
Table 2. Mean percentage variabilities. 

Point on Computed from Computedfrom 
loudness scale loudness values decibel values 

11.8 
8.5 
3.9 

approximate the average of the loudness by the 
followillg procedure. 

I) Divide each decibel value by 3. 

2)  Find the antidecibel values. 

3 )  Average these values. 

4) Find the decibel value corresponding to this average. 

5 )  Multiply this decibel value by 3. 


This procedure will undo the skewness caused by 
a cube-root relation between loudness and intensity. 
F~~other mathematical relations an analogous pro-
cedure can be applied. 

of course, since there are other causes of skewness 
than the one that concerns us here, the foregoing pro- 

cedure is no panacea. F o r  soine kinds of ex~erimeiital 
data the arithinetic mean is a poor measure of central 
tendency, not because the measurements are made on 
other than an interval or a ratio scale, but simply 
because out-sized errors sometimes occur in one direc- 
tion or another. The resulting skewness can usually 
best be coped with by resort to medians (3). 
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Osmotic Pressure 
Joel H. Hildebrand 
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0SMOTIC pressure no longer occupies the 
central role in  the theory of solutions that 
it did a half-century ago, but in  biology it  
retains, nevertheless, its importance as a 

concept, by reason of the membranes existing in  living 
organisms. It has become evident from questions pu t  
to me that the theories of solution upon which many, 
if not most, biologists were brought up  are now so old- 
fashioned that I might perform a service to the large 
biological clientele of this journal by presenting the 
subject in  modern terms, emphasizing primarily the 
concepts involved. 

The first important step in  developing a theory of 
solutions was that made by van't Hoff, 1887, who de- 
rived the relationship that the osmotic pressure of a 
substance i n  sufficiently dilute solution is equal in 
magnitude to  the pressure it u~ould have if it existed 
as  a gas in  the volume occupied by the solution. This 
made it  possible to determine the molecular weight of 
a nonvolatile solute by measuring its osmotic pressure 
in  a solution of known concentration. Using this "van't 
Hoff law" in Carnot cycles, he derived equations re- 
lating molecular weight to the lou~eri~lg of the freezing 
temperature and the rise in boiling temperature of the 
solvent. These relationships became the heart of the 
physical chemistry of a half-century ago. Nernst dis- 
cussed electrode potentials in  terms of balance between 
emf, solution pressure of an electrode and osmotic 

pressure of its ion. Every textbook of physical chem- 
istry expounded osmotic pressure a t  some length, and 
some investigators made great efforts to illeasure it 
with precision. 

But  this quasi-gas model of solutions, like the first 
Wright airplane, with the rudder in  front, proved to 
be a poor basis fo r  further progress. It treated the 
solvent only as providing volume f o r  the quasi-gaseous 
solute. It is strictly true, as van't Hoff himself pointed 
out, only a t  infinite dilution, but many investigators 
overlooked the restriction and applied it a t  concentra- 
tions where even gases cease to follow the gas laws. 
One enthusiast determined the freezing temperatures 
of concentrated solutions of calcium chloride and 
ascribed all deviations from the formula to  the re-
moval of par t  of the water from i ts  role as  solvent. 
The water of hydration thus calculated exceeded all 
the water in  the vessel. H e  was, of course, deeply hu- 
miliated when a critic pointed this out. 

One of van't Hoff's explicitly stated assumptions in 
deriving the equation f o r  osmotic pressure was that 
the solute i n  dilute solution is described by Henry's 
law, namely, that  its partial pressure is proportional 
to  its molar concentration. This had been abundantly 
verified for  dilute solutions of gases, and it  is, indeed, 
almost a logical necessity; the effecB of dissolved 
molecules too f a r  apart  to  affect one another must be 
proportional to their number. What  was not appre- 



ciated in those davs was that all the relationshins de- 
rived from the expression f o r  osmotic pressure could 
have been obtained directly jointly from Henry's law 
and the "Gibbs-Duhetnv equation connecting the par- 
tial vapor pressures of the two components, which is 
pure thermodynamics, based upon the fact that a solu- 
tion may be diluted either by distilling out reversibly 
a certain amount of solute as vapor or by distilling in 
a n  equivalent amount of solvent, and that the free 
energy change is the same for  both. An important con- 
sequence of this relationship is that in  the range of 
concentration in which the solute follows Henry's law 
the solvent follows Raoult's law (1 ) .  

