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T H E  NOTION O F  PROBABLE ERROR 
IN ELEMENTARY STATISTICS1 

WHATI have to say to-day is not addressed to pro- 
fessional mathematiciahs or statisticians. To mathe- 
maticians and statisticians all that I shall say is al- 
ready entirely familiar. There are two other classes 
of readers, however, to whom I hope the discussion 
may be of service: (1)the rapidly increasing number 
of laymen who, without technical mathem'atical train- 
ing, are constantly coming upon such terms as "prob-
able error" in their general reading, and (2) the non- 
mathematical research worker who is constantly 
tempted to embellish his numerical results by adding 
an imposing array of "probable errors7'--obtained, 
alas, too often by the simple process of substituting 
blindly in a formula. (A formula, of course, is an 
essential tool; what will concern us here, however, is 
the underlying significance of such a formula, and the 
necessary limitations surrounding the proper use of 
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What are the principles that lie behind the common 
use of the term "probable error"? What does it really 
mean when we say, for example, that a quantity x has 
an  estimated value of 3.6 with a "probable error" 
of 0.2 (written x = 3.6 + 0.2) ? 

The conventional reply to this question will occur to 
all of us-namely, that "the probable error is the 
error that is as likely as not to be exceeded." For  ex- 
ample, if x = 3.6 5 0.2 the conventional understanding 
is that the "true value" of x is as likely to lie outside 
the limits 3.4 and 3.8 as it is to lie between those 
limits. 

But this conventional reply does not go very far  
behind the scenes-we should like to have something 
more fundamental. Under what circumstances can we 
properly speak of errors as "equally likely" to occur? 
What are the fundamental considerations underlying 
the whole range of ideas which are suggested by the 
term "probable error"'? I beli,eve the best modern 
opinion is in favor of treating the so-called "probable 
error" from the point of view of empirical statistics, 
with as little reference as possible to the technical 
theory of probability; and I am convinced that m.uoh 
misunderstanding will be avoided if we can keep as 

1 Address of the retiring vice-president and chairman 
of Section A (Mathematics), American Association for 
the Advancement of Science, Nashville, Tennessee, De- 
cember 29, 1927. 
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far  away as possible from the older language of prob- 
ability. 

The earliest use of the term "probable error" which 
1 can discover is in a paper by Bessel in 1815. Bessel, 
following some then recent methods of Gauss, was dis- 
cussing a problem in the adjustment of measme-
ments of an unknown quantity. Let us begin, there- 
fore, with a brief outline of the problem of adjustmeat 
of measurements. This problem is conveniently 
treated under two headings, first, the "probable error 
of a single observation" and secondly, the "probable 
error of the mean." 

I. The ('probable error of a single observation" 
Suppose we have before .us a large number of mea- 

surements of an unlrnown quantity; suppose next that 
we take the arithmetic mean of these measurements; 
and suppose further that we compute the deviations of 
the given measurements from the mean. I f  the num- 
ber of measurements is large many of them will coin- 
cide exactly with the mean value; and among those 
which differ from the mean, small deviations will occur 
more frequently than large ones. 

If  now we lay off the values of the given measure- 
ments along an axis of abscissas, and at each point of 
this axis erect an ordinate which shows the number of 
times that the corresponding measurement occurs, we 
shall have a frequency diagram or  distribution dia-
gram for the given set of measurements. The area of 
the diagram (or, rather, the area divided by the small- 
est recognized interval along the axis) will be equal to 
the total number of measurements in the set. The 
actual form of the diagram for a given set of mea- 
surements is a matter'of experience. I n  a large num- 
ber of cases, however, the distribution is found to wn-
form to what is known as the .normal law of error, 
represented by the familiar bell-shaped curve whose 
equation can be found in any book on statistics. If  
the measurements are closely consistent with each 
other, most of the deviations from the mean will be 
small and the distribution curve will be sharply 
peaked; if the measurements are less consistentthat 
is, more scattered-the curve, though of the same area, 
will be Batter. 

