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erties. I t  must obey, for instance, all the 
properties of invariance that are involved 
in the Lorentz transformation. So they 
must be invariant for what one calls the 
inhomogeneous Lorentz group. These in- 
variance properties will lead to a num- 
ber of conservation laws--con$ervation 
of energy, momentum, angular momen-
tum. In  connection with quantization, 
they will also lead to the fact that the 
angular momentum always is either an 
integer multiple of f i  or a half quantum 
integral of h. So all these results must 
come out of such a theory of elementary 
particles. 

For experiments, these conservation 
rules mean, for example, that we have 
selection rules that some particles can 
only decay into certain other ones. And 
sometimes we even do not know yet 
what the selection rules are that appar- 
ently are present. For instance, according 
to all known conservation laws, we think 
that a proton could disintegate into a 
positron and one or several light quanta. 
But we see that this is not the case; so 
there must be new conservation laws and, 
therefore, new invariance properties that 
have not been accounted for in the pres- 
ent theories. 

If we take all this qualitative knowl- 
edge together, it seems reasonable to be- 
lieve that even in 5 or 10 years from now 
the general picture of this knowledge 
will probably not have been changed. In 
5 or 10 years from now we will certainly 
know a number of new particles beyond 
those that we know already. JVe will 
have better knowledge of the cross sec- 
tions and of the Froduction probability 
of these particles. We will know in what 
number these particles are created in 
high-energy collisions, and so forth. But 
still qualitatively this picture will not 
have been changed. One important fea- 
ture of this picture also is that all these 
particles are connected. By connected I 
mean that when we have a sufficient 
amount of energy at our disposal-when, 
for instance, two elementary particles 
collide at  very high energies-then ap-
parently any other type of particle can be 
created, either directly in the collision or 
some time after the collision t h r o u ~ h  
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It  is obvious that at the present state 
of our knowledge it would be hopeless 
to try to find the correct theory of the 
elementary particles. On the other hand, 
one may try to form some kind of pic- 
ture of how such a future theory of ele- 
mentary particles will look, because, 
even if we realize that we know only 
very few details about the elementary 
particles, we have already quite a good 
qualitative picture of them, and we feel 
that even if the experiments go on for 
5 or I0 or even more years, this qualita- 
tive picture will scarcely change. 

Perhaps the best way to start this sub 
ject is to give a short review of what we 
know about the elementary particles, 
and then the problem of the theory will 
not be to find the correct theory, but 
rather it will be to find a model of such 
a theory. That is, one can, even at the 
present time, make the attempt to con- 
struct theories that at least qualitatively 
give something very similar to the ele- 
mentary particles that we see now in 
nature. Only at a much later stage can 
we hope to find the correct theory. What 
I shall try to tell here is in some ways 
quite ambitious, because it is a modcl 
for the real theory of elementary parti- 
cles-that is, a theory that comprises all 
knowledge about atomic events, in one 
single mathematical scheme. On the 
other hand, it is not so very ambitiou~, 
because it  is not an attempt to find 
such a theory but only to find a theory 
that qualitatively resembles it-in other 
words, a kind of model of such a theory. 

Our Knowledge of 

Elementary Particles 

What do we know about the elemen- 
tary particles? First of all, we know that 
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there is a great number of different ele- 
mentary particles. We know a mass spec- 
trum of such particles and the masses of 
many. For instance, the mass of the pro- 
ton is 1836 times larger than the mass of 
the electron, so the electron seems to be 
an especially light particle. Most other 
particles seem to be heavier by at  least 
a factor of 100. If we consider these 
masses as something similar to the sta- 
tionary states in the hydrogen atom, then 
we see that some of these masses are 
stable states, and others are unstable 
states. 

The electron apparently is a stable par- 
ticle and has, therefore, a very sharply 
defined mass. The proton also seems to 
be a stable particle, but the neutron is 
not stable. The neutron can decay, emit- 
ting a proton and electron and neutrino. 
The neutron has a lifetime of roughly a 
quarter of an hour. Then there are the 
mesons, which are still much more un- 
stable. Their lifetime is very much 
shorter. The ~r,meson has a lifetime of 
2 x 10-6 second. T h e  x meson has a life- 
time of 2.5 x second. The neutral 
x has a lifetime of only lO-I5 second. So 
we see that all different degrees of sta-
bility may occur, and as a rule one can 
assume that when the particles get 
heavier and heavier, then the chances 
that they are stable are smaller and 
smaller, so that probably above a cer-
tain mass value all particles will have 
only an extremely short lifetime. There- 
fore they will not have a well-defined 
mass, and then it is of no use to speak 
about elementary particles. 

We know still more about the par-
ticles, or, I should say, about the results 
of any future theory of elementary par- 
ticles. For instance, we know that any 
such future theory of elementary par-
ticles must contain some invariance prop- 



all existing elementary particles into dif- 
ferent groups that have nothing to do 
with one another. Such a division is in 
principle certainly not possible. All the 
elementary particles are connected. 