I n  Theoretische Chetnie (ed. 3, 1900) by Nernst, the 
great physicochemical authority of a half-century ago, 
one inay find Raoult's law derived from van't Hoff's 
law, a roundabout way, as we now see, of getting it  
from Henry's law. 

The foregoing considerations shoulcl not be inter- 
preted as implying any lack of respect fo r  men of 
the caliber of van't H o b  and Nernst. My purpose is 
only to point out that  the approach to solution theory 
in the books and courses from which a t  least the 
older among my readers doubtless studied is f a r  from 
being as enlightening and adequate as is now possible. 

V a p o r  presszcw and os.nzotic presmre.  Let us begin 
with the purely thermodynamic relationship between 
the vapor pressure of the component we will call the 
solvent and the osmotic pressure of the solute against 
a menlbrane pernleable only to the solvent. This is 
easily derived by aid of the principle that the change 
in free energy involved when pure solvent is trans- 
ferred into a solution reversibly, under equilibrium 
conditions, is the same whether the transfer takes 
place by isothermal distillation through the vapor 
phase or by passage through a membrane against the 
osnlotic pressure. The relationship is 

where 11, is the osmotic pressure of the solute, 7, 
is the partial molar volume of the solvent-the in-
crease in volume of the solution when 1mole of sol- 
vent is added to a n  infinitely large volume of solution 
-and f10 is the fugacity of the pure solvent; f, is its 
fugacity from the solution. The tern1 fugacitg, or es- 
caping tendency, introduced by Gr. N. Lewis, is essen- 
tially the pressure the vapor would have if i t  were an 
ideal gas. Omitted from this equation is a compara-
tively small term expressing the change in free energy 
involved in compressing the solution to the hydro- 
static pressure 11, before adding solvent through the 
membrane. 

Equation 1shows that osnlotic pressure is f a r  larger 
in magnitude than the corresponding difference in 
vapor pressure between solvent and solution and is the 
better property to  measure when investigating very 
dilute solutions. A solution so dilute that the vapor 
pressure of the solvent would be lowered only 0.1 mm 
of H g  from 100 mm would, assuming V, = 100 ml, have 
an osmotic pressnre of 186 nim. 

T h e  ideal solution. Equation 1, as it stands, is use- 

less fo r  calculating osmotio pressure from composi- 
tion, o r  vice versa. Such a relationship is very simply 
derived for  a solution whose two species of molecule 
have the same intermolecular forces and volumes, the 
two liquids mixing with no changes in temperature 
o r  volume. I n  that case the escaping tendency of a 
single molecule is the same in pure liquid and solution, 
hence the fugacity of that species is proportional t o  
its fraction of the total number of molecules present. 
Designating the number of moles of solvent and solute 
by N ,  and N,,  respectively, we write 

This is the modern expression of Raoult's law f o r  
an "ideal solution," discovered empirically by Raoult 
in 1887. H e  expressed it  in  terms of the lowering of 
vapor pressure 

(P? - PI ) /P,O = N2/K, 

a form that failed to suggest its theoretical signifi- 
cance. The osmotic pressure of an ideal solution can 
now be expressed in terms of composition. 

