SCIENCE

Vol. LXV. MARCH 11, 1927 No. 1680

CONTENTS

The Graphic Representation of Relative Variability: PROFESSOR RAYMOND PEARL	237
The Biological Relationships of the Land, the Sea and Man: AUSTIN H. CLARK	241
Notes and Reflections on Isostasy: GEORGE R. PUTNAM	245
Scientific Events:	
Concilium Bibliographicum; Opening of the Botany School of the University of Sydney; The Institute of Chemistry of the American Chemical Society; The Ella Sachs Plotz Founda- tion for the Advancement of Scientific Investi- gation	24 8
Scientific Notes and News	250
University and Educational Notes	254
'Discussion and Correspondence:	
The Increase in Scientific Periodicals since the Great War: ALICE C. ATWOOD. Hooke's Law Again: PROFESSOR JOSEPH O. THOMPSON. Sey- mour Sewell on "Salps of Indian Seas": DR. MAYNARD M. METCALF. Storm Damage at Long Beach, N. Y.: DR. HENRY S. SHARP	255
Scientific Books:	
A History of our Times: PROFESSOR T. D. A. COCKERELL	258
Scientific Apparatus and Laboratory Methods:	
A Quick Method of Preserving Cats for Dis- section: HORACE E. WOOD. A Culture Medium for Free-living Flagellates: JAMES B. LACKEY	261
Special Articles:	
Concerning the Protoplasmic Currents accompany- ing Locomotion in Ameba: PROFESSOR HERBERT W. RAND and S. HSU. The Increase in the Calcium of Hens' Blood accompanying Egg Production: J. S. HUGHES, R. W. TITUS and B. L. SMITS	- 261
Science News	x

SCIENCE: A Weekly Journal devoted to the Advancement of Science, edited by J. McKeen Cattell and published every Friday by

THE SCIENCE PRESS

Lancaster, Pa. Garrison, N. Y. New York City: Grand Central Terminal.

Annual Subscription, \$6.00. Single Copies, 15 Cts.

SCIENCE is the official organ of the American Association for the Advancement of Science. Information regarding membership in the Association may be secured from the office of the permanent secretary, in the Smithsonian Institution Building, Washington, D. C.

Entered as second-class matter July 18, 1923, at the Post Office at Lancaster, Pa., under the Act of March 8, 1879.

THE GRAPHIC REPRESENTATION OF RELATIVE VARIABILITY¹

It has been the generally accepted biometric practice to use the coefficient of variation as the measure of the *relative* variability or scatter of frequency distributions. This constant is

$$V = \frac{100 \text{ (standard deviation)}}{\text{Mean}}$$

It gives the standard deviation of the distribution in terms of the mean value of the varying character. By expressing the scatter of the distribution in this way it becomes possible to compare the relative variabilities of characters measured in different absolute units.

But the coefficient of variation has never been an entirely satisfactory constant to biologists, at least. While formally correct enough, within the limits of its definition, it does not readily or instantly call up in the mind an adequate picture of the real degree of scatter of the distribution. This is, in part at least, because two things, the mean and the standard deviation, are involved in it. When one reads the value of the standard deviation of a particular distribution he recalls that roughly three times this quantity on either side of the mean includes the entire frequency and this gives at once some concept of the biological extent and meaning of the variation, in the particular case.

There would seem to be a place of usefulness for an adequate graphical method of depicting relative variability for comparative purposes, so that one may see the difference or likeness in the variation of a man and a mouse, for example, in respect of body-weight. It is the purpose of this paper to describe such a graphic method, and to illustrate its applications.

The method may best be approached through a concrete illustrative example. We have lately been studying in this institute the normal variation and correlation of the relative cell volume of human blood, in relation to age, body-weight and stature.² The present situation regarding the measurement and graphical depiction of variation in these four charac-

¹From the Institute for Biological Research of the Johns Hopkins University.

² Cf. Pearl, R., and J. R. Miner. "A Biometric Study of the Relative Cell Volume of Human Blood, in Normal and Tuberculous Males." Johns Hopkins Hospital Bulletin. In press.