A Wave Equation for Matter 

Let us take this qualitative picture of 
matter, of the behavior of matter, and 
ask: How can the theory of elementary 
particles possibly look? We can say: 
Since we must have in this theory the in- 
variance for the inhomogeneous Lorentz 
group, it is very natural that such a 
theory will in some way be connected 
with a wave function depending on x, y, 
z, and t .  Because, if we write the wave 
equation for such a wave function, then 
it is easy to do it in such a way that 
the invariance for the inhomogeneous 
Lorentz group actually is present. This 
wave equation that we want to write, 
however, will certainly not be a wave 
equation for a special kind of waves-
light waves or meson waves-or a wave 
equation for nucleons, or anything like 
that, because the mesons, light quanta, 
and nucleons must come out of the equa- 
tion; they cannot be put into it. So this 
wave equation, if it exists at all, will be 
an equation for matter, not for any spe- 
cial kind of elementary particles. 

What kind of wave function do we 
have to introduce to represent matter? 
We may think, just because we have no 
other mathematical tools, of functions 
that are scalars, or spinors, or vectors, or  
tensors-in any case some of these rela- 
tivistic functions or operators. I t  would 
certainly not be convenient or sensible 
to start by assuming that this wave func- 
tion of matter is a scalar or  a vector, be- 
cause then this wave equation could 
never lead to spinor particles. O n  the 
other hand, if we assume that this wave 
function of matter is a spinor, then there 
is a chance to represent not only the 
spinor particles but also the scalar and 
the vector particles, because, if we start 
with half integers for spin quantum 
numbers, we can also ge; spins that are 
integers by taking several of these half 
quanta together; but if we start with 
integral spin numbers, we can never get 
the half spin quantum numbers. So it 
looks natural to assume that, if someday 
we can write a wave equation for matter, 
this should be a spinor equation. 

Then again, one could think of a 
spinor equation that is just a linear wave 
equation, like the Dirac equation. Thic, 
however, could certainly not represent 
the facts, because we 1:now that all ele- 
mentary particles interact. A linear Ivave 
equation, however, will never lead to any 
interaction, and therefore one cannot ex- 
pect a linear equation to represent the 
experimental situation for the elemen-

tary particles. So we have to start with a 
nonlinear equation for a spinor wave 
function, and we shall see whether we 
can in this way get a model for a theory 
of the elementary particles. 

What is the simplest nonlinear wave 
equation for a spinor wave? I think I 
can quickly write it. 

Here, Q'EIeisenberg = Q~chwinger=vtP=-
iQtpaUli,  where Qt is the hermitian con- 
jugate of and fl  is the Dirac matrix op- 
erator for ( 1 - v"c2) $. One can argue 
that other equations are just as simple or 
perhaps slightly simpler, but essentially 
this is a very simple equation. As I said 
before, I do not believe that this is neces- 
sarily the correct wave equation. I just 
want to see whether such a wave equa- 
tion can lead to a picture of the elemen- 
tary particles, which at least qualitatively 
represents what we know about them. 

This wave equation has two parts. The 
first part is just part of the ordinary 
Dirac wave equation for a spinor func- 
tion, y , d @ / d x ,  =0. That would be a 
Dirac equation for neutrinos. Then there 
is added a term where I represents a con- 
stant of the dimension of a length and 
IZV(Q+Q) is an interaction term. I t  is the 
simplest interaction term one can write. 
I t  must be a term of the third order, be- 
cause with a spinor function it would not 
be possible to have a second-order term 
with the correct transformation proper-
ties. One couId imagine other terms of 
the fifth order and the seventh order, 
but this seems to be the simplest one. 
Also, instead of this term of the third 
order, one could take other terms with 
some y operators in them, but this would 
not essentially change the situation. 

I think qualitatively such an equation 
seems to be a reasonable starting point 
for a theory of matter. The question is: 
Is there any chance that the quantizat~on 
of such an equation will lead to an en- 
semble of elementary particles, some 
stable, others unstable, from which one 
can then calculate other interactions, and 
so forth? The  next question is: Can such 
an equation be quantized according to 
the methods that we know for the quan- 
tization of wave fields? 

