TABLE 1	
---------	--

TOLERANCE	\mathbf{OF}	VARI	ous	PLANTS	то	CHRONIC
	GA	MMA	IRR	ADIATION		

Plant	Minimum exposure (weeks)	Effect at indicated dose rate* (r units per day)		
		Mild	Severe†	
Lilium longiflorum	15	20(?)	30	
Tradescantia paludosa	15	20``	40	
Tradescantia ohiensis	15	35	65	
Vicia faba	15	60	90	
Impatiens sp.	18	60	90	
Coleus blumei	13	100	240	
Melilotus officinalis	14	100	240	
Nicotiana rustica	15	100	300	
Phytolacca americana	15	100	350	
Datura stramonium	7	110	360	
Gossypium hirsutum	15	110	250	
Dahlia (hybrid)	10	110	275	
Althea rosea	12	120	250	
Luzula purpurea	10	125	300	
Chrysanthemum (hybrid)	18	140	250	
Canna generalis	18	180	350	
Lactuca sativa	7	180	600	
Chenopodium album	15	250	450	
Antirrhinum majus	18	250	400	
Lycopersicon esculéntum	15	250	400	
Xanthium sp.	15	250	500	
Solanum tuberosum	10	300	6 00	
Petunia hybrida	10	300	700	
Celosia cristata	18	300	750	
Lupinus albus	12	400		
Kalanchoë daigremontiana	12	400	800	
Allium cepa	18	40 0	800	
Linum usitatissimum‡	10	600	1100	
Digitaria (crabgrass) Brassica oleracea	12	1000	1800	
(broccoli)	10	1400	2500	
Gladiolus (hybrid)	8	4100	6 000	

* Dose rate is in roentgens/24-hr day ; however, the actual dosage/day averaged about 90% of the dose rate shown.

† This dose rate is not necessarily the lowest rate which will produce a severe effect.

‡ Data supplied by C. Konzak.

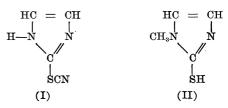
on these same species. An even greater range may reasonably be expected to appear when the investigation is extended to include a larger number of species.

There is little doubt that a large number of factors operate to determine the radiosensitivity of a given plant species. Changes in auxin (5) and ascorbic acid levels (2) in irradiated plants indicate that these substances may be involved in determining radiosensitivity. Our data also suggest that plants with large chromosomes (*Tradescantia*, *Lilium*, *Vicia*) have a higher sensitivity to chronic gamma irradiation than do most plants with small chromosomes.

References

1. SPARROW, A. H., and SINGLETON, W. R. Am. Naturalist, 87, 29 (1953).

- 2. COOKE, A. Science, 117, 588 (1953).
- GUNCKEL, J. E., et al. Am. J. Botany, 40, 317 (1953).
 GUNCKEL, J. E., and Sparrow, A. H. In: Brookhaven Sym-
- posia Biol., No. 6 (1954). 5. GORDON, S. A., and WEBER, R. P. Am. J. Botany, 37, 678


Manuscript received September 23, 1953.

(1950).

Antithyroid Activity of Thiocyanoimidazoles¹

Roger E. Koeppe and John L. Wood Department of Biochemistry, University of Tennessee, Memphis

The 2-thiocyanoimidazoles (I) are a new group of compounds recently prepared in our laboratory (1). Since these substances are structurally related to known antithyroid agents, e.g., 1-methyl-2-mercaptoimidazole (II), we have determined their inhibition of iodine uptake by rat thyroids. The method used

was essentially that of McGinty *et al.* (2). Adult white rats of comparable weight were injected intraperitoneally with 1-ml suspensions of the test compounds in 10% gum acacia. Approximately 1 hr later a tracer amount of I^{131} was injected and, after a 4-hr interval, the thyroids were removed and assayed for total radioactivity. The results of 2 experiments are summarized in Table 1 and show the 2-thiocyanoimidazoles to be thyroid inhibitors. 2-Thiocyanoimidazole and its 1-methyl derivative, in the doses employed, caused an inhibition of iodine uptake comparable to that of 1-methyl-2-mercaptoimidazole

TABLE 1

IODINE UPTAKE BY THYROIDS OF RATS GIVEN ANTITHYROID COMPOUNDS

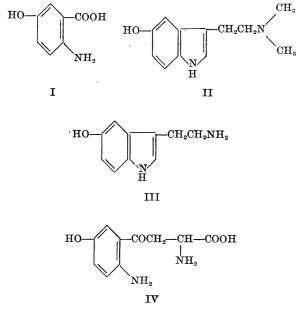
Compound	No. rats	Dose mg/ rat	% adı	% of con-	
			Av.	Range	trols
Expt. 1					
Propylthiouracil 2-Thiocyano-	8	0.5	0.21	0.14- 0.27	6 .8
imidazole 2-Thiocyano-	7	1	0.33	0.10- 0.60	10.6
imidazole	3	• 5	0.13	0.07 - 0.19	4.2
None (control) Expt. 2	8		3.1	2.2 - 4.8	100
Propylthiouracil 1-Methyl-2-mer-	6	0.5	0.9	0.58- 1.38	9.9
captoimidazole 2-Thiocyanoimi-	6	1	0.51	0.30- 0.75	5.6
dazole	4	1	0.54	0.38- 0.71	5.9
1-Methyl-2-thio- cyanoimidazole 4(5)-Methyl-2-	6	1	0.52	0.38- 0.76	5.7
thiocyano- imidazole None (control)	4 6	1	$2.3 \\ 9.1$	1.0 - 3.6 5.9 -12.2	25.3 100