VARIATION CONSTANTS									
	Character	Mean	Standard deviation	Coefficient of variation (per cent.)					
a. A	ge	$30.59 \pm .21$ yrs.	$5.22 \pm .15$ yrs.	$17.06 \pm .51$					
b. B	ody-weight	$151.56 \pm .82$ lbs.	$19.95 \pm .58$ lbs.	$13.16 \pm .39$					
c. S	tature	$68.13 \pm .10$ in.	$2.45 \pm .07$ in.	$3.60 \pm .10$ -					
d. R	celative cell volume	$45.59 \pm .10\%$	$2.47 \pm .07\%$	$5.42 \pm .16$					

FIG. 1. Histogram showing variation in body-weight in a group of 272 normal males.

ters, in a series of 272 normal males, is fairly exhibited in Table I and Figs. 1 to 3.

Plainly the diagrams tell nothing whatever about the relative or comparative variability in this group of males in respect of the three characters, bodyweight, stature and relative cell volume. They are correctly plotted histograms, but the unit of abscissal measure is different in each case and direct comparison is impossible.

From Table I we learn, through the coefficients of variation, that the group is from three to five times more variable relatively in respect of age and bodyweight than it is in respect of stature or relative cell volume. But what does this mean translated into

FIG. 2. Histogram showing variation in stature in a group of 272 normal males.

terms of distribution of frequency? A simple, direct and easily interpreted answer is not forthcoming.

Suppose now we decide to express the age, the body-weight, the stature and the relative cell volume of each of these 272 individuals as a percentage of their respective mean values, the mean of each character being taken as 100 per cent. And further suppose we express the frequencies as respectively so much per one per cent. of the mean of each character. These are simple and entirely permissible transformations of the original data.

FIG. 3. Histogram showing variation in relative cell volume of the blood in a group of 272 normal males.

The data in their original form and after the transformation described are shown in Table II.

If now the figures in the columns headed A and B in Table II be plotted on arithmetically ruled coordinate paper we shall have a true picture of the relative variability of the four characters considered. This is done in Fig. 4. Each of the four frequency polygons has the same area, as a result of the transformations effected in the B columns.

This method of plotting superimposes the different polygons of variation on a common Cartesian coordinate grid, with the mean value for each of the compared variables at the same abscissal point. It constitutes no new method of *measuring* biological variation, but merely visualizes effectively what the coefficient of variation measures.

The method of plotting used in Fig. 4 shows at a glance that the 272 men of this group differ among

MARCH 11, 1927]

SCIENCE

TABLE II Absolute and Relative Frequency Distributions for Variation in (a) Age, (b) Body-weight, (c) Stature, and (d) Relative Cell Volume of the Blood in 272 Normal Males

	A	ge			Body-we	ight			Statu	re		Rela	tive Cel	l Volume	
Class unit in years	Observed absolute frequency	Per cent. which mid-point P of class is of mean	Absolute frequency per one per cent. of mean w	Class unit in pounds	Observed absolute frequency	Per cent. which mid-point > of class is of mean	Absolute frequency per ω one per cent. of mean	Class unit in inches	Observed absolute frequency	Per cent. which mid-point b of class is of mean	Absolute frequency per one per cent. of mean	Class unit in per cent. of total volume	Observed absolute frequency	Per cent. which mid-point bof class is of mean	Absolute frequency per one per cent. of mean ϖ
20-21.9	9 19	68.6 75 9	1.4	99.5-109.4	2	68.9	0.3	59.5-60.4	1	88.1 89.5	0.7	39.5-40.4	2	87.7	0.9
22-23.9	12	79.2	1.0		12	10.0	2.0		Э	01.0	2.0		9 17	09.9	4.1 7 Q
24-20.9	04 41	00 9	0.4 69	119.0-129.4	40	04.1 00 7	5.0	01.0-02.4		91.0	 1 /	41.0-42.4	17 95	94.1	1.0
20-21.9	41	04.0	0.0	129.0-139.4	40 54	00.1	0.0		2 10	92.0	1.4 0.0	42.3-43.4	40	94.5	10.1
20-29.9	30	94.0 101.9	0.4 67	159.0-149.4	04 51	90.0 101.0	0.4	03.0-04.4	12	95.9	0.4 19.0	40.0-44.4	44	90.0	19.1
30-31.9	44	107.0	0.7		20	101.9	1.1		19	90.4	12.9	44.0-40.4	44	90.1 100 0	20.1
32-33.9	31	107.9	4.1		59	115.0	0.9		29	90.9	19.0		44	100.9	20.1
34-35.9	24	114.4	ə./	109.0-179.4	20	110.1	5.9	00.0-07.4	40	98.3	21.5	40.0-47.4	20	105.1	11.4
30-37.9	10	121.0	2.3	179.5-189.4	10	121.7	2.4	07.9-08.4	50	99.8	34.1	47.9-48.4	30	105.5	13.7
38-39.9	12	127.5	1.8	189.5-199.4	0	128.3	0.9	68.5-69.4	35	101.3	23.8	48.5-49.4	17	107.5	1.8
40-41.9	10	134.0	1.5	199.0-209.4	<u>ئ</u>	134.9	0.5	69.5-70.4	35	102.7	23.8	49.5-50.4	10	109.7	4.0
42-43.9	3	140.6	0.5	***************************************	2	•••••••	•••••	70.5-71.4	25	104.2	17.0	50.5-51.4	3	111.9	1.4
44-45.9	1	147.1	0.2			••••••	•••••	71.5-72.4	12	105.7	8.2	51.5-52.4	2	114.1	0.9
46-47.9	•••••	153.6		•••••	•••••	••••••	•	72.5-73.4	5	107.1	3.4	52.5-53.4	2	116.3	0.9
48-49.9	1	160.2	0.2	••••••	•••••		•••••	73.5-74.4	4	108.6	2.7		•••••		•••••
Totals	272	••••••		4	272				272	4.1			272		