The answer to this latter question is: 
No, because we know now from the theo- 
ries of Schwinger and Tomonaga, Feyn- 
man, and others that in the quantization 
of fields, one will always run into the so- 
called "divergency difficulties," and this 
can be overcome only in some cases by a 
formalism, which is called the process of 
renormalization. Not all equations can 
be renormalized. O n  the contrary, we can 
divide all possible interactions into two 
types: one type can be renormalized and 
shows what can be called weak inter-
action; the other type has what we may 

call strong interaction, and for strong 
interactions this process of renormaliza- 
tion does not work. This interaction 
here, however, belongs to the strong-in- 
teraction type, and regardless of what 
kind of nonlinear wave equation we 
would write for spinor waves, we would 
always get the strong-interaction type, 
which cannot be renormalized. There-
fore, we have to invent a new scheme of 
quantization. We have to change the 
rules of quantization in such a way that 
on one side we still preserve those fea- 
tures of quantum theory which we know 
must be true and still avoid the diver- 
gence difficulties and get to mathemati- 
cal schemes that really work. 

Commutation Relationships 

The next and most difficult problem in 
connection with such a wave equation is 
the question: What assumptions can we 
make about the commutation relation-
ships? So, we will now be interested in a 
commutator between Q at  one point and 

or  Q+ at another point. Let me tvrite 
this commutator. 

This commutator is, in this case, writ- 
ten with a + sign between the two ex-
pressions on the left side, because we 
expect for a spinor wave the anticom-
mutation rules that we know from Fermi 
statistics. T h e  sum ~ , ( x ) q ~ , + ( x ' )t 
@ , + ( x r ) Q , ( x )  is, in the ordinary theory, 
0 for any nonvanishing spacelike dis-
tances between x and xr and becomes a 
delta function when the points are close 
together. This anticommutator (multi-
plied by i) is usually called the S-func- 
tion, after Schwinger who made much 
use of it. The  problem is: Can we 
for this nonlinear theory define a new 
S-function which in a linear theory would 
be the Schwinger function? 

Let me first state some of its general 
properties. In  the linear theory we know 
that the anticommutator must be 0 when-
ever the distance between x and x' is a 
spacelike distance. This is a necessary 
condition if we want to preserve the 
properties of causality that follow from 
the theory of special relativity. From the 
theory of special relativity, we learn that 
all action can be propagated only with a 
velocity less than or equal to the velocity 
of light. This means that when two 
points in a four-dimensional world have 
a spacelike distance, then no action can 
go from one point to the other, and vice 
versa. Therefore, at two such points the 
wave function must always commute, or 
in this scheme anticommute, because 
otherwise it would mean that we would 
have a deviation from ordinary causal- 
ity. Therefore, we can form the picture 
shown in Fig. 1. By "0" we indicate the 
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regions where the anticommutator shall 
be 0. It shall be different from 0 in what 
one calls the future cone and the cone of 
the past. The dividing lines between this 
future cone and those parts where the 
commutator is 0form the so-called "light 
cone." These are the points to which a 
wave can be propagated with the velocity 
o f  light. 

Such functions as S in the linear theory 
are called propagation functions, because 
they really represent only waves that 
obey the normal wave equation and are 
propagated as perturbations from a cer- 
tain point. There is a singular point 
x = x', t = t', and from this point a wave 
propagates into the future or into the 
past. The  function that represents the 
anticommutator is just such a propaga- 
tion function. This is so in a linear theory. 
This is quite understandable, because in 
a linear theory the commutator itself 
must obey the wave equation. In a non- 
linear case, however, this is not true, and 
we have first to find the connection be- 
tween the "propagator" on the one 
side and the commutator on the other 
side. Now we have to invent some kind 
o f  mathematical trick to see the connec- 
tion between the propagation functions 
and the commutator. T o  find this mathe- 
matical connection I will have to write 
a few formulas. Consider the equation 

y,.(x> x') = exp{ - i [a ,~ ,+(x ' )+ conj]) 

Qa(x) ex~{i[a,Q,+(x') +conjl) ( 3 )  

Right in the middle we find the operator 
V.(x) .  O f  course, our Q's are not only 
functions now, they are also operators, 
and they shall be noncommuting quan- 
tities. And this V. is multiplied on the 
left side and on the right side with cer- 
tain factors, which are each other's re- 
ciprocal. 

The  quantities a, or a, appearing in 
the exponents shall be the components o f  
an arbitrary spinor with the property of 
anticommuting with all the wave func-
tions Q.. This a ,  is just introduced as a 
mathematical tool to get the right con- 
nection between the propagation func-
tions and the commutator. The factors 
on both sides o f  Q.(x) depend on x' bur 
not on x. What we have introduced is 
nothing but a canonical transformation 
of Q.(x) independent o f  x or a, and 

Fig. 1 
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therefore one can easily see that the new 
function y,. ( x ,  x') also obeys the wave 
equation 

Now we can study what the y, will be 
like. I f  we assume that this arbitrary 
spinor a" we have introduced is a very 
small quantity-and since it is arbitrary 
we can take it as very small-then the 
expansion with respect to av is the fol- 
lowing: 