The question at  once arises: how shall we secure 
some estimate of the consistency of the given set of 
measurements ? O n e  method for doing this is as fol- 
lows : we may divide the area of the distribution curve 
into four equal parts by ordinates erected at  the points 
rn = - r, x = 0, x = + r, where x is measured from the 
mean; the value r will then have the property that just 
half of the deviations from the mean will lie between 
- r  and + r ,  This value r is called, after Galton, the 

quartile deviation of the given set of measurements, 
and may obviously be taken as an indication of the 
consistency of the measurements; the smaller the quar- 
tile deviation the more closely packed are the measure- 
ments about their mean. 

By an unfortunate use of language, for which Bessel 
and Gauss are chiefly responsible, this quartile devia- 
tion is  commonly known as the "probable error of a 
single observation," for the given set of measurements. 
This term "probable error" is here used in a highly 
technical sense and does not mean a t  all what i t  would 
appear to mean in ordinary language. I t  is best in- 
terpreted as merely an obscure synonym for the 
clearer, almost self-explanatory, term quartile devia- 
tion. The important thing to note is that the "prob- 
able error of a single observation," in spite of its 
name, is not a property of any single measurement, 
but a property of the whole set of measurements; it 
enabIes us to say, not that any single item is more ac- 
curate than another single item, but that one whole set 
of measurements is more consistent with itself than 
another whole set of measurements. The term is used 
chiefly in statements describing the precision of an in- 
strument, or the precision of some measuring process. 
I t  is not often used as the rrt 0.2 that one sees annexed 
to numerical values. 

This, then, is the first common use of the term prob- 
able error; the so-called "probable error of a single 
observation'' means merely the quartile deviation of 
the given set of measurements; it serves to indicate the 
self-consistency of the set of measurements, or the 
peakedness of the distribution diagram. 

11. "The probable error of the mean" 

The second common use of the term '(probable error" 
is in the phrase "probable error of the mean." The 
conventional explanation of this phrase runs some-
what as follows: suppose we have a given set of n 
measurements, conforming to the normal law of dis- 
tribution, and having a definite mean and a definite 
quartile deviation. Next, let us p r e t e d  that we have 
also a large number of similar sets of measurements of 
the same quantity, making Ic sets in all, each contain- 
ing rn measurements; and consider the k means belong- 
ing to these 7c sets. These means will constitute a sort 
of super-set of Ic vaiues which will have its own dis- 
tribution diagram, its own mean and its own quartile 
deviation. By a subtle application of the theory of 
probability, the quartile deviation of this super-set is 
proved to be equal to the quartile deviation of the orig- 
inal set divided by the square root of .n; and this value 
is what is called the "probable error of the mean," for 
the original set. 

This conventional explanation leaves much to be de- 
sired. What is the use of pretending that we have a 
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"super-set" composed of "a large number of sets of 
measurements similar t o  the given set" when we have 
in reality only one set to work with? And why should 
the quartile deviation of this hypothetical super-set be 
of any significance in the problem of measurement 9 

When one examines the actual use that is made of 
the so-called ((probable error of the mean" one finds 
that i t  is a&ost always associated with the problem of 
eonabir,ir,g several sets of measuremelzts, with a proper 
"weight" attached to each set. I n  the practical solu- 
tion of this problem there is no question of a hypo- 
thetical super-set of imaginary sets of measurements; 
all the sets of measurements with which we are con- 
cerned are actually given. Two illustrations will make 
the practical method clear. 

First, suppose we have two normal sets of measure- 
ments of equal consistency, one containing ten mea- 
surements, the other twenty. I n  combining these two 
sets of measurements it is natural to give the second 
set twice as much weight as the first, since the num- 
ber of measurements in the second set is twice as great 
as the number of measurements in the first. The com- 
b%ed mean or ('weighted average" of the two sets will 
then be the mean of the first set plus twice the mean 
of the second set all divided by three. The justifica- 
tion of this process of computing the weighted average 
of two such sets lies in the fact that it gives exactly 
the same result as if we had taken all thirty measure: 
ments as a single set of measurements and found the 
mean of this set in the ordinary way. 

