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the universities are beginning to be led by the indus- 
tries, instead of vice versa. But that will not last 
long. The universities will lead again, I am w r e  of it. 

The industries are anxious that the universities 
should do their work of training research men as well 
as it possibly can be done. I heard one captain of 
industry remark one day that, perhaps, it would be a 
good thing if the industries would set aside a part of 
their profits, derived from the development of scien- 
tific research, for the benefit of universities, to enable 
them to give better and better instruction in scientific 
research. I also know that some of the inclustries are 
subsidizing some of* the university laboratories for 
carrying on certain research work; not developmental 
work, but purely scientific research work. The best 
of the industries are not trying to debase the real re- 
search work of universities by giving them problems 
which are nothing but technical development work. 
The industries can clo that themselves. What they 
would like to see the universities do is to carry on 
pure scientific research work, and to procluce young 
men who have a truly scientific mental attitude. This 
cooperation between the scientific work in the univer- 
sities and in the industries has already produced won- 
derful results, and it will produce more and more, and 
I am quite sure that sorne day the achievements from 
this cooperation will prosre even to the most ordinary 
type of mentality that the best worlr can be done only 
by experts who hare the proper training. That is the 
doctrine which we need in this country, and if it is 
adopted, not only in the industries, bat in every ac-
tivity of government, then the prophecy of Rowland 
will be fulfilled. T am sure that it will be adopted 
some day, because that is one of the best ways to 
make democracy safe for the world. 

M. I. PUPIN 
COLUMBIAUNIVERSITY 

THE FOUNDATION OF THE THEORY 
OF ALGEBRAIC NUMBERS1 

WE shall next see that certain modifications are to 
be introducecl in orcler that the usual theorems of 
arithmetic hold true in the more general realms. 
For  example, in the very simple realm that exists 

by adjoining dm to the nsual realm, it may be 
proved when m is greater than 3 and is not a perfect 
square that the Euclid Algorithm is not applicable, 
and there is no such thing as the greatest common 
divisor in the usud sense. By way of illustration 

observe that in the realm R ( \/ -- 5) we have 21 = 
I Concluding part of the address of the vice-president 

and chairman of Section A--Mathematics, American 
Association for the A4c1vancement of Science, Wasllington, 
December 31, 1924. 

(1-2 V -5),  where all the factors are irreducible 
integers. Tlms i t  is evident that the factorization of 
an integer into its irreducible (or prime) factors is 
in these extended realms not  a unique process as is 
the case in the usual realm of arithmetic and as is 
also true in the realms R ( i )  and R(w).  And here 
is the difficulty that mathematicians a t  first found 
perplexing, a difficulty which it mas necessary to 
overcome before the laws of arithmetic could be 
regarded as universa,l. 

The problem may be reeast as follows: Let p be 
the root of an algeb~aic equation of the nth degree 
whose coefficients belong to the usual (natural) realm 
of rationality and let p be adjoined to the usual 
realm. We thereby create an algebraic realm R (  p ) 
of the nth degree. Determine t he  arithmetic of tlzis 

extended algebraic realm. 

By making use of the above example we shall an- 
ticipate the results that follow, particularly those 
that are connected with the Theory  of Ideals. The 
reader is thus enabled to see the trend of the later 
theory a,nd with this in view he is asked to accept 
without proof the statements given immediately be-
low. 

Write T, = (3, 1-k 28), T, = (3, 1-26), T, = 
.-. 

1,1-k 26) ,  T, (7, 1 26) where 6 =V -5. I t=Z 

mag be proved by taking t,he products of the ideals 
that 

T, T , = ( 3 ) ,  T, T , = ( 1 + 2 6 ) ,  T, T ,= (4 -6 ) ,  
T, T , = ( 4 f  19), T, T,=1( l -26) ,  T, T ,= (7 ) .  

None of these quantities is a unit in R(6 )  and they 
are all prime ideals since, if N denotes the norm of 
u.n algebraic quantity and that is the product of the 
quantity and its conjugates, so that W(T,) = (3, 1i-
2 6) (3, 1-2 6), then is 

Thus it is seen that the factorization of 21 into its 
prime ideal factors, namely, 21 = T, T, T, T, is a 
unique process. I t  is also seen that the different meth- 
ods of factorization given above for the integer 21 
in the realm R ( 8 )  are had through the different com- 
binations in pairs of the T's. 