The firct nonlinear expression appearing 
in the expansion o f  y, with respect to a" 
is  just the anticommutator. And now we 
can see the relationship between commu- 
tator and propagation function. W e  see 
that y, apparently corresponds to a solu- 
tion o f  the wave equation, which is not a 
smooth solution but is a solution where 
superimposed on a smooth solution there 
is such a perturbation as we have seen 
from our picture (Fig. 1)-that is, a per- 
turbation that starts from a point x = x'. 
So the y, is a kind of propagation func- 
tion. It represents a solution o f  the wave 
equation that has a perturbation starting 
from one point. I f  we assume that the a, 
is very small, then it is a very small per- 
turbation at the point x =x'. And the 
commutator is then the difference be- 
tween the original smooth solution and 
this perturbed solution. So now we know 
qualitatively at least what the connec-
tion between commutator, on the ohe 
sidc, and propagation function, on the 
other side, must be. The commutator 
must corres~ond to the difference be- 
tween two solutions of the original wave 
equation, one of which is smooth and the 
other has this perturbation at the point 
X = x'. 

Knowing this we can go further and 
write our function y,., the operator that 
we have defined, in the following way. 
W e  can say 

and this definition is to be understood in 
the following way. The  singularity o f  the 
function X, on the light cone will be con- 
tained completely in the c-number func- 
tion C ~ ( X- 2') (more correctly, the prod- 
ucts o f  the amplitudes a, and a c-num-
her). Such a division is actually possible 
in any present-day quantum theory, be- 
cause in present-day quantum theory we 
always assume that the anticommutator 
at the origin, at the point t = t', is a 
c-number. For instance, we usually write 
the anticommutator as a delta function. 
Here we assume that we do not know 
which kind o f  c-number function c. 
( x- x') is, but it is an ordinary function 
and not a field operator creating or an- 
nihilating particles. Therefore we may 
say that we split the y,. up into one part 

y,,O which is an operator, but which is 
smooth at the light cone, and another 
part c. which contains the main singu- 
larities and is a c-number. 

As I said before, this splitting into two 
parts has always been possible in present- 
day quantum theory and will, of  course, 
in a linear theory lead to the ordinary 
commutation relationships. For instance, 
we can assume that ca(x  -x') is just the 
vacuum expectation value of the oper- 
ator t x.. Then we can put the x into the 
wave equation and, i f  we have done so, 
we can take the vacuum expectation 
value o f  the wave equation, and we find 
the wave equation for c. Actually it turns 
out that this function c is a solution o f  
the original wave equation with only 
slight modifications. Let me write i t :  

For the c the wave equation that one gets 
i s  just the same as the ordinary wave 
equation that is on the left side and is 
the one from which we started; however, 
there is one term added, which is the 
function c times a function o f  the space- 
time distance ( X  - x ' ) ~ .Since this last 
term will not affect the behavior o f  the 
c near the light cone, and we are inter- 
ested only in the behavior o f  c near the 
light cone, we can just as well assume 
that this is approximately constant and 
say c times a certain constant K ,  which 
we can adjust according to what is con- 
venient in the equation. 

This gives us a qualitative picture of 
how the commutator will look near the 
light cone and how we can derive these 
properties from a solution o f  the wave 
equation. I should mention the following 
point before I go on. What we need for 
all further discussion is just the behavior 
o f  the commutation relationship near the 
light cone, because in ordinary theory we 
already know that we can derive the 
whole theory i f  we know only the com- 
mutator in the immediate surroundings 
o f  the point x = x', t = t'. So also here we 
can be quite satisfied with knowing the 
commutation relationship very near to 
this point, because all the rest can be 
derived by integrating the wave equation. 
That is, we can then proceed from the 
time t to time t + dt, and so forth, and 
thereby we can get the whole solution. 
W e  are interested only in the behavior 
near the light cone, and this behavior we 
can get from solving Eq. 6.  

The  Solutions 

Now I do not want to go into the 
mathematics o f  the solution, but I would 
like to write the solutions in the form o f  
a few pictures. I f  we solve the same prob- 
lem for the linear wave equation, then, 



of course. we would also find for the 
function c just a linear wave equation. 
The term with the third power of c 
would be left out, and we would get 
as a solution for the anticommutator 
the well-knonrn propagation function of 
Schwinger. Let us for a moment assurne 
that we are not dealing with spinor par- 
ticles but are dealing with scalar par- 
ticles, and then we do not have to deal 
with the S-function of Schwinger but 
with the A-function of Schwinger, which 
is a function of the distance between x 
and x' only. This makes it easier to draw 
pictures, because then we have one single 
function of only one variable s as in the 
function shown in Fig. 2. 

Vertically we have the A-function of 
Schwinger, and horizontally we plot the 
space-time distances between the two 
points. In the case of the linear theory 
this commutation function of Schwinger, 
the so-called Schwinger A-function, has 
the following property. I t  is a Bessel 
function for all finite distances s, and it 
is a Dirac &function just at the point 
s = 0. So at the A-axis we have drawn 
the &function as s that would go to in- 
finity, and the oscillating function for 
positive s is the Bessel function. (Fig. 2.) 