The term (N, + N,)/Nl may be written as 1+ N,/N, 
and the logarithln expanded : 

With dilute solutions, N,/N, is small, and neglecting 
higher powers we may write, 

N nzv,  = RT.
/\i (4) 

Substituting the concentration, c, =N,/N1vl, we 
obtain the original van't Hoff form of the "law," 

We see from the derivation the various assumptions 
involved, few if any of which would be strictly valid 
f o r  the systems dealt with by biologists. Thus one ob- 
viously should be chary about ascribing causes to the 
deviations from Eq.  5 that are found f o r  such systems 
as  the biologist studies. 

Mecharzism of osmotic pressure; role of eatropy .  
There was formerly a great deal of discussion of the 
cause of osmotic pressure, whether it  should be ascribed 
to attractive forces or to thermal bombardment of the 
semipermeable membrane by the solute molecules. We 
now see that it  is primarily a consequence of the ten- 
dency of two different liquid species, under the iin- 
pulse of thermal agitation, to achieve a state of maxi- 
mum disorder by any  available path, and that the 
route via osmosis is no more significant theoretically 
than one via the vapor state or the solid state. Indeed 
it  makes no difference whether the composition of a 
solution is changed by adding solvent or by removing 
the equivalent amount of solute. A dissolved electro- 
lyte might be removed by electrolysis. 

The thermodynamic measure of molecular disorder 



is entropy, therefore i t  may be asserted that osmotic 
pressure is primarily related to entropy. But  entropy 
is a concept that many persons treat as  did a certain 
engineering instructor who could only say, in  reply 
to a student's question, "I don't know what entropy 
is ;  nobody knows what it is ;  you just use it; that's 
all." Let us t ry to do better than this for  our particu- 
lar purpose. 

We nia3 illustrate the assignment of a uunlerical 
value to the disorder of a mixture by considering, 
first, the two-dimensional system of checkers. I f  black 
checkers are put  on one-half of a checkerboard and 
red ones on the other half, and the board is shaken, 
the pieces will soon be randomly distributed, and the 
chance that, on repeated shaking, the original segre- 
gation will reappear is almost vanishingly snlall. 
After  most shakings, the ratios of red to black on the 
two halves of the board will be nearly equal. The mix- 
ing results from the shaking only; no attractive forces 
are involved. Of course, if the black pieces were made 
of steel, magnetized, and the red of copper, the former 
would resist mixing, and the degree of randomness 
would depend upon the violence of shaking. 

The amount of entropy involved in mixing n, and lz, 

molecules of equal size to form a completely random 
mixture can be formulated in  terms of the number of 
possible ways of arranging the two sorts in the spaces 
of the instantaneous configuration of the mixture. 
This need not be a regular lattice. I t  is exactly like 
calculating the number of ways i n  which n, black 
pieces and n, red pieces can be arranged upon a 
board with lz, + n, spaces that are not equal squares. 
It is (n, + lz,) !/n, !a, !. Because entropy should be 
additive with respect to disorder, we express it  as 
proportional to the logarithm of this expression, 

Using Sterling's theorem and taking rt ,  + n, equal to 
the Avogadro number, we obtain fo r  the increase in 
entropy upon mixing N ,  + N ,  moles, 

The entropy of transferring 1mole of component 1 
from pure liquid, where its entropy is sI0, to solution 
of composition x,, where its partial molal entropy is 

I f  the molecules are not of the same size, the en- 
tropy of mixing is larger. An approximate formula 
was derived independently by Flory (2) and by Hug- 
gins (2)  by considering that one component is a linear 
polymer, whose units are strung like beads on the 
sites of a n  imaginary lattice, the monomer molecules 
of the solvent occupging the remaining sites. I found 
that it could be derived also without that restriction 
(2). The equations are 

ASM = -R [ N ,111 $, + N ,  ln $,I (8) 
and 

The difference between Eqs. 6 and 8, or 7 and 9, is 

small when v, and v, do not differ by a factor of more 
than 2 or  3, but it  becomes enormous if one component 
is a high polymer. Let us see, next, how such differ- 
ences would affect the lowering of vapor pressure and 
the osmotic pressure. This requires resort t o  the sec- 
ond law of thermodynamics, and I shall give a very 
elementary, rather intuitive derivation, fo r  the pur- 
pose of emphasizing the three concepts involved. 

