main. The ultraviolet absorption spectrum (Fig. 2) closely resembled that of kynurenine, but it gave a negative Otani's kynurenine reaction (5). The ninhydrine, xanthoprotein, and Ehrlich's diazo reactions were positive. The alkaline solution was of a deep-yellowish color and gave a jasminelike odor when heated. Dilute $KMnO_4$ solution also changed the color to deep yellow (urochromogen test of Weiss). The Folin-Denis' uric acid reagent changed the solution to a greenish, and then to a bluish, color. The murexide and lumiflavin tests were negative.

Biological tests employing the mutants vermilion and cinnabar of *Drosophila* were positive.

Addendum: In a previous paper in this journal (Science, 1950, 111, 608) concerning the tryptophan pigments, which dealt with the epidermis pigments of the yellow mutant "lem" of Bombyx mori, we reported that the yellow pigment was xanthopterin, but, according to direct comparison with a sample of xanthopterin (kindly sent by E. L. Rickes, Merck & Co., Inc.) it has been found that, although this pigment resembles xanthopterin remarkably closely, it is slightly different. It has been named xanthopterin-B (B from Bombyx), and 2 other new pterins have also been isolated (leucopterin-B and a 6-dehydroxyleucopterin derivative) (6).

References

- 1. BEADLE, G. W. Private communication.
- HASKINS, F. A., and MITCHELL, H. K. Proc. Nat. Acad. Sci., 1949, 35, 500.
- KIKKAWA, H. Rep. Sericultural Exp. Sta. (in Japanese), 1943, 11, 311.
- 4. MITCHELL, H. K., and NYC, J. F. Proc. Acad. Sci., 1948, 34, 1.
- 5. OTANI, S., NISHINO, N., and IMAI, K. Z. Physiol. Chem., 1941, 270, 60.
- 6. Bull. Chem. Soc. Japan (in English). In press.

Built-up Poultry-House Litter as a Growth-promoting Supplement for Chicks on an All-Vegetable Vitamin B₁₂-deficient Diet

E. R. Halbrook,¹ A. R. Winter, and T. S. Sutton

Departments of Poultry Husbandry and Agricultural Biochemistry, The Obio State University, Columbus

Extensive trials by Kennard and Chamberlin (1, 2) at the Ohio Agricultural Experiment Station demonstrated that poultry-house floor litter which has accumulated (built up) for a long period of time gives better chick growth on all-vegetable diets than litter which is completely changed at frequent intervals. Reports have also been made regarding improved hatchability of eggs from hens on such litter (3, 8). It has been found that poultry droppings contain the "animal protein factor" (APF) (7), and that incubation of hen feces for 72 hr at 30° C stimulates further synthesis of this factor (4).

In a series of studies dealing with the synthesis of vitamin B_{12} (now recognized as being an important part ¹ Present address : Montana State College, Bozeman.

of the animal protein factor) by microorganisms in poultry-house litter, marked stimulation of growth was secured by adding built-up litter to an all-vegetable vitamin B_{12} -deficient diet fed to S. C. White Leghorn chicks in a wire-floored battery brooder.

The basal diet used was one consisting principally of soybean oil meal and ground yellow corn supplemented with the known requirements for vitamins, minerals, and the amino acid methionine. The diet was used for studies of soybean oil meal and animal protein factor by workers at the Purdue Agricultural Experiment Station (5, 6).

Vitamin B_{12} was shown to be the principal deficiency in the basal diet by the marked stimulation of growth secured by intramuscular injection of a saline solution of crystalline vitamin B_{12} (Cobione)² given in the amount of 0.3 μ/g per chick weekly. This injection was as effective in stimulating chick growth as feeding the crude APF supplement² containing the equivalent of 20 μ/g of vitamin B_{12}/kg of diet.

As shown in Table 1, addition of 1%, 2.5%, and 5%

TABLE 1

EFFECT ON CHICK GROWTH OF ADDING BUILT-UP POULTRY-HOUSE LITTER AND OTHER SUPPLEMENTS TO AN ALL-VEGETABLE VITAMIN B₁₂-DEFICIENT DIET

Diet	No. Trials	Total No. chicks at start	No. died	Avg 6-wk wt in g (all trials)	Feed per g gain
Basal vitamin B ₁₂ -					
deficient diet	3	53	8	345	3.78
Basal + APF supplement*	3	53	4	-429	3,23
Basal + vitamin B ₁₂					
injections;	1	15	1	426	3.02
Basal + 2.5% ground					
corncobs	1	15	1	250	5.16
Basal + 5% ground	6.44				
corncobs	1	15	1	265	4.85
Basal + 1% unautoclaved					
built-up litter	1	18	0	419	3.04
Basal + 1% autoclaved			1.1	1 1 1 s	
built-up litter	1	18	1	394	3.28
Basal + 2.5%unautoclaved	1				
built-up litter	3	53	3	390	3.29
Basal + 2.5% autoclaved					
built-up litter	2	38	0	466	2.82
Basal + 5% unautoclaved				t na sel i	
built-up litter	2	27	3	412	3.34
Basal + 5% autoclaved built-up litter	2	35	0	493	2.55

* Twenty μ/g vitamin B_{12}/kg of diet.

† Crystalline vitamin B_{12} (0.3 $\mu/g/chick$ weekly).

levels of screened unautoclaved built-up corncob litter (over 1 year old) to the basal diet gave increased chick growth to 6 weeks of 74, 45, and 67 g, respectively, as compared to 84 g for the added APF supplement fed at the rate of 20 μ/g of vitamin B₁₂/kg of diet. The built-up litter used for chick feeding was accumulated from hens that had been fed an all-vegetable vitamin

²We are indebted to Merck & Co., Inc., Rahway, N. J., through the courtesy of D. F. Green, for the crystalline vitamin B_{12} (Cobione) and the APF supplement (crude vitamin B_{12}) used in these studies.