This would be the solution of our wave 
equation for c, if the nonlinear terms 
were not present. Now we have to study 
the behavior in the case of the nonlinear 
theory, where we will first draw a pic-
ture for those cases in which the con-
stant a,  is still finite and not infinitely 
small. Then, of course, what we get is not 
the commutator but actually a sum of 
terms, the first of which is the commu- 
tator, and then there are higher terms, 
which, of course, somewhat change the 
picture, so that only in the limit for 
aY+O it will become the commutator. 
The picture will then look like Fig. 3. 

For large space-time distances the func- 
tion again will be nearly a Bessel func- 
tion, because then the nonlinear terms are 
very small and do not have strong influ- 
ence. But for small space-time distances 
the influence of the nonlinear terms is 
felt, and then there are some deviations 
from the old picture. Hence, out at the 
right we have the Bessel function again, 
but in the inner part it turns out that 
there are very fast oscillations so that the 
function starts oscillating quite rapidly 
near s = 0,  resulting in an infinitely fre- 
quent oscillation with infinite amplitude 
very near the origin. It  is readily appar- 
ent that such a function can easily be inte- 
grated over the whole distance from s = 0 
to any finite value of s. If we now go to 
the case where the a" is exceedingly 
small, then this region of very fast oscil- 
lation moves always closer and closer to 
the origin, so finally we are left with a 
Bessel function for all finite values of s, 
and only in the origin do we have the fast 
oscillations (Fig. 4 ) .  This means that 

Fig. 2. 

Fig. 3. 

now our commutator in the case of the 
nonlinear theory does almost look like 
the commutator in the linear theory. The 
only difference is that the delta function 
at the origin disappears, and instead of 
the delta function we have an infinitely 
fast oscillation; that is, we have an essen- 
tial singularity, and therefore the value 
of the function is not defined at this 
point, but the integral is defined and is 
always 0 if we only go close enough to 
the origin. Really the only difference is 
the disappearance af the delta function. 

Now this actuaily helps a lot for the 
whole divergence problem, because as 
soon as one starts with the commutatior~ 
function that has no delta function at 
the origin, all the divergencies disappear, 
and we do get a convergent theory. 

Before going on, I must write one 
function that can be derived from the 
Schwinger propagation function S, which 
Schwinger calls the S,-function. This 
S,-function is derived from the propaga- 
tion function S in the following way. One 
writes a Fourier expansion of the S,-func- 
tion, changes the sign of all the Fourier 
components of which the frequency has 
a negative sign, and gets a ne~v  function, 
which can be derived from the old one 
by an integral operation. This function, 
multiplied by i, is called thc S,-function, 
and theoreticians know the properties of 
this function. Here I have a special rea- 
son for writing it, and I will just do so 
in spite of the fact that at this moment 
it cannot be understood very well ~vhy  it 
is useful: 

S l ( x - x' )  = i [S (+ )( x , x ' )  - S ( - )  ( x ,  x ' ) ]  -: 

with u = J ' ~ K ;  s 2 0 ( 7  

The point is that this function of u or s 
has the one property that is important: 
namely, it contains terms that fall off 
slowly with distance. The terms in Eq. 
7 not containing Hankel functions do not 
appear in Schwinger's work and are 
added here because of the omission of 

the Dirac 8-function from our S-func-
tion. 

The next problem is: If we introduce 
such commutation relationships, have we 
any hope that this can lead to a con-
sistent mathematical scheme of quanti-
zation? In order to explain why I be-
lieve that this can lead to such a scheme, 
I must go back to some of the mathe- 
matical fundaments of present-day quan- 
tum theory. I think one can understand 
these fundaments even if one does not 
go into the details. 

In  ordinary quantum theory, the com- 
mutation relationships would not be the 
ones that I put down here. As a matter 
of fact, in ordinary quantization of wave 
fields, one does start with rather similar 
commutation relationships; however, one 
includes the delta function at  the origin, 
and thereby one gets into all the diver- 
gency difficulties. If one omits the delta 
function, as we are inclined to do here, 
one ruins the theory completely. That is, 
one makes in this way a complete change, 
and the problem is: What price has to 
be paid for it? Certainly one does not get 
such a change for nothing. There must 
be some very serious deviation from ordi- 
nary quantum theory. And this I can 
explain in the following way. 