Secondly, suppose we have two sets of measure-
ments containing the same number of items, but hav- 
ing unequal consistency. Suppose for example that 
the quartile deviation of the first set is r ,  =3, and the 
quartile deviation of the second set is r ,  =4, Before 
combining these two sets of measurements, we must 
first reduce them, so to speak, to a common denomi- 
nator. To accomplish this we may make a photo-
graphic enlargement of both diagrams, until the 
quartile deviation of each is equal to the same 
number, in this case 12. This step is justified by the 
natural assumption that two distribution diagrams 
which are similar-that is, one merely an enlarge-
ment of the other--are of equal weights. Here, in 
the case of the first diagram we multiply the'linear 
dimensions by 4, and therefore the area by 16; and 
in the case of the second diagram, we multiply the 
linear dimensions by 3, and therefore the area by 9;  
the position of the mean in each case being unchanged. 
The quartile deviation of each diagram is now equal 
to 12, SO that the two revised sets of measurements 
are of equal consistency and can be combined by the 
method just described. Remembering that the area 
of a distribution diagram is proportional to the num- 
ber"of measurements, the first set must be given a 

weight of 16, and the second set a weight of 9. The 
weighted mean will therefore be equal to 16  times the 
&st mean, plus 9 times the second, all divided by 25. 

I t  is easy to show that the same result would have 
been obtained if we had multiplied the first mean by 
a weight equal to (l/r,)2, and the second mean by s 
weight equal to ( l /r , )2 ,  and divided ,by the sum of 
these weights. 

The extension of this process to the combination of 
the two cases: namely, to the case of several sets of 
measurements which differ not only in consistency but 
also in the number of measurements in each set, pre- 
sents no difficulty. We are thus led a t  once to the  
following general rule for combining any number of: 
sets of observations which are normally distributed: 
the weight to be attached to each set is  directly pro- 
portiohal to the lzumber of measurements in that set 
and ilzversely proportional to  the square of the quar- 
tile deviatiolt of tke set. 

I hope that this brief sketch of the practical method 
of combining sets of measurements will make it clear 
that the whole subject can be presented without refer- 
ence to anything except what is immediately given by 
the actual measurements; i t  is not necessary to bring 
into the discussion ahy hypothetical super-set of 
imaginary sets of measurements or to make any use 
of the technical theory of probability. The f0.2 
placed after the numerical statement of a mean value 
is commonly called the "probable error of the mean." 
This is a quantity obtained by dividing the quartile 
deviation of the given set of measurements by the 
square root of the number of measurements in the set; 
i t  is best regarded as merely a conventional way of 
indicating one step in the computation of the weight 
which should be attached to the given value when 
this value is to be combined with other values of a 
similar nature. I t  is not necessary to think of it as 
something mysteriously connected ,with the theory of 
probability. 

It is interesting to note in passing that there is an: 
other measure of the consistency of a set of measure- 
ments, which is coming more and more into use. This 
is the standard deviation, or mean square error, intro- 
duced (under the name "mean error") by Gauss in 
1821. The standard deviation is the square root of 
the mean of the squares of all the deviations from the 
mean; in the case of the normal curve it proves to be 
simply the abscissa of the point of inflection (mea-
sured from the mean). For this curve, a s  is well 
known, the standard deviation, a, and the quartile 
deviation, T, are wnnected by the relation r = 0.67456, 
and the ordinary method of computing the quartile 
deviation is first to compute the standard deviation 
directly from the given measurements, and then to 
multiply by 0.6745. The quartile deviation (or "prob-
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able error") is thus about two thirds as large as the 
standard deviation (or "mean square error"), in the 
case of the normal curve. 

A pretty quarrel has arisen as to which of these two 
quantities is the handier one to use as an indication 
of the consistency of a set of measurements. Gauss 
himself began in 1816 with the exclusive use of the 
probable error. I n  1821 he uses the mean square 
error and the probable error side by side. By 1825 
he begins to speak of the probable error as the "so-
called" probable error; and a few years later he is 
quoted as saying : "the so-called probable error, I, for 
my part would like to see altogether banished." In  
1889, Francis Galton, the grandfather of the British 
school of statistics, condemns the term probable error 
in vigorous language. "It is astonishing," he writes, 
"that mathematicians, who are the most precise and 
perspicacious of men, have not long since revolted 
against this cumbrous, slip-shod, and misleading 
phrase." Many recent writers like R. A. Fisher agree 
that the fact that the use of the probable error is 
common "is its only recommendation." On the other 
hand, Professor Mansfield Merriman (1884) regards 
the probable error as the most natural unit of com-
parison and insists that it alone should be used and 
the mean square error be discarded. At the present 
time both the probable error (or quartile deviation) 
and the mean square error (or standard deviation) 
are so thoroughly established in the literature that 
neither of them is likely to be given up. 