Entropy, energy, and free energy. Certain forms of 
energy, including kinetic, potential, electric, magnetic, 
can be, a t  least in principle, reversibly transformed 
into one another. But  if any of them generate heat, it 
cannot be quantitatively reconverted into the others. 
The kinetic energy of, say, a piece of lead moving 
through space a t  0°1< would represent a n  orderly 
movement of its atoms in parallel paths; but if the 
object were suddenly stopped by a hard meteorite, its 
temperature would rise, the orderly motion of the 
atoms would become disordered, and the probability 
that they would all suddenly move together as  before 
would be infinitesimal. Any process that is accom-
panied by an increase in  molecular disorder has less 
capacity fo r  doing work, less free energy, the higher 
the temperature a t  which it  occurs. Designating the 
change of free energy and entropy of the system by 
AF and A S ,  respectively, we may translate that state- 
ment into mathematical form, writing 

[d ( A P ) /dl] ,  = -AS. ( 1 0 )  

Also, the heat absorbed in a process will not all be 
available fo r  doing work if the process involves a n  
increase in molecular disorder, as it  does when a gas 
is liberated, and the excess of AH over AF should be 
proportional to the increase in entropy. The propor- 
tionality constant is the absolute temperature, and 
we may write 

AH - AP = TAS. (11)  

These are two expressio~ls of the second law of ther- 
modynamics. This way of getting them shows, I trust, 
why the concept of entropy is necessary and reason- 
able. I t  is not a proper derivation, but a good many 
of our most important concepts, principles and laws 
have been perceived as hunches and only later derived 
by the stricter logic of the textbook. I am a strong 
believer in the desirability of beginning with the con- 
cepts rather than a series of mathematical steps. 

Let us now pursue our subject by writing under 
each term of Eq. 11its value for  an ideal solution: 

I t  follows that f,/fIo = x, (and, of course, f,/f ,' = z,) 
and we thus obtain Raoult's law by a more rigid treat- 
ment of molecular disorder than the one given earlier. 

I f  we are  dealing with components whose molar vol- 
umes are  unequal but that nevertheless mix "atherin- 
ally," then Eq. 9 becomes appropriate. Let us see the 
effect upon osmotic pressure of using a not very high 
polymer with v, = 103v,. Suppose 1mole of solvent is 
transferred into a solution where x, = and x, = 
0.999. I f  v, =v,, the entropy of transfer per  mole is 



from Eq. 7, 0.00197 calldeg. I f  the solute is a polymer, 
with v, = I 0 0  ml and v, =1O3v1, Eq. 9 gives 0.39 
cal/deg. With T = 29S°K, the values of RT ln(flo/f,) 
are  0.024 lit atrn and 4.7 lit atm, and the osmotic 
pressures, by Eq. 1,are 0.24 and 47 atm, respectively, 
an enormous difference. 

But  most solutions are  f a r  from ideal, by reason not 
.only of unequal molar volumes but of unequal inter- 
nlolecular forces: van der Waals, dipole, hydrogen 
bonding, acid-base, and ionic. These introduce not only 
changes in  configuration, disorder, and therefore en-
tropy but also changes in heat content. No longer can 
one assume that the entropy of mixing will be cor-
rectly predicted by the foregoing equations or that 
the heat of mixing will be zero. I t  is worth mention- 
ing, however, that the heat term in Eq. 1 2  is a quad- 
ratic function of the concentration of the solute and, 
hence, disappears in the limit. F o r  a solution, in which 
thermal agitation suffices to give random mixing, this 
term is given approximately by the expression, 

where the 6's are  "solubility parameters" expressing 
the intermolecular forces of solute and solvent. To 
deal with all these factors is f a r  beyond the scope of 
so limited a treatment as  this, which is intended only 
to remove some of the mystery that often beclouds the 
subject and to warn against the drawing of too simple 
inferences from deviations that may be encountered 
from the primitive equation, JI = c,RT. The emphwis 
upon the role of entropy in modern solution theory is 
in striking contrast to its neglect during the period 
when the theory was based upon osmotic pressure. I n  
Nernst's Theoretisclze Chemie, there is but one refer- 
ence to entropy. I t  is in  small type and consists of a n  
argument for  not using it! Today, no physical o r  
natural scientist can afford to be utterly ignorant of 
entropy. 

References 

1. 	 For derivations, see J. H. Hildebrnnd and R. L. Scott, 
SoZubiZitg oj Nonelectrot!/tes (Reinhold, New York. 1060). 

2. 	 For references ancl detailed discussion, see reference I, 
Chapters VI and X S ;  also J. H. Hildebrand J .  Chern. 
P l ~ ~ j s .  (1047).15,225 

The European Oyster in American Waters 
V. L. Loosanoff 

U.S. Fish and Wildlife Service, Milford, Connecticut 

HE common European oyster, Ostrela edulis 
L., which occurs along the Atlantic Coast of 
Europe from Norway to Spain, in the British 
Isles, and the western par t  of the Mediter- 

ranean, may propagate a t  a somewhat lower tempera- 
t u r e  than our native oyster, Crassostrea virgilzica 
Gmelin. W e  thought, therefore, that the European 
ayster might be introduced into this country (1) t o  
occupy eventually a definite ecologic niche in areas 
where the water is too cold for  the successful propa- 
gation of our native oyster but is still sufficiently 
warm to be within the propagating temperature range 
of 0. edulis. Among such areas are certain bodies of 
water along the shoreline of Maine and some well- 
protected bays and harbors of our Pacific Coast 
states. 

The oysters were shipped to us from the Ooster- 
schelde, Holland, by P. Korringa late in  September 
1949 and were placed in Milford Harbor on 11Octo-
ber. The shipment consisted of approximately 9000 
oysters representing 3 year-classes, that is, the 1947, 
1948, and 1949 sets. Because of the long t r ip  approxi- 
mately 1 3  percent died soon after arrival, the mor-
tality being heaviest among the youngest year-class. 

The oysters were intended chiefly f o r  studies to  
determine whether they would survive and propagate 
under the ecologic conditions to which they would be 
subjected in this country. Simultaneously with these 

studies, observations were also made on the seasonal 
gonadal changes of the oysters kept in different 
localities, their rate of growth, artificial propagation, 
and several other aspects of their biology. 

Some of the oysters were left in Milfo1-d Harbor, 
but the others were transplanted to  four  localities of 
Maine, including Boothbay Ilarbor. The oysters grew 
well in  all regions. Their mortality in AIt l fad did 
not exceed, in general, that of the native oyster living 
in the same environment. Each winter since their 
arrival from Europe the oysters have lived under a 
laver of ice. a t  least f o r  some time. I n  3Iilford Har -  
bor, a n  estuary strongly affected by river discharge, 
the oysters were subjected, especially in the spring, 
to prolonged periods of low salinity but, nevertheless, 
survived, a fact indicating that they possess good 
tolerance in this respect. 

The European oysters were noticeably affected if 
the turbidity of the water, whether caused by silt or 
high concentrations of microorganisms, was relatively 
high. We even witnessed cases of abortion of embryos 
and immature larvae by gravid females that had been 
exposed to a dense concentration of dinoflagellates be- 
longing to the genera Prorocentrum and Gymnodilz-
ium. The larvae were expelled in pseudofeces im-
bedded in niucus along with masses of dinoflagellates. 
The abortion was usually complete, removing all 
larvae frorn the mantle cavity where they are  nor-


