the 
curve: and A / B  is the  ratio o f  two  com-  
ponents o f  the system that act as a " b u f -  
fer" pair. 

I n  proton transfers, the titration curve 
is described within certain limitations by 
the farnilar Henderson-Hasselbalch equa- 
t ion : 

For electron transfers, the  voltage o f  an 
oxidation-reduction system is described 
by the equation: 

0.06 [oxid.]
El, = Eo C ---- log ---

[red.] ( 3 )  

Both o f  these curves have been plotted 
in Fig. 1, the first for an  acid whose 
pK is 5, the second for an oxidation-re- 
duction system whose E, =+ 0.2 v and 
n = 1 and 2 (o ther  systems would give 
identical curves).  W h e n  the two equa- 

tions are spread over the same distance 
o n  the abscissa, the curve for electron 
transfers coincides wi th  the curve for 
proton transfers. 

T h e  f components o f  dif ferent S-shaped 
curves will obviously have no compara- 
tive value unless all such curves are con- 
sidered on  the  same basis by  making 
each K = 1.0. T h e  f o f  the original curve 
divided by the original K will then give 
the  F that corresponds to K - 1. Whereas 
the values for f in the  original curves for 
electron and ~ r o t o n  transfers are con-
stant irrespective o f  the absolute value 
for K,  the  values for F corresponding t o  
a K o f  1.0 vary w i th  the E, or pK at 
which  the  F is calculated. 

A n  S-shaped curvc conforming to the  
general equation will yield a straight line 
when log ( A / B )  is plotted as the ordi- 
nate against X -K as the abscissa, and 
the slope o f  the line will equal l / f .  

Normal Distribution 

T h e  Henderson-Hasselbalch equation 
is derived f rom the  mass action formu- 
lation for the ionization o f  a weak acid: 

[H'I [A3= K 
[HA] 

W h e n  the Hrnderson-Hasselbalch 
equation ( E q .  2 )  is differentiated i n  or- 
der to obtain the rate o f  change o f  t he  
titration curve ( 1), the following equa- 
t ion for the bu f f e r  value is obtained. 

AB 2 . 3 K x C x H@=---
ApH - ( K  + H ) "  ( 5 )  

As is noted earlier, the  usual way o f  
plotting Eq. 2 i n  the f o rm  o f  [ A - ] / [ H A ]  
against pH yields a symmetrical S-shaped 
curve. Plotting Eq. 5 as buf fer  value 
against pH gives a normal frequency-

distribution curve. Figure 2 shov s the es- 
sential identity o f  such a bu f f e r  value 
curve wi th  a normal distribution curve 
I.\hose standard deviation is 1. 

T h u s  the norrnal frequency-distribu-
t ion curve is related to the  syrnrnetrical 
S-shaped curves that are characteristic 
o f  electron and proton exchange?. 
Thornpson ( 2 )  has pointed out that " the  
bell-shaped and the  S-shaped curves f o rm  
a reciprocal pair, the  integral and the  
differential o f  one another." So  far as 
Droton transfers are concernrd. both 
types o f  curve are derived f r o m  the same 
fundamental mass-action relationship. 
T h e  mean  o f  a norrnal distribution curve 
corresponds to the  K o f  an S-shaped 
curve, and the  asymptotic "limits" o f  a 
distribution curve coincide wi th  the prac- 
tical "limits" o f  the S-shaped curves for 
proton and electron transfers. Hence, the 
mean  o f  a normal distribution curve cor- 
responds to the value obtained n ith an  
equal mixture o f  t he  two forrns making 
u p  The "buffer" pair, while the practical 
limits (13 0 )  correspond to the values 
obtained when  essentially only one o f  the  
two possible forrns is present. 

Response Curves 

hlany  growth curves are symmrtrical 
and identical ~ i t h  the  curve for proton 
and electron transfers. Figure 3 shows 
the close parallelism bet.r%een a number 
o f  unrelated grouth curves and the S- 
shaped curve for electron and proton 
transfers s h o ~ n  in  Fig. 1 !%hen the  ab- 
scissas and ordinates for all o f  these 
curves are made to coincide. 

Sorne bioassay curves are S-shaped and 
c o n f o r ~ n  to  the same equation 1% hen  i t  
is expressed as follows. 

Dose - K f f lor, u 

(percentage responding) 
(percentage not responding) ( 6 )  

Plotting the  percentage response as the 
ordinate is analogous to the usual plot 
o f  the ratio o f  [ A - ] / [ H A ]  in a titration 
curve or the ratios o f  oxidized/reduced 
forms i n  electron transfers; the  latter 
plots could equally well be considered t o  
represent the percentage o f  acid neu-
tralized or the  percentage o f  a given sub- 
stance oxidized. 

Figure 4 sholvs the dose-response I-urves 
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Fig. 4. The solid lines are dose-rcsponsc curvcs for the assay of digitalis (curvc 1), stro-
phanthin (curve 2 ) ,  and estrogen (curvc B ) ,  according to Burn (3, 4 ) .  The values for 
f are calculated by substituting cxpcrimental data in Eq. 6 .  F = f/K. The circles reprcscnt 

Fig. 1. Curtes representing elcctron and 
proton transfers. (Cur le 1) Titration 
curve for an acid, p I < = 5 ,  according to 
Eq. 2. The same curve results from the 
oxidation-reduction equation, Eq. 3, whcn 
n = 1. (Curvc 2 )  Oxidation-reduction re-
action when n = 2 Curve 2 would colncide 
with curle 1 if it were spread o ler  thc 
same distance on the x-axis. Notc that the 
ordinatc is not a llnear plot of the ratio 
but is a rcgular progression that corrc-
sponds to a percentage of the maximum. 

polnts calculated for thc givcn values of f.  

for the assay of digitalis, strophanthin, 

i'm;
and estrogrn as givrn by Burn (3, 4 ) .  
Calculating thr  f values to a K of 1.0 
yields an F = 0.3 for both the digitalis.4 
and strophanthin curves, and an F = 

.3 0.833 for the estrogen assay. Sincc the 

.2 
ti 
z digitalis and strophanthin curves havr 

the same value for F, the t ~ v o  curves a r r  a 

.I 2! 	 identical and ~vill  coincide when thry are 

plottcd on the samr basis by graphing 
5 1 2 3 . 3 -p H 3  4 DISTRIBUTION 	 the closagr as a plus or minus perccntagr 

of the dose giving a 50-perccnt responsc 

6B) that follo~%rthr grnrral equation. 
This ir similar to a plot of the I-Iender- 
son-Harrelbalch equation In which the 
negative lognrithm of the hydrogen-ion 
concentration, rathrr than the hydrogen- 
ion concentration itself, is plotted as the 
abscisra. 

Hemisigmoid Curves 

If a biological effect startr a t  the mid- 
point of a siginoid curvc, only the upper 
half of the latter till be revealed in a 
dosr-rcsponse curke. Such hemisiginoid 
curver follo~+ the general rcjuation fol 
S-rhapcd curves n h c n  it  is rrcognizcd 
that only half of a typical rigmoicl culkr 
is undel consideration. When thcy a l r  
plottetl in the usual ( A ] Bversus X) ,  
these hemisiginoid curvrr havc the 
shapes illustratrd in Fig. 7A. A plot of 
log X againrt A/B  jirlds the curves 
s h o ~ t n  in Fig,. 7B. Such a log rclation- 
ship is obviourly not linear, but the cen- 
tral portion of each curvr approaches 
linrarity. 

DISTRIBUTION 

Fig. 5. A skewed distribution curve (dotted 
line) and its corresponding unsymmctrical 
S-shaped summation curvc. 
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Fig. 2. Comparison of the buffer value 
and normal distribution curles. The  lcft- 
hand portion of the curvc is a plot of 
butier ~ a l u e  versus ~ J Hfor a 1M acid, 
$ K  = 5, according to Eq. 5. The right- 
hand portion is a frequency-distribution 
curve wherc hT= 1 and o = 1. 

Fig. 3.  Growth curves. The solid line is 
the thcorctical S-shapcd curl e for proton 
or elcctron transfers as gilen in Fig. 1, 
while the symbols represent points on the 
actual growth curves published by Thomp-
son ( 2 ) .  X, Growth of beanstalk to 80 
centimctcrs in 8 days: 0,growth of lupine 
to 160 millimctcrs in 21 days; A,prcnatal 
growth of child to 490 millimeters in 10 
months; 0,growth of maize to 80 centi-
meters in 100 days. 

( a ) ,  thrreby making K = 1. When thc 
dose rrquirrd to produce a 100-percent 
response is t~vice i:le dose that gives a 
50-percent responsc, the rrsulting S-
shaped curvc has an F = 0.5. When thc 
assay range is greater or lcss than this, 
the F is ~or rcs~ond ing ly  greater or lcss 
than 0.5. 