I t  thus appears that the prime ideals in this ex-
tended realm take the place of prime integers in the 
usual arithmetic; and one of the objects before us 
is to establish what is the historical origin of these 
prime ideals, as well as to study TI-hat they are. 

Returning to the discussion of the proof that the 
Greater Fermat Theorem does not admit integral 
solutions, consider the simple case 
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z4 = x4 - y4 = ( x - Y )  (X + Y)(1) 
(x- iy)  (x + iy )  =T, T, T, T,, 

and observe that the factors on the right-hand side 
a re  irreducible i n  R( i ) .  Since the complex quantities 
in  this realm obey the same laws a s  do the real quan- 
tities in  their realm, we may derive a correct proof 
that  equation (1)cam ~ o t  be solved in real integers. 

Consider next the equation 

z n = x n - y n =  (x-y)  (x-uy) (x-u2y) . . . 
(x-an-ly)=T,: Tz . . . T,, 

where u is a primitive root of xn =1. The T's being 
quantities of the realrn R(rx), a re  of the form 

where the a's a re  rational integers. 
There are  now two questions before us. lo:Are 

the factors T irreducible in  R ( u )  4 It is found that 
they are. 2": I s  this factorization unique? I t  is  
found that  it is sot. According to the testimony of 
Guldenfinger and of Grassman, Kummer (1810-1893) 
proved the Fermat Theorem as to  the requirements 
of the first condition and submitted his MS about 
(1843) to Dirichlet. Dirichlet pointed out that the 
second ,condition must also be satisfied. 

I n  1844 in his celebrated paper, "De numeris com- 
plexis, etc.," Kummer wrote, 

Maxime dolendum videtur, quod haec numerorum real- 
ium virtus, ut in factores primos dissolvi possint, qui 
pro eodem numero semper iidem sint, non cadem est 
numerorum complexorurn, quae si esset, tota haec doc- 
trina, quae magnis adhuc difficultatibus laborat, facile 
absolvi et ad finem perduci posset, 

However, i n  a letter to Liouville (April, 1847) 
(see Joursal de Math&naatipzles, Vol. 12, p. 136) Kum- 
mer again wrote, 

Quant & la proposition BlBrnentaire, qu'un nombre com- 
pos6 ne peut 6tre decompos6 en facteurs premiers que 
dlune seule manikre, je puis vous assurer qu'elle n'a 
pas lieu g6nQralement tant qu'il s1agit de nombres com- 
plexes de la forme T [defined above] maie qu'on peut 
sauver en introduisant un nouveau genre de nombres 
que j 'ai appel6 nombre complexe id6al. 

Thus i t  was Kummer who, i n  this maze of doubt 
a n d  uncertainty, found rs means of overcoming the 
difficulties and dilemmas that had been encountered. 
B y  the introduction of the prime ideal factors it was 
seen that the rational prime integers a r e  no longer 
the extreme elements i n  the extended realms of ra-
tionality. Although Kummer's principles had to do 
f o r  the most par t  with the algebraic numbers which 
are  derived from the roots of unity, the ideal num- 
bers which he introduced served as  a guide f o r  the 
general theories that were soon afterwards invented. 

Among others who also were working in the theory 
of algebraic numbers that are  formed from the roots 
of unity may be mentioned Jacobi, Cauchy and 
Eisenstein. 

L. E. Dickson i n  his "History of the Theory of the 
Theory of Numbers," Vol. 11, p. xix, writes: 

Although Gauss had proved in 1832 that the laws of 
elementary arithmetic hold also for complex numbers 
(numbers like 5 +i 7)  ana made a brilliant application 
of them in his investigation of biquadratic residues, tht? 
theory of algebraio numbers was really born in 1847. 
For it  was then that the mathematical world became, 
definitely conscious of the fact that complex integers 
(as T above) do not obey in general the laws of elemen- 
tary arithmetic. This historical fact came to light 
through discussions of lacunae in the attempted proof 
of Lam6 that if n is an odd prime, xn +yn=en is not 
satisfied by such complex integers. Other errors of the 
same nature were made by Wentzel and by so great a 
mathematician as Cauchy. Curiously, Kummer liimself 
made the error, in a letter of about 1843 to Dirichlet, 
of assuming that factorization is unique, so that his 
initial proof of Fermat's Theorem was incomplete. But 
Kummer did not stop with the mere recognition of the 
fact that algebraic numbers do not obey the laws of 
arithmetic; he succeeded in restoring the laws by the 
introduction of ideal elements, this restoration of law 
in the midst of chaos being one of the chief scientific 
triumphs of the past century. 