The fundamental difference between 
cjuantum theory and classical theory is 
that in quantum theory not only the 
actual state of a system is important but 
at the same time all possible states of a 
system. For instance, when one is calcu- 
lating the normal state of a hydrogen 
atom, it is not sufficient to know that the 
electron moves in an orbit of radius 
centimeter, but it makes a difference 
whether the hydrogen atom is in a very 
small volume or in a very big volume. 
The eigen-states really are different, de- 
pending on whether the box in which 
the hydrogen atom is contained is small 
or big. That is, the possibility of the atom 
to get to very great distances is involved 
in the calculation of the eigenvalue. Or  
in calculating the scattering of a par-
ticle, we usually calculate it with the 
help of so-called "intermediate virtual" 
states. These states actually never are oc- 
cupied, and yet for the scattering it is a 
problem to know what are the interme- 
diate virtual-that is, possible-states. 
Therefore, contrary to classical theory, 
all possible values for a certain quantity 
are important in the mathematical for- 
mulas. 

Coming back to the quantization of 
waves, we say that not only such wave 
functions as actually do occur in nature 
are important for quantization of waves 
but also all "possible" wave functions. 
From this aspect one comes very easily 
to an almost absurd conclusion. If, one 
says, space and time are really continu- 
ous in a mathematical sense, then the 
wave functions of the following type also 
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belong to the possible wave functions. 
Assume a wave function that has the 
value 1 at every point where the coordi- 
nates have rational values and has the 
value 0 at  every other point. Such a wave 
function is pure nonsense from the point 
of view of the physicist. Still it would be 
difficult in normal quantum theory to ex- 
clude any possible wave function from 
the mathematical scheme, even if it has 
some absurd properties, for instance, in- 
finitely fast oscillations. This situation is 
probably the root of the so-called "diver- 
gency difficulties." 

How do these divergency difficulties 
occur in the ordinary mathematical 
scheme? We usually say that all the sta- 
tionary states of a quantum theoretical 
system define a certain Hilbert space. 
For instance the states of the hydrogen 
atom can be defined as the vectors in the 
Hilbert: space, and we use it in quantum 
theory. Here I think it is reasonable to di- 
vide the Hilbert space into two parts. We 
can sag that all existing stationary states 
up to a certain maximum energy, or 
rather mass, of the total system may be 
called Hilbert space No. 1. All other 
states may be called Hilbert space No. 2. 
The limiting mass may be extremely big. 
Let us assume the whole mass of the uni- 
verse. Then it is obvious that only rather 
smooth functions can be expanded by 
using the states of Hilbert space No. 1 
only, and for the infinitely many other 
wave functions one would either need 
Hilbert space No. 2 for expansion or oile 
could not represent them at all. On  the 
other hand, the states of the Hilbert 
space No. 2 do not occur in nature, and 
therefore it may be possible to change 
the rules of quantum theory with respect 
to these states of the second kind. That 
is what I do when I omit the &function. 
This change is actually necessary for the 
following reason: One can calculate the 
commutator by first going from the 
vacuum to the first group of excited 
states and then back to vacuum. Then I 
go from vacuum to the second group of 
excitrd states and back to vacuum, and 
so on. In  any of these cases from cvery 
transition I get a function of this tlpc.: 

where Q is the vacuum and Q, the inter- 
mediate state. This is to be summed over 
Q, for getting the vacuum value of the 
anticommutator of Eq. 2. Now it has 
been shown in papers by Gcll-hlann and 
by Low and by Kallen and by Lehmann 
that each group contributes a 8-function 
at  the origin and that all these 8-func-
tions at the origin do not cancel, but 
they add up. If one says that the 8-func- 
tions at the origin cancel, it means that 
one has given up quantum theory for Hil- 
bert space No. 2. One has sacrificed this 
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and, instead, has got some new mathe- 
matical scheme in which one has re-
placed the total H i l b ~ r t  space by a thing 
which one may call a Hilbert space with 
a roof on top of it. I do not know whether 
this picture helps the mathematicians, 
but i t  shows the purpose of Hilbert space 
No. 2. 

Having introduced this kind of Hilbert 
space, I am now far away from ordi-
nary quantum theory but perhaps not too 
far from the experimental situation. So 
we replace Hilbert space No. 2 by a kind 
of imaginary Hilbert space, or by what 
I have called the roof on top of the 
Hilbert space. 

The rest is just straightforward mathe- 
matics. So far we have had physical as-
sumptions formulated in a mathematical 
language-assumptions about the physics 
of the problem-but from here on we 
have only mathematics. I shall not go 
into any calculations but shall just speak 
about the method and then give the re-
sults. 