Skcalcd curr:es. A skebvcd distribution 
correspoilds to an unsymmetrical S-
shaped curve, as is sho~vn in Fig. 5. T h e  
S-shaped curvc can be derived from thr  
frrquency distribution by calculatiilg th r  
percentage of values that fall belo~v or  
above any given valur. I n  this "sumina- 
tion curvc," the distance bet~vcen the 
t~t -o  quartiles ( the  25- and 75-prrcent 
points) very nearly coiilcicles with the 
standard drviation of thc normal curve 
( 2 ) .For a skrbvcd frequency curvc, th r  
geomrtric mcan is more probable than 
thr arithmrtic mean. Sincc thr logarithm 
of the geometric mean of a series of 
numbers is the arithmrtic mran of their 
logarithms, the logarithms of the vari- 
ants and not the variants themsrlvcs will 
tcncl to obey the Gaussian l a ~ v  and follo~v 
thc normal curvc of frrqurncy ( 2 ) .  

Figurr GA sho~vs thc skewed type of 
dose-rcsponse curve that is obtainrd in 
clcterminiilg the toxicity of cocainr in 
mice ( 4 ) .  Plotting thc logarithm of thr  
dose, illstead of the close itself, as ab-
scissa yields a symmetrical curve (Fig. 



The  ratio A/B is equivalent to the 
percentage of B converted to A, and it is 
analogous to the percentage responsc in 
a bioassay procedure. I n  analyzing a 
hcmisigmoid bioassay curve, its origin or 
zero-dose responsc is equatcd to an  cqual 
mixturc of A and B (corresponding to 
the mid-point of a sigmoid curve), while 
the maximum rcsponse corresponds to 
100 pcrcent of A. T h e  assay rangc there- 
fore extcnds from 50 percent of the maxi- 
mum rcsponse ( a t  zero dosage) to a 
100-percent rcsponsc at its asymptotic 
limit, and thc distance in bct~vcen is ap- 
portioned equally. Sincc thc dosage a t  
the beginning of the assay curve is in- 
evitably zcro, thc K of thc gencral equa- 
tion for sigmoid curves is also zcro and 
can be dropped from thc ecjuation, leav- 
ing 

Dosage := f log 
percentage of maximum responsc 

100 - pcrcentage of maximum response 
(7  

1%-hcnthe percentage rcsponse is equatcd 
to a scalc of 50 to 100 percent rather 
than 0 to 100 percent. 

Figure 8 sho~t-s the dose-rcsponse 
curvcs for the bioassay of anclrostcrone 
and insulin ( 4 ) .  From the experimental 
curves, the recorded values for j can be 
calculated. T h c  circles sho>v the close 
corrcspondcncc bet~vccn thc actual assay 
curves and the theoretical curves cal-
culated bvith these appropriate values 
for f .  T h e  log dose-rcsponsc curves show 
thc "lincar" central portion that has becn 
used extensively for comparative assay 
purposes. Assay curvcs that conform to 
Eq.  7 will yield a true straight line 
throughout the assay range when log 
[(percentage of maximum response)/ 
(- 100 percentage of nlaximunl re-
sponse)] is plotted on a scale of 50- to 
100-percent response as the ordinate 
against the dose as the abscissa, and the 
slope of the line will be 1j f .  

All growth and dose-response curves 
cannot be represented by the simple re-
lationships described, and similar sigmoid 
curves can often be represented by very 
different types of differential equations. 
However, the examples cited emphasize 
a fundamental unity of many chemical 
and biological relationships. Since bio- 
logical phenomena are dependent on 
chemical reactions, and since the latter 
are concerned with electron and proton 
exchanges, there is a fundamental basis 
for the analogies and correlations that 
have been made. 
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Fig. 6. ( A )  The unsymmetrical dose-response curve for the toxicity of cocaine in mice 
( 4 ) .  (B)  The same data plotted as log dosc vcrsus rcsponse to yield a symmctrical curve 
that follows the equation: log dosc = 0.395 t 0.14 log [(percentage responding)/(pcrccnt- 
age not responding)]. 

Fig. 7. ( A )  Hemisigmoid curves according to the equation: X = K t f log (A/B), when 
K = 0 and only the upper half of the total curve is plotted: J = 1. 2, or 4 as indicated. (B)  
A corresponding plot of log X (instead of X)  against the ratio of A/B. 
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Fig. 8. The solid lines are the experimental bioassay curves for androsterone and insulin 
( 4 ) .  The circles are theoretical points calculated from the equation: dose =K + f log 
(A/B), when K = 0 and f = 3.5 for androsterone and f = 0.535 for insulin. The ratio A/B 
is equivalent to (percentage maximum response) / ( 100 - percentage maximum response), 
with the assay curve starting at the mid-point of a sigmoid curve, that is, at the 50-percent 
response level. The log dose-response curves are also shown. 


