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I t  has been brought out by Pauli and Villars (1) that 
requirements of covariance are not sufficient to deter- 
mine physical answers in  the Tomonaga-Schwinger (2) 
formulation of quantum electrodynamics, and that the 
indefiniteness of the theory is caused by the indeter- 
minateness of the four  dimensional A-functions. Pauli 
and Villars (1) show that by formal regularization the 
results may be changed within wide limits. A few re- 
marks may be permitted concerning this feature of the 
theory. 

1. There is a close relationship between the Dirac- 
Fock-Podolsky ( 3 )  formulation and the new one, as 
has been emphasized by Tomonaga (1). The new 
formalism differs from the D F P  formulation mainly 
through the employment of quantized matter waves. 
I n  the D F P  theory the supplementary condition has 
the form 

[div At dQ/cdt -ZcsA(X -Xs)/4n]* = 0, 

where A, 4 are the vector and scalar potentials, 6, are 
the charges, X and X, designate respectively the four  
dimensional field and particle positions. The function 
A is 4 n times Schwinger's D. I t  is well known that 
the above equation of constraint contains singularities, 
as  is especially clear in  its consequence 

{div E t (d/cot)B (ss/4n) A(X -X,)}.li, = 0, 

and the corresponding formulas fo r  dE/cdt. The 
above comparison shows that one can hardly expect 
unique predictions without a precise specification of 
the averaging process employed in dealing with the 
A or D functions. 

2. The Pauli-Jordan invariant A function has been 
extended by Dirac (4)  so as to include cases with non- 
vanishing mass. Whereas Schwinger's (2 )  treatment 
is more symmetric regarding space-time, the explicit 
character of Dirac's work has advantages. One can 
verify, folloming Dirac's calculatio;i, that for  h > 0 

in agreement with Schwinger. One has also 

where 

~ ( K , T ,K,x,) = (h > 0)
J , (K,~ ' /~)  

= o  ( h <  0). 
1Assisted by the joint program of the AEC and the ONE. 
2 The present note owes much to a verbal statement made 

by Professor Heisenberg to the effect that he believes that 
his new theory will give results similar to those of Schwinger 
and Feynman for large-scale phenomena. For this, as well as 
a generally stimulating discussion of the convergent theory, 
the writer would like to express his sincere thanks. Thanks 
are also due Professor Belifante, who kindly pointed out some 
inconsistencies in notation in a preliminary forb of this note. 

The function F has a discontinuity on the light cone. 
The introduction of A =- removes2 ( ~ ~ / / 3 ~ ~ ( )  the 
discontinuity in its surface integral, but the discon- 
tinuity of F remains. 

A natural but nevertheless arbitrary way of re-
moving the singularity is to consider the 6 functions in  

as  defined in the sense of being the limit of a family 
of nonsingular functions obtainable, e.g., by first 
Fourier-analyzing and then proceeding to the limit 
in the space of the wave number k/2n of this analysis 
by integrating from -N to tN and making N +m. 

3. Although, according to Pauli and Villars, one 
cannot claim that the Tomonaga-Schwinger attempt 
derives its results from general principles, it is also 
true that the intuitive methods of calculation agree 
with experiment. The addition of a hypothesis that 
invariant A functions should be first replaced by a 
Fourier Integral, which should next be replaced by a 
similar integral with finite limits of integration (or  
infinite limits but with a weighting factor),  is ad- 
mittedly arbitrary. Such a procedure is closely related, 
however, to Heisenberg's convergent theory ( 5 )  of ele- 
mentary particles, in which a n  elementary length is 
introduced in virtue of the elementary interaction. 
The commutation relations are here nonsingular, and 
the formulation adapts itself to a Fourier representa- 
tion. One may expect, therefore, that fo r  lengths 
large compared with Heisenberg's elementary length 
the consequences will be similar to those obtainable 
from the T S F D  developments, with the addition of a 
postulate concerning the method of evaluation of di- 
vergent expressions along the lines carried out in 
Schwinger's papers. The weighting factor should then 
appear in  an approximation neglecting phenomena 
within the elementary length. The symmetry in the 
treatment of the Fourier representatiops may be ex-
pected to arise through the virtual creation of other 
than the interacting particles. Since the creation takes 
place in the region of space-time containing the singu- 
larity of the T S F D  discussions which corresponds, 
e.g., to h = 0 in equation (2.33) of Schwinger's second 
paper of the series quoted, the A functions of the 
T S F D  theory will be modified for  large k. The writer 
believes, therefore, that future theories will agree in 
the limit of large lengths with the ( k )  representation 
and its symmetric calculation. 

