oceur in relation to equation (2.36) and (2.39) of
Schwinger II. -

It may be argued that ordinary space-time is as good
as (k) space. But the oceurrence of new particles
appears more directly in the latter on aceount of the
connection with energy and momentum. The effect is
as though “elementary ‘particles” had a size, as has
been brought out by Heisenberg (5).
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Nonclassical Reaction Kinetics

Henry Eyring and Peter Gibbs?

Department of Physical Chemistry,
University of Utab, Salt Lake City

Barrier leakage was early invoked by Gamow and
by Condon and Gurney to explain nuclear decomposi-
tion. For particles of mass m, position X, and energy
E; in the ith state, moving on a potential energy sur-
face V(X), the specific reaction velocity, v, (or fre-
queney of passing a smooth energy barrier (E; < V)
which oceupies the region (X; =X =1X,)) may be
written : )

V=3nviy = 4%%‘% exp
L2

X, ,
(-2 v ssax), @
h Xy

where n;, v;, and y; are the fractional population of
the sth level, the frequency of vibration normal to the
reaction barrier, and the probability of barrier pene-
tration per encounter, respectively. Because of the
flatness of barriers in ordinary chemical reactions,
leakage is usually negligible in comparison to the sur-
mounting of barriers. The inversion of the ammonia
pyramid is one of a small group of interesting excep-
tions that are reasonably well understood.

Hardness, electrical resistivity, and magnetism of
metals, when treated as rate processes, provide added
examples of nonclassical kinetics. Application of the
classical expression for the net specific rate &/, of
surmounting barriers
2xkT ( AF%.
“h BT

1The authors are indebted to ONR for support of this
research activity. (Because the authors :failed to receive

proofs of this article before the issue wento press, any neces-
sary corrections will be printed later.—Ids.)
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to plastic flow of metals by Fredrickson and Eyring
(1) and Kauzmann (2) led to a free energy of aecti-
vation AF} proportional to the temperature (a pure

14
entropy) and ﬁ%’ independent of the temperature.

V1, with the dimensions of volume, is the area of the
slipping unit in the plane of slip times the mean dis-
tance traveled per slip. That V¥, should be propor-
tional to the temperature is not impossible, but
scarcely to be anticipated (3). '

It seems more natural to replace the classical equa-
tion (2) for plastic flow by the appropriate extension
(1), from which the observed temperature effect fol-
lows easily. In this case, the effective potential ¥ (X)
is reduced at each point along the barrier by a small
amount ag, against motion of the particles in the
direction to relax the stress ¢; and is raised by a
similar amount against return to the initial state,
once the barrier has been passed. This is to be under-
stood in terms of the distortion of the average elec-
trostatic field by a relative displacement of the mean
positions of atomic kernels. Expanding the radieal in
equation (1) to the first order in powers of ac (the
correction to V) and replacing the sum by a single
“average” term, we obtain for the execess velocity in
the direction to relieve stress over that of return

Unor = 8v exp (— gmp)sin h (bmpg), (3)
where ’
_evem Xa om Xat  adX
g= “v:—“ i VvV ~E;dX, b:lh— . —
A ") Xli \/V_E'i;

and m and p will be discussed shortly.

Equation (3) must be interpreted as follows:
Crystal geometry permits slip only through the co-
operation of m neighboring atoms. At moderate tem-
peratures these atoms may be treated as independent
oscillators, as in the Einstein theory of specific heats.
vis the effective frequency of vibration of the normal
mode along the slip plane. These electrons must each
penetrate the electrostatic barriers separating initial
and final configurations if slip is to occur. For inde-
pendent atom vibrations, normal to the slip plane
factors relating to the individual probabilities of pene-
tration must be raised to a power mp, where p is the
average number of exterior electrons on each atom.
The electronic integrals are to be averaged over the
atomic vibrations, where the energies and limits of
integration depend upon atomic coordinates. Except
for temperature dependence, equation (3) has the
same behavior as (1), the validity of which has al-
ready been studied.