W e  a r e  pleased to add that  Dicikson himself has 
made some far-reaching discoveries i n  this same 
field which must give him i n  the mathematical world 
the recognition accorded to Kummer, Dirichlet, Dede- 
kind and Minkowski. 

The theory of analytic functions was developed 
in the French school. Dirichlet became well versed 
in this subject during his stay in  Paris and upon 
his return to  Germany through his lectures, par-
ticularly on the partial differential equations, estab-
lished in the German school a theory that was already 
well known in France, due to the efforts especially 
of Poisson, Fourier, AmpBre and Rlonge. Applying 
his knowledge of analytic methods to  the problems 
that arise i n  the consideration of complex units, 
Dirichlet was able on the one hand to establish a 
fzsndame~talsystem of units f o r  any algebraic realm 
and on the other hand he was able to derive a for-
mula f o r  the presentation of the number of classes 
into which the algebraic numbers of a realm may be 
distributed. These two principles must be included 
in any arithmetic of algebraic numbers as  we have 
already indicated. And thus, as  Kummer has said, 
Dirichlet made a n  epoch in this theory a s  Descartes 
had done in the application of analysis to geometry, 

Riemann learned the analytic method from Dirich- 
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let and this led him fa r  into his geometrical researches 
regarding which we have already spoken. Thus it 
is seen that the work of the French school is basal 
i n  many of the results that have been indicated in 
this paper. 

W e  are now brought face to face with two other 
'disciples of Dirichlet, namely, Kronecker and Dede- 
kind. Both of these men felt the necessity of gen- 
eralizing the notion of the ideal factors for the case 
of any algebraic quantities, and that is, of any quan- 
tity of an algebraic realm however generalized. Ob-
serve that the ideal numbers of Kummer had to do 
with cyclotomic (circular) realms, which are had 
through the adjunction of the roots of a binomial 
algebraic equation to the usual realm of rational 
numbers. These ideal numbers in the form presented 
by Kummer are susceptible of simplification and 
generalization. 

Frobenius in his "Gedbhtnissrede auf Leopold 
Kronecker" writes : 

The genius of Gauss in the treatment of the cyclo- 
tomic numbers (roots of unity) make algebra pay tribute 
to arithmetic and Jacobi's conquering strength lays at 
her (arithmetic's) feet the measureless treasures of for- 
mulas from the theory of elliptic functions and into 
her service forced the finest methods of analysis. I t  is 
Kronecker 's everlasting service that he made this self -
sufficient science become a servant to both algebra and 
the Theory of Functions. 

And Kronecker in his "Antrittsrede" to the Ber- 
lin Academy said: '(Die Verknupfung dieser drei 
Zweige der Mathematilc erhoht den Reiz und die 
Fruchtbarkeit der Untersuchung." 

The investigations of the complex numbers formed 
from the roots of the Abelian equations led Kronecker 
to the algebraic-arithmetic problem of forming all 
Abelian equations for any realm of rationality. The 
solution of this problem he communicated to the Ber- 
lin Academy in 1853. 

From this time on Kronecker laid especial emphasis 
upon the treatment of algebraic questions from an 
arithmetical point of view and in the investigation 
of such problems he entertained the idea of extend- 
ing Gauss's conception of congruences with respect 
to a rational integer as modulus to the conception 
of congruences with respect to an arbitrary system 
of moduli, a conception which in its incipiency had 
already been conceived by Serret and by SchGnemann. 
I n  the preface to Vol. I of Kronecker7s Works, Hen- 
sel writes: 

Under the name of General Arit l~metic Eronecker 
maerstooa the application of the conceptions and meth- 

ods of the Theory of Numbers to the investigation of 
rational functions of any number of variables. This 
greatly extended field of investigation embraces the 
consideration of systems of integral numbers, the entire 
field of the theory of numbers, the investigation of 
linear systems, the theory of determinants, bilinear 
and quadratic forms and finally the general field of 
algebraic numbers and functions of one and of several 
variables. 