The method that can be used most 
conveniently is the so-called "new" 
'Tamm-Dancoff method. I t  is a method 
that has been dcveloped by Schwingcr, 
Gell-Mann and Low, Freese and Zim-
mermann of Gottingen, and Goldberger, 
following an old paper of Tamm and 
Dancoff in 1941. So it is a rather well- 
lino~vn mathematical frame nowadays, 
and the great advantage of this frame is 
that one can work out a mathematical 
scheme in which one is interested only 
in matrix elements for those operators or 
products of operatols that lead from the 
vacuum to a state of a finite energy. That 
is, one has to do only with matrix ele- 
ments in Hilbert space No. 1 ,  in which 
ordinary quantum theory shall be true. 
The whole contribution from the states 
of Hilbert space No. 2 comes only in the 
form of the commutation relationship. So 
it is quitc sufficient for the calculation to 
know the behavioi of the commutator 
near the point x = x'. This we have de- 
fined by means of the function given in 
Eq. 7. So we have actually a mathemati- 
cal scheme by which we can calculate the 
cncrgy eigenvalues, and it turns out that 
no divergency difficulties occur. 

Now I will tell the results. One can 
ask: Are there stationary states; and, are 
there stationary states, say, with the spin 
I / 2 ,  SO that the angular momentum is 
(%; h ?  The result is that there is a lowest 
stationary state with spin Y*, and the 

eigenvalue is given by putting x (the 
energy or the rest mass of the system) 
equal to 7.45/1. That it must have the 
factor 1/1 in it is obvious, because 1 is a 
constant of the dimension of a length, 
and if h and c are made equal to 1, 
which is always done in these calcula- 
tions, 1/1 is the same as the dimension 
of a mass, and therefore this 7.45/1 is 
just the eigenvalue of a mass. 

We see that this equation leads to one 
particle, a fermion, which has this mass. 
If we assume that 1 is of the order of the 
Compton wave length of a JC meson, 
which is a sensible assumption for this 
kind of a theory, then the mass of this 
particle turns out to be roughly that of 
the proton. Then one can also ask 
whether there are particles of Bose sta- 
tistics, and of integer spin number. One 
can write the conditions for it, and actu- 
ally one does get a kind of Bethe-Sal-
peter equation which leads to the exist- 
ence of Bose particles. The mass for these 
Bose particles will again contain the fac- 
tor 1/1; and then it will depend on the 
numerical coefficient of 1/1 for this Bose 
particle, whether it is stable or unstable. 
If the factor would turn out to be of the 
order of 20, then, of course, it would be 
unstable, because it could disintegrate 
into two of these fermions. If, however, 
the mass turns out to be only, say 1/1, 
then it would be a stable particle and 
could correspond to the JC mesons. 
(Note added in proof: Later calcula-
tions by Kortel, Mitter, and me have 
led to the eigenvalues 0.95/1; 3.32/1; 
0.33/2 and 1.74/1 for the masses of Bose 
particles.) Strangely it turns out in the 
calculations, as far as we could see (but 
the calculations are not quite finished 
yet),  that apparently one solution for the 
rest mass of the Bose particle is just 0. 
That is, one gets something like light 
quanta out of this calculation. The rea- 
son can be seen as follo~vs. One can start 
with a different question and then it is 
easier to judge the answer. Il'hat is the 
interaction between two of the fermions 
we found? That, of course, follows again 
from the wave equation. All the jnterac- 
tions are defined by this wave equation. 
So one has just to calculate what hap- 
pens when two such fermions are scat- 
tered by each other. And it is calculated 
by normal application of the Tamm-
Dancoff method. Thcn it turns out that 
between two Fermi particles we have a 
long-range force of the Coulomb type 
-a force where the potential energy 
drops off as l/r .  This long-range force 
is connected with the term 
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appearing in our new S,-function as given 
by Eq. 7. That is, just the very fact that 
one has omitted the &function in the 



commutator produces in the S,-function 
an additive term that only very slowly 
decreases as the distance increases. For 
as I said before, these terms in Eq. 7 
added to the Hankel function are the 
direct consequence of the omission of 
the 8-function at the origin. The scatter- 
ing can be calculated in a very rough 
approximation with the Feynman graph 
shown in Fig. 5. Say we have two such 
fermions coming in, then we have to 
assume interaction through two more 
such fermions, and finally two come out. 
If one calculates this Feynman graph, 
then between these vertex points one has 
to put in the S,-function, and therefore 
one gets an interaction of the Coulomb 
type. Really this Feynman graph is not 
a good approximation, so the calculation 
has to be done more carefullv. 

So, it seems that this equation has 
Bose particles of the rest mass 0 as eigen- 
values, and this is, of course, a very in- 
teresting contribution to the problem of 
the elementary particles, because it 
shows that also the light quanta in the 
real theory of elementary particles may 
have to do with just this singularity of 
the S-functions at the origin. If the model 
of the elementary particles that is formed 
by the theory is correct, it would mean 
that the Coulomb forces-the electro-
magnetic forces-are for nature that 
method by which nature avoids diver- 
gency difficulties, which otherwise are 
always met in the theory. 

Next Steps 

The next problem is to calculate the 
higher boson states and also to calculate 
for them the corresponding value of 
g 2 / h c  and to find whether these quanta 
are scalar or vector quanta, and so forth. 
All this is just now in progress, so I can-
not report the result. I just want to men- 
tion a few problems that are important 
and should be solved before one can take 
such a model quite seriously. 