.

FIG. 4. Superimposed variation polygons for (1) relative cell volume, (2) stature, (3) body-weight, and (4) age, in 272 normal males. See text for further explanation.

themselves far more widely in respect of age and body-weight than they do in respect of stature or relative cell volume. The variation polygon for stature shows the least scatter. That for relative cell volume is somewhat, but not greatly, more spread. Those for age and body-weight are wide, flat distributions, indi-

FIG. 5. Polygons showing the relative variability of cows in milk yield (solid line), and of hens in egg production (dash line). For further explanation see text.

cating a relatively high variation in the group in respect of these characters.

One more example will be given. What is the comparative interindividual variability of cows in respect of milk production and of hens in respect of egg production? Table III gives the necessary data regarding (a) milk yield in gallons per week in three-yearold Ayrshire cows (combined years 1908-09),³ and (b) annual egg production of Barred Plymouth Rock hens (1905-06, 150 bird pens).⁴

The coefficients of variation for the distributions of Table III are as follows:

Milk	yield:	V	=	17	.690	±	.229
\mathbf{Egg}	production :	V	=	31	.72	\pm	1.00.

Using the data as given in columns A and C of Table III, Fig. 5 has been plotted. The transformation of the absolute frequencies per one per cent. of the means given in the B columns to the relative or per mille frequencies of the C columns is necessary in order to bring the two polygons to the same area, since the total observed frequency in one is 1,441 and in the other only 275.

⁸ Pearl, R., and J. R. Miner. "Variation of Ayrshire Cows in the Quantity and Fat Content of Their Milk." *Jour. Agr. Research*, Vol. 17, pp. 285–322, 1919.

⁴ Pearl, R., and F. M. Surface. "A Biometrical Study of Egg Production in the Domestic Fowl. I. Variation in Annual Egg Production." U. S. Dept. Agr. Bur. Anim. Ind. Bulletin 110, Part I, pp. 1-80, 1909.