Kroneclrer employed the systematic application of 
indeterminate coefficients in the definition of the ideal 
quantities and by using several variables in the for- 
mation of his functions he attempted to overcome 
many of the difficulties and to avoid many of the 
imperfections that are experienced in the use of one 
variable. Instead of the association of higher kinds 
of algebraic irrationalities he widened the dimension 
of the original realm of quantities by the introduc- 
tion of forms of several indeterminates and thus he 
gave essentially new points of view for the realms of 
rationality which through such adjunctions contain 
not only numbers and functions of one variable but 
also functions of several variables; and through a 
finite number of integral algebraic quantities he was 
able to express all such quantities of the realm. 
Kronecker wished to see in the greatest common 
divisor of several integral quantities not  the only 
thing common to such quantities. This he held is a 
common divisor of the first kind (Stufe). There 
are with him common divisors of a higher kind. 
The general method for the treatment of such quan- 
tities Kronecker presented in a condensed and ex-
ceedingly difficult form in a memoir entitled ('Grund- 
ziige einer arithmetischen Theorie der algebraischen 
Griisse," which he dedicated to his friend and teacher 
Kummer on the commemoration of the latter's seven-
tieth birthday. The work may best be described in 
Kronecker7s own words regarding Legendre's "ThB-
orie des Nombres :" "It can not be regarded as a well- 
ordered and well-arranged work." 

From what has been seen Kronecker wished to 
treat in its generality every branch of mathematics 
under the one heading ('General Arithmetic," a theory 
which divested of its analytic properties should rest 
upon something akin to the rational integers as its 
final substructure. A systematic treatment of Kron- 
ecker's ideas with the natural extensions, ramifica- 
tions and applications and not in the form of a 
general arithmetic or a general analysis is a work 
well worth doing by some capable young American. 

As a rule great discoveries do not fall out of clear 
skies. I t  is usually with much patient wooing at-
tended by prolonged labor and arduous toil that they 
are produced. Newton had his precursors and the 
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theory of fluxions was not the sudden output of a 
fertile brain. Fortuitously, the mathematicians men- 
tioned above with possibly others served in guiding 
aright the one whose mathematical-philosophic genius 
gave an easy and comprehensive method for the treat- 
ment of algebraic numbers in all their generality. 
Richard Dedekind (1831-1916) devised, systematized 
and extended this theory from time to time and mod- 
estly incorporated his results as the "Eleventh Sup-
plement of Dirichlet's Zahlentheorie." This excel-
lent work was edited through several editions by 
Dedekind. 

I produce here briefly the outlines of Dedekind's 
discoveries which, resting upon the deeply imbedded 
bases already considered, are to be regarded as the 
firm foundations of the theory of algebraic numbers. 

Let a and b be any two fractional or integral num- 
bers in the usual realm of rational numbers. Ob-
serve that the linear form ax 4- by, for integral values 
x and y, represent all those rational numbers that 
are divisible by the greatest common divisor of a a.nd 
b. We may therefore say that any number t is  divisi- 
ble by the complex of numbers a and b (which com- 
plex denote by [a, b]), if it is possible to determine 
two rational integers x and y such that t = ax f by. 
This is an extension of the ordinary conception of 
divisibility in that t is divisible by a if t = ax, where 
x is an integer. This extension is clearly superfluous, 
so long as we remain in the usual realm of rational 
numbers; for in this case every number that is divis- 
ible by the complex [a, b] is divisible by the greatest 
common divisor d of a and b, and reciprocally, every 
number that is divisible by d is divisible by [a, b]. 
Accordingly, we may write d = [a, b]. 

I t  is quite otherwise if we extend the realm of ra-
tional numbers to an algebraic realm 9. The fol- 
lowing definition is accordingly introduced : T h e  in- 

, tegral or fractional number 1 is  said to be divisible 
b y  the complex [a, 81, i f  there ezist two integers 5 
and Q such that h = a f f fill where nll quantifies 
belong to  O. 