One of the most important questions 
will be: Does there exist sorne invariance 
property that corresponds to the gage 
invariance in electrodynamics? Only if 
this gage invariance is actually present, 
does one have a real analogy to the ex-
perimental situation. This gage invari-
ance is, of course, decisive for the con- 
servation of charge, the determination 
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of -, and so forth. I t  may be that thc 

t i c  
gage invariance comes out by itself in 
the theory. This would be extremelj, in- 
teresting, if it were so. I t  may also be 
that it restricts the possible assumptions 
about the main interaction term. Thiv 
would also be a very interesting result. 

The next step would be to calculate 

the masses of the different Fermi par- 
ticles and the different Bose particles and 
see whether that has any resemblance to 
the actual elementary particles. 

This is the general picture of what I 
wanted to tell. I would like to add a 
few remarks about the difference between 
such a scheme and what one has hitherto 
done in the theory of elementary par- 
ticles, especially in the quantization of 
wave fields. Usually in the quantization 
of wave fields one says: We have free 
particles, and there is an interaction. M'e 
first assume that the interaction is small, 
and then later we t ~ y  also to account for 
strong interactions. Here we see that such 
an assumption would be complete non- 
sense. There is absolutely no meaning in 
saying: Let us first assume that the cou- 
pling, the nonlinear term, is small. If we 
would assume that this constant I ,  which 
has the dimension of a length, is small, 
this would not change anything in the 
theory at all, because it would just make 
a similarity transformation in the whole 
theory. That is, all masses would become 
bigger proportional to 1/1 ,  but the spec- 
trum of these masses would not be 
changed. So it just means that the di- 
mension of the whole world would 
change, but the eigenvalues and the 
whole spectrum-all that-would not be 
changed. Therefore in such a theory the 
idea of small interaction is just nonsense. 
Also the idea of free particles that have 
no interaction in a first approximation iv 
nonsense in such a theory, because the 
particles are found in exactly the same 
mathematical frame in which all the in- 
teractions are found. That is, in such a 
theory, not only all the masses of the par- 
ticles would be determined, but at the 
same time all the interactions would be 
determined. Therefore, in such a theory 
it is quite obvious that one would get a 
definite value, for instance, for the fine- 
structure constant e 2 / f i r . Then, one m,t\ 
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say: Is there not a danger that one still 
will come to some contradiction in such 
a theory, for instance, with respect to the 
law of causality? May it not be that, on 
account of introducing this rather strange 
commutation function, one gets devia- 
tions from causality, which then lead to 
a scheme that we cannot accept from the 
exweriments? On the other hand. we 
have introduced the commutator from 
the closest possible analogy with the 
propagation functions, and the propaga- 
tion functions, since they are calculated 
classically, are functions that obey the 
ordinary rules of causality. Therefore I 
put it that it seems as least unlilrely that 
one zets into trouble with deviation from 
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the causality, although one must admit 
that the theory is not yet so well studied 
that one can be absolutely certain. 

There may also be some difficulties 
with the convergence of the mathemati- 
cal scheme, but in any case one can saj 
that all those divergency difficulties, 
which one knows normally from the 
quantization of waves, do not occur here. 
Whether other difficulties may occur-
say, the question whether the Tamm-
Dancoff method converges-is a differ-
ent matter and remains to be seen. 

So, generally speaking, I certainly do 
not say that this is already a good and 
sensible model for the theory of the ele- 
mentary particles, but I would like to say 
that, \\,hatever one will in the future do 
for obtaining a theory of elementary par- 
ticles, one will have to look in a similar 
direction as here. That is, one will have 
to look for a theory in which one does 
not start from the wave equation for the 
mesons or the nucleons or anything like 
that, but one will have to start with an 
equation for matter only, and one will 
have to try to derive all the differen1 
masses of the elementary particles from 
just one wave equation, of which thesr 
masses shall be the eigenvalues. So I 
think this tendency toward such a theory 
is almost necessary, but as to the exact 
form in which one will gradually be in- 
duced to give it, one will have to be led 
hy what will come out of it. 

Discussion. In what sense can one say 
that "fermion states" or "bosom states" 
are found from Eq. l ?  Answer: Sucli 
states are obtained from the vacuum 
state B by operating on it by an odd or 
an even number of factors q j  or vt. 
Mavbe a meson interaction between fer- 
mions will look, as a Feynman diagram, 
like a ladder with loops. (Fig. 6 ) .  Again 
let me stress that the limit 1j0 is 
meaningless; the theory goes over into 
"ordinary" quantum theory in problems 
of low energy where one does not con-
sider transitions to virtual states of high 
energy, because one stays inside Hilbert 
space No. 1 anyhow. 

SCIENCE. VOL. 122 