TABLE	III
-------	-----

	M	ilk Yield			Egg Production					
And the owned of t	n 1992 - Angelen State (1992), Mary 1992 - Angelen State (1992)	A	В	C			A.	В	C	
Class limits in gallons	Observed absolute frequency	Per cent. which mid- point is of mean	Absolute frequency per one per cent. of mean	Per mille frequency per one per cent. of mean	Class limits (number of eggs)	Observed absolute frequency	Per cent. which mid- point is of mean	Absolute frequency per one per cent. of mean	Per mille frequency per one per cent. of mean	
6.50-6.99 7.00-7.49 7.50-7.99 8.00-8.49 8.50-8.99 9.00-9.49 9.50-9.99 10.00-10.49	2 6 7 5 24 28 35	$\begin{array}{r} 48.8\\ 52.4\\ 56.0\\ 59.6\\ 63.2\\ 66.8\\ 70.4\\ 74.1 \end{array}$	$ \begin{array}{c} 0.0 \\ 1.7 \\ 1.9 \\ 1.9 \\ 1.4 \\ 6.6 \\ 7.8 \\ 9.7 \\ \end{array} $	$\begin{array}{c} 0.4 \\ 1.2 \\ 1.3 \\ 1.3 \\ 1.0 \\ 4.6 \\ 5.4 \\ 6.7 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \\ 1 \\ 4 \\ 10 \\ 21 \\ 23 \\ 35 \\ 46$	$\begin{array}{c} 6.3 \\ 18.8 \\ 31.4 \\ 44.0 \\ 56.5 \\ 69.1 \\ 81.6 \\ 94.2 \end{array}$	0.08 0.08 0.32 0.80 1.67 1.83 2.79 3.66	$\begin{array}{c} 0.3 \\ 0.3 \\ 1.2 \\ 2.9 \\ 6.1 \\ 6.7 \\ 10.1 \\ 13.3 \end{array}$	
$10.50-10.99 \\ 11.00-11.49 \\ 11.50-11.99 \\ 12.00-12.49 \\ 12.50-12.99 \\ 12.00-12.40 \\ 12.50-12.99 \\ 12.00-10.40 \\ $	56 68 70 107 118	77.7 81.3 84.9 88.5 92.1	15.5 18.8 19.4 29.6 32.7	$10.8 \\ 13.0 \\ 13.5 \\ 20.5 \\ 22.7 \\ 22.8 \\ $	$120-134\\135-149\\150-164\\165-179\\180-194\\180-004$	40 35 25 19 8	106.8 119.3 131.9 144.4 157.0	3.18 2.79 1.99 1.51 0.64	$11.6 \\ 10.1 \\ 7.2 \\ 5.5 \\ 2.3 \\ 1.5 \\ 1.$	
13.00-13.49 13.50-13.99 14.00-14.49 14.50-14.99 15.00-15.49 15.50-15.90	$ 1124 \\ 119 \\ 133 \\ 87 \\ 102 \\ 78 $	99.7 99.3 103.0 106.6 110.2 113.8	34.3 32.9 36.8 24.1 28.2 21.6	$23.8 \\ 22.8 \\ 25.5 \\ 16.7 \\ 19.6 \\ 15.0 $	195–209 210–224 	1	109.0 182.1	0.48	0.3	
16.00-16.49 16.50-16.99 17.00-17.49 17.50-17.99 18.00-18.49	76 43 43 28 20	$ 117.4 \\ 121.0 \\ 124.6 \\ 128.2 \\ 131.9 $	$21.0 \\ 11.9 \\ 11.9 \\ 7.8 \\ 5.5 $	$ 14.6 \\ 8.3 \\ 5.4 \\ 3 \\ 8 3 $						
18.50 - 18.99 $19.00 - 19.49$ $19.50 - 19.99$ $20.00 - 20.49$	22 14 5 6	$135.5 \\ 139.1 \\ 142.7 \\ 146.3 \\ 140.2 \\ 140.$	6.1 3.9 1.4 1.7	4.2 2.7 1.0 1.2	·······	 		 		
$\begin{array}{c} 20.50-20.99\\ 21.00-21.49\\ 21.50-21.99\\ 22.00-22.49\\ 22.50-22.99\end{array}$	3 2 2 	$149.9 \\ 153.5 \\ 157.1 \\ 160.8 \\ 164.4$	0.8 0.6 0.6 0.3	0.6 0.4 0.4 0.2		•••••• •••••• ••••••	······	 	********* ********* *********	
Totals	1441		•••••	•••••		275		••••••	••••••	

The greater relative variability in egg production is apparent.

The general principle here developed for the graphic representation of frequency distributions may, of course, also be applied to regression diagrams. RAYMOND PEARL

THE BIOLOGICAL RELATIONSHIPS OF THE LAND, THE SEA AND MAN

UP to the present time life in the sea has always been treated and considered as quite separate and distinct from the more familiar life on land. But this idea can no longer be maintained. The life of all the world is one vast unit, dependent for existence on the same sources of supply. The ocean life, though to most of us so strange and unfamiliar, is but the aquatic fringe of the life on land, and for the most part is supported by the same materials which, washed into the sea, no longer are available for the support of the land creatures.

Heretofore we have been led astray in our contemplation of sea life by the interesting fact that about three times as many major types of animals live in the sea as are found upon the land; indeed, of the major types of animals no less than ten, nearly half again as many as all land living types together, are exclusively marine.

This great variety in the form and structure of sea animals obscures another interesting fact. About three fourths of all known kinds of animals live on the land, and only one fourth in the sea.