This conception is no longer superfluous. For, if 
6 is a quantity through which both a and 0 are divisible, 
then every number that is divisible by [a, B] is clearly 
divisible by 6.  However, every number that is divisi- 
ble by 6 is ~ o t  For, if this were divisible by [a, PI. 
true, then 6 would itself be divisible by [a, B] and 
would accordingly be expressible in the form 6 = 
af, d-h,, where E, and Q, are integers in 9. Hence 
6 would be the greatest common divisor of a and P 
in the sense that is usual in the theory of rational 
numbers. If, however, 9 is an arbitrary algebraic 
realm of rationality, we meet with a difficulty. For, 
if in the definition of divisibility we limit the discus- 
sion to a definite realm and if we define divisibility 

as we have just done for the rational numbers, there 
is no greatest common divisor in general for  two 
numbers of B as indicated above; if, however, we 
neglect the realm of rationality O and permit the 
discussion to extend to the general realm of all alge- 
braic numbers, there is something which corresponds 
to the greatest common divisor in the theory of 
natural numbers. There is then, however, no such 
thing as a prime number and the theorem regarding 
the unique factorization of a number into its prime 
factors does not exist. However, we can not lose 
sight of the theorem regarding the unique distribu- 
tion of a number into its prime factors and there- 
fore the conception of the theorem regarding the 
unique distribution of a number into its prime fac- 
tors and on this account the conception of the divisi- 
bility through the complex [a,B] is no longer super- 
fluous; it becomes necessary. 

The above definition is applicable to the complex 
m =  [a,, a,, a,, . . . 1, which consists of more than 
two algebraic numbers in 9. Accordingly, an alge- 
braic number h is said to be divisible by this com- 
plex if 1= a,f, 4- a,f, 4-. . . , where the 5's are 
integers in 9. . 

The investigation may be restricted in that the 5's 
are required to be rational integers. The collectivity 
of all algebraic numbers that are expressible through 
the linear form a,x, -I-a,x, f . . . , x,, x,, . . . being 
rational integers was called by Dedekind a rnodul. It 
may be observed, if functions of one or more variables 
with coefficients that belong to a fixed realm are 
written in the place of the a's, that the modular sys- 
tems of Kronecker are nothing other than the moduls 
of Dedekind. 

A number h, is said to be divisible by a modul or  
modular system if h is a number of the modul, that 
is, if h is contained in the modul, and that is, if ra-
tional integral numbers x,, x,, . . . may be found 
such that h, = a,x, fa,x, f . . . . Here we have en- 
countered something which a t  first may appear as a 
"confusion of languagev in that the conception of 
"divisibility" and of being '(contained in" which here- 
tofore have been opposed are now identical. 

Dedekind offers also the following definition of a 
modul in order to give the theory a more philosophic 
setting in that i t  is independent of the notion of 
linear forms: A modul is  a system of numbers such 
that t k e  difference of a n y  two numbers of the system 
is  a %umber o f  the  system. I f  a,, a,, . . . a, are a 
finite number of quantities of 9 and if there is no 
linear relation among 'them with rational coefficients, 
these quantities constitute a basis of a finite modul. 
I n  this case [a,, a,, . . . an] is called a modul of the 
nth order. We are then led through easy steps to 
the conception of equality of moduls, the greatest 
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common divisor, the least conlmon multiple, the prod- 
net and the quotient of moduls. 

All numbers of the modul m are said to be divisible 
by m, and if a is any such number, then is a = 0 
(mod m) ; and u is said to be congruent to 8 (mod 
m) and written a = 8 (mod m),  if a - 8 is divisible 
by m and that is, a -8 is a number of m. 

If a and b are two moduls and if b is divisible by 
a, then the numbers of a fall with respect to b into 
a certain number of classes, which number is denoted 
by (a, b) .  Any number of a class may be selected 
as a representative of the class. We thus have as 
many representatives as there are classes. 

These representatives have the following charac-
teristics : 

(1) They are all divisible by a ;  

by 

(2)'J;The difference of no two of them is divisible 

(3)  Every number that is divisible by a is con-
gruent to one of these numbers (mod b )  and to only 
one. 
I t  is evident that if a is divisible by b that (a, b )  =1. 

I n  general without assuming that b is divisible by 
a, make the assumption that n elements fill B,, . . . B n  
of b are such that 
P1.=erl al+ ed a, + . . . +e,, ( r  = 1,2, . . . n) ,  
where the e's are rational numbers. Denote the deter- 
minant of these expressions by C. I t  may be proved 
that 

If in this expression b is divisible by a, then the e7s 
are integers and (a, b )  = 1 C 1. 

By definition (1) a finite modul a