The introduction of symmetry requirements fo r  the 
magnetic moment problem occurs in Schwinger 111 
in the evaluation of the logarithmically divergent inte- 
gral occurring in equation (1.103) fo r  .lz = 0. The in- 
variant minimum light quantum number associated 
with the infrared catastrophe is introduced in his 
equation (1.107) and the Fourier representations in 
equation (1.66). The operation would be impossible 
without the physical identification made in equation 
(J.106). The related discussion in the Appendix is in  
terms of the k representation of the singular functions. 
I n  the discussion of vacuum polarization similar steps 
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occur in relation to equation (2.36) and (2.39) of 
Schwinger 11. 

I t  rn:ty be argued that ordinary space-time is as good 
as ( I ; )  space. But  the occurrence of new particles 
iippears more directly in the latter on account of the 
connection with energy and momentum. The effect is 
as  though '(elementary .particles" had a size, as has 
been brought out by Heisenbsrg ( 5 ) .  
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Nonclassical Reaction Kinetics 
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Barrier leakage was early invoked by Galnow and 
by Condon and Gurney to explain nuclear decomposi- 
tion. F o r  particles of mass m, position X, and energy 
E, in the ith state, moving on a potential energy sur- 
face V ( X ) ,  the specific reaction velocity, v, (or fre- 
quency of passing a smooth energy barrier (E,  < V) 
which occupies the region (XI  6 X 4 X,) ) inay be 
written : 

V = xn iy ,y i  =4Znivi  exp
* I 

nhere fit v,, and y, are the fractional population of 
the ith level, the frequency of vibration normal to the 
reaction barrier, and the probability of barrier pene- 
tration per encounter, respectively. Because of the 
flatness of barriers in ordinary cheinical reactions, 
leakage is usually negligible in comparison to the sur- 
mounting of barriers. The inversion of the ammonia 
pyramid is one of a small group of interesting excep- 
tions that are reasonably well understood. 

Hardness, electrical resistivity, and magnetism of 
metals, when treated as rate processes, provide added 
examples of nonclassical kinetics. Application of the 
classical expression for  the net specific rate k',,, of 
surmounting barriers 

*The authors  a r e  indebted to  ONR for  support of th is  
research nctivlty. (Eecnnse the uuthors i n i l ~ dto recei5e 
proofs of th is  article before the  issue mento press, any nrces- 
sary corrections will be printed later.-Eds ) 

lows easily. I n  this case, the effective potential V ( X )  
is reduced a t  each point along the barrier by a small 
amount aa, against motion of the particles in the 
direction to relax the stress U ;  and is raised by a 
similar amount against return to the initial state, 
once the barrier has been passed. This is to be under- 
stood in terms of the distortion of the average elec- 
trostatic field by a relative displacement of the mean 
positions of atomic kernels. Expanding the radical in 
equation (1) to the first order in powers of a~ (the 
correction to V) and replacing the suin by a single 
"average" term, we obtain fo r  the excess velocity i n  
the direction to relieve stress over that of return 

U,,t = 8Gexp (- g K p )sin 11 (BEpa), ( 3 )
where 

and % and p will be discussed shortly. 
Equation (3)  must be interpreted as follows: 

Crystal geometry perinits slip only through the co-
operation of rn neighboring atoms. At  moderate tein- 
peratures these atoms may be treated as independent 
oscillators, as  in the Einstein theory of specific heats. 
T i s  the effective frequency of vibration of the normal 
mode along the slip plane. These electrons must each 
penetrate the electrostatic barriers separating initial 
and final configurations if slip is to occur. F o r  inde- 
pendent atom vibrations, normal to the slip plane 
factors relating to the individual probabilities of pene- 
tration must be raised to a power Z p ,  where p is the 
average number of exterior electrons on each atom. 
The electronic integrals are to be averaged over the 
atomic vibrations, where the energies and limits of 
integration depend upon atomic coordinates. Except 
fo r  temperature dependence, equation (3)  has the 
same behavior as  (1 ) )  the validity of which has al- 
ready been studied. 

This formalism also makes clear the effect of large 
amounts of alloy elements on plasticity. Since the local 
regions of slip are considerably less orderly than the 
perfect crystal, in the first approximation atomic 
interactions can be considered to take place between 
pairs of neighboring atoms. I f  x is the atomic fraction 
of constituent A, and (1-x) that of B, then evidently 
for  alloys pg takes the form 