Let us now leave the subject of errors of measure-
ment and pass on to another use of the term "prob-
able error," namely, its use in connection with the 
subject of random sampling--a subject which is com-
ing more and more to occupy the central position 
in the whole modern theory of statistics. 

I n  the problem of errors of measurement, the final 
result desired is the value of a single unknown quan-
tity, and the distribution diagrams of sets of mea-
surements of the unknown are merely means to an 
end. In  the problem of random sampling, however, 
the final result desired is the distribution diagram 
itself. 

For example, a shoe manufacturer wishes to know 
what demand he may expect for various sizes of shoes. 
He wishes to know, for example, what proportion of 
the population wears a number eight shoe. What he 
needs is  a distribution diagram of the foot-sizes of 
the whole population. This distribution d iapam will 
exhibit, of course, a certain mean value; but this 
mean value is not now the interesting thing,; and the 
deviations from the mean, instead of being errors to 
be avoided, are now important for their own sakes. 

The distribution diagram itself is the thing that is 
wanted. Now the distributions that occur in practice 
are by no means always of the normal form; a fre-
quency diagram may often be "skewed" in one direc-
tion or the other; it may be more sharply or less 
sharply peaked than the normal curve of the same 
area and same quartile deviation; or it may even be 
of a U-shaped form, with the large deviations from 
the mean more frequent than the small ones. 

I n  order to describe a distribution diagram con-
cisely we may state the values of four parameters, two 
of which we have already mentioned: (1) the mean; 
(2) the standard deviation, that is, the square root 
of l/nth of the sum of the squares of all the deviations 
from the mean; (3)  the third moment, that is l/nth of 
the sum of the cubes of the deviations from the mean; 
and (4) the fourth moment, or  l/nth of the sum of the 
fourth powers of the deviations from the  mean. 

The standard devi~ation,as we have seen, gives a 
measure of '(dispersion" or "scatter." (If the distri-
bution happens to be symnletrical, either the standard 
deviation or the quartile deviation may be used as a 
measure of dispersion; but in the general case the 
standard deviation alone is available.) The third 
moment leads to a measure of "skewness." The fourth 
moment leads .to a measure of what Pearson calls 
"kurtosis." Any given distribution diagram is suffi-
ciently characterized for most purposes by giving the 
values of these four parameters; the mean, the stand-
ard deviation, the third moment, and the fourth 
moment. 

Let us suppose then that our shoe manufacturer 
desires to study the distribution of foot-sizes in the 
whole populakion of a hundred million people. He 
obviously will find it impracticable to measure the 
whole population, so that he can not obtain the 
parameters of the distribution directly. He there-
fore takes a sample of a moderate number, m, of 
people, chosen, as we say, a t  random, and determines 
the parameters of this sample. The question is, what 
conclusion can be drawn about the mean, standard 
deviation, etc., of the total population from a knowl-
edge of the mean, standard deviation, etc., of a single 
sample ? 

This question is being actively discussed a t  the 
present time, and all that I can do here is to indicate 
briefly the nature of the answer that may be hoped 
for. Suppose, for example, that the parameter in 
which we are interested is the mean. Consider the 
totality of all possible samples of m which can be 
drawn from the population in question. The number 
of such samples will of course be enormously large, 
but can be readily computed by the theory of permu-
tations and combinations. Each sample of a will 
have its own mean; and the set composed of the means 
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of all the samples will be distributed in a perfectly 
definite way, depending on the nature of the total 
population. 

Thus, it has been proved that the mean of the 
set of means will coincide with the mean, m, of the 
total population; the standard deviation of the set of 
means will be equal to G/v%, where G is  the standard 
deviation of the total population; and the other mo- 
ments of the set of means can be computed in terms 
of the corresponding moments of the total population. 
That is, if we assume any hypothetical values for the 
parameters of the total population, we can theoreti- 
cally compute the parameters of the distribution of the 
means. Then by a subtle analysis, we can make a 
comparison between the distribution of the means and 
the observed properties of the given sample, and thus 
construct a test of the validity of our assumed values. 

The result of such a test is commonly recorded 
in this form: the required mean, m, is equal to the 
observed mean, a, of the measured sample, plus or 
minus a "probable error" r. This indicates merely 
that if we had the totality of the means of all possible 
samples of lz before us, 50 per cent. of these means 
would lie between a +r and a - r. This use of the 
term "probable error" is unsatisfactory, however, since 
the distributions involved in the analysis are usua l l~  
not symmetrical; the "standard deviation" is the more 
useful concept. Moreover, there is no special sanctity 
attached to the arbitrary choice of "50 per cent"; 
other ranges are often needed. 

Moreover, the formulas commonly given for com-
puting the probable error of the various parameters 
are only approximations which are not valid unless 
the original distribution is normal, and the size of 
the sample is large. The serious study of this 
whole question, for the general case of skew distri- 
butions and small samples is a product of the last 
two decades--one might almost say of the last two 
years. Some of the names associated with this study 
are Karl Pearson, R. A. Fisher, Tchouproff, and espe- 
cially a learned British scholar who conceals his iden- 
tity ,behind the modest pen-name of "Student." Ex-
citing new developments are constantly appearing in 
Biomekika and similar journals; the most modern 
tools that mathematics can supply as, for example, the 
theory of integral equations, are called into play; and 
the very latest results are immediately put to use by 
practical statisticians of the Bell Telephone System 
and other great industrial concerns. The work is  by 
no means completed, and even the exact nature of 
the answer that may be hoped for is not yet entirely 
clear.2 

2 For further information the reader is referred to 
H. L. Rietz'a Monograph on Mathematical Statistics 
{Open Court Publishing Company, 1927). 

A splendid field for research is opening up, the fruits 
of which are sure to be not only of the greatest theo- 
retical interest but also of the highest practical utility. 

EDWARDV. HUNTINGTON 
HARVARDUNIVERSITY 

THE GENERAL RADIATION1 
THE impacts of electrons against atoms produce 

two different kinds of radiation, (a)  the line spectra 
and (b) the general radiation, sometimes called the 
continuous, or white, spectmm. The general radiation 
usually carries a far  greater amount of energy than 
the line spectra-hot body radiation, for  instance. 
This is true of the X-ray region of the spectrum as 
well as of other regions. Although X-ray s p e c t m  
lines are often strongly marked and sharply defined, 
the general radiation contains more energy than the 
lines, for it covers a much greater range of wave-
lengths. I n  the evolution of recent thought, however, 
less attention has been paid to the general radiation 
than to the line spectra, partly because the line spectra 
have important bearings on our ideas as to atomic 
energy levels. I n  this address, I wish to present to 
you the more important characteristics of the general 
radiation, as they have been discovered by about 
twenty men, carrying on researches in different parts 
of the world. Time will not permit a detailed account 
of the subject. These details may be found in the 
text-books, which contain numerous references to the 
original articles published by the investigators. , 

On account of the fact that homogeneous beams of 
high-speed electrons can be produced, accurately con- 
trolled and measured, and because each electron has a 
relatively large amount of energy, the X-ray region of 
the spectrum provides us with a better field for inves- 
tigating general radiation than do other regions. 

The curve representing the distribution of energy in 
the general X-radiation spectrum as a function of the 
wave-length resembles that for  the spectrum of black 
body radiation. There is one important difference be- 
tween the two, however, namely, the general radiation 
spectrum has a sharply defined short wave-length limit. 
The quantum theory explains this limit quantitatively 
and qualitatively; for the electrons striking the atoms 
of the X-ray tube's target can not have kinetic energies 
greater than the product of the electron's charge into 
the difference of potential through which it has fallen 
(namely, Ve). Therefore, the hv value of the quanta 
of radiation produced can not be greater than Ve. 
Strictly speaking, if we apply the laws of the con- 
servation of energy and momentum to the impact of 
an electron against an atom, we find that the value of 

1 Address of the vice-president and chairman of Sec- 
tion B (Physics), American Association for the Advance- 
ment of Science, Nashville, Tennessee, December, 1928. 