This formalism also makes clear the effect of large
amounts of alloy elements on plasticity. Since the local
regions of slip are considerably less orderly than the
perfect erystal, in the first,approximation atomic
interactions ean be considered to take place between
pairs of neighboring atoms. If « is the atomic fraction
of constituent 4, and (1 -z) that of B, then evidently
for alloys pg takes the form
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PyaGaa®®+ 2Py das® (1~ %) + Pppdpu(l-2)*
where the constants are appropriate to reactions be-
tween the various pairs of species. (In general, higher
terms in z are necessary in pg, to account for inter-
actions with all neighbors, or where phase transforma-
tions are involved.) As a criterion of hardness that
will show the same dependence ujson alloy composition
as Brinell number, we may take that value of stress

necessary to .produce a certain standard velocity of
T a -
deformation £=Avnet; for which velocity we choose

the convenient value 4Av, where \ represents the
average deformation occurring with each elementary

slip process. For the high local stresses associated with,

Brinell impressions, we replace sin hp'i;in"c by 145 exp
pbmo in equation (3) and obtain ’

PuaGan+ Pppdss—2P4sd
- 44944 zwl.?mz ABgABx2+2

P,pJaz—Pppd Pppg ;
% ug.wb_ xxgnxw_l_‘_g%?ﬂ (4)

where ¢ is taken to be a linear funetion of Brinell
number.

The intimate similarity between this mechanism of
plastic flow and that of electrical conductivity cannot

i BRINELL WARDNESS NUMBEK

RESINTIVITY MICRO-0IMICM)

ATOMIC FRACTION \

F1e. 1 (3).

be overlooked. In a very simple model for the latter,
current is proportional to the average frequency with
which electrons pass the elgetrostatic barriers offered
by quasi-crystalline fields in-the regions between. ad-
jacent atoms. Neglecting slight geometrical considera-
tions, plastie slip of one atom past another constitutes
a “relative. current”sof th’'s same type; aceelerating
voltage ‘being . previded by the fislds ~of displaced
atomic kernels'inione case, and externally appliéd in
the other. It is to be expected thatiequatioris(3) may,
therefore; also give a qualitative:aseountiof rate of
current flow if the relative energy of batrier lowering,
mbpc in the plastic flow case, be repladed by <eb’e
where «e.and-e. represent the electronie “¢harge and

January 26, .195%

“applied field, and b’ is a constant related to b. Since

the applied fields are small in comparison to those
atomic fields encountered in plastic flow, the sinh
factor in (3) may now ibe expanded, as well as the ex-
ponential factor. Absorbing the mp’s into the ¢’s,
we get for the resistivity B of an alloy,
(!] 44t 9 38— 29 Ax)“?‘l‘_z(g’;m 9’'58)T+ 9 s +1 ,
8Ne?ly’b’
(8)

where N is the effective density of electrons, I the
mean path length between barrier collisions, and the
primed constants are related to those unprimed, above.
Temperature dependence arises in the integration of
parameters.

In Fig. 1 is sketched the experimental variation of
Brinell hardness with composition (solid lines) for
some binary systems of similar elements, and of re-
sistivity (dashed lines), (all :taken from R. F. Vines
(4) except Ag-Au curve, from Mott iand Jones).
The pure states of the first-meéntioned elements are
on the left in the diagram..The parabolic character
predicted by equations (4):and (5) is evident, as
well as the similarity of hardness and resistivity curves
for the systems Pt-Pd and Pd-Au. -

Magnetism, another phenomenon to which the

“relative current” prineiple may ' be apphed will be
treated elsewhere.
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Quantum-Theoretical Densities of Sohds
at Extreme Compression

Walter M. Elsasser

Department of Physics,
University of Utah, Salt Lake City

In no way, perhaps, is a new theory more apt to
show its power and range than in extrapolation and
prediction related to phenomena previously inacces-
sible. One example of this, applied to quantum me-
chanies, is the computation of the behavior of matter
under extreme -pressures and temperatures, particu-
larly the well-known applications to the interior of the
stars. A less well-known example is furnished by simi-
lar applications to the interior of the earth,

In recent yéars," Bridgman (1) has succeeded” m
determmmg the' densities rand - compressibilities ofia
Jlarge: number ‘of elements apd compounds up to'4
pressuréi of 160,000 ‘atmospherés’-All his values“*for
elements-and a few ‘selécted ones for compounds are
plotted ‘oh.thé left-hand side of Figh: 1-3 in‘a double:
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