¹These studies were supported by the Atomic Energy Commission under Contract AT-(40-1)-283, Title VII.

(Tapazol). 4(5)-Methyl-2-thiocyanoimidazole was considerably less effective although exhibiting definite antithyroid activity.

References

- 1. KOEPPE, R. E., and WOOD, J. L. J. Am. Chem. Soc., 75, 4655 (1953). 2. McGINTY, D. A., et al. J. Pharmacol. Exptl. Therap., 93,
- 246 (1948).


Manuscript received August 27, 1953.

Synthesis of 5-Hydroxykynurenine¹

Katashi Makino and Hitoshi Takahashi²

Department of Biological Chemistry, Kumamoto University Medical College, Kumamoto, Japan

Kotake (1) isolated 5-hydroxyanthranilic acid (I) from the urine of rabbits injected with anthranilic acid. This fact and the isolation of the 5-hydroxytryptophan metabolites bufotenine (2) (II) and serotonine (3) (III) from the natural sources suggested the synthesis of 5-hydroxykynurenine (IV).

The synthesis was performed as follows. 6-Nitro-3methoxybenzoic acid was converted to its chloride by

¹ This work was aided by a grant from the Scientific Re-search Fund of the Ministry of Education of Japan.

²We wish to express our thanks to the Takeda Research Laboratory for making elementary analyses.

warming slightly with thionyl chloride. The resultant chloride (m.p. 34°) was condensed in dry chlorobenzene with the magnesium diethyl malonate and then decomposed to 6-nitro-3-methoxyacetophenone (m.p. 67° found : C 55.07, H 5.44, N 6.79; calc. for $C_9H_9O_4N : C 55.4, H 4.7, N 7.19\%$) by warming with hydrochloric acid and acetic acid. This was then converted to 6-nitro-3-methoxy-w-bromoacetophenone (m.p. 90° found : C 39.43, H 3.19, N 4.72; cale. for C₉H₈O₄NBr : C 39.42, H 2.92, N 5.11%) and then condensed with ethyl acetaminomalonate in the presence of sodium in absolute alcohol. The resultant ethyl acetamino-6-nitro-3-methoxyphenacyl malonate (m.p. 145° found : C 53.21, H 5.69, N 6.8; cale. for C₁₈H₂₂O₉N₂ : C 52.7, H 5.4, N 6.83%) was decomposed by refluxing with hydrochloric acid and acetic acid to 6-nitro-3-methoxyphenacyl glycine hydrochloide (m.p. 199°) which gave with ninhydrin a yellow color.

This nitro amino acid was dissolved in diluted sulfuric acid and hydrogenated in the presence of palladium black. The 5-methoxykynurenine sulfate thus obtained melted at 191° with decomposition and showed with ninhydrin a reddish purple color. On paper chromatogram developed with butanol-acetic acid-water system it separated in two spots with Rf 0.32 and Rf 0.36 which presumably correspond to D and L isomers.

5-Hydroxykynurenine sulfate was obtained by refluxing methoxykynurenine sulfate with hydrobromic acid in an atmosphere of carbon dioxide. 5-Hydroxykynurenine sulfate (found : C 37.28, H 4.26, N 8.35; calc. for C₁₀H₁₄O₈N₂S : C 37.27, H 4.38, N 8.69%) was a colorless small prismatic needle and began to darken at 225° and carbonized completely at 255°. Its aqueous solution showed a marked green fluorescence and gave with ninhydrin a purple color, with diazotized sulfanilic acid a purple color, with dimethylaminobenzaldehyde in hydrochloric acid an orange color, with ferric chloride a brown color and decolorized chameleon solution. Its Rf value was 0.24 on the paper chromatogram developed with the supernatant of the mixture of acetic acid, butanol, and water in ratio 1:4:5. Its ultraviolet absorption spectra had a maximum at 405 mµ at pH 11.4 and a maximum at 378 mµ at pH 4.8.

References

- 1. KOTAKE, Y. J. Japan. Biochem. Soc., 22, 173 (1950). 2. WIBLAND, H., KONZ, W., and MITTASCH, H. Ann., 513, 1 (1934)
- 3. RAPPORT, M. M. J. Biol. Chem., 180, 961 (1949).

Manuscript received September 10, 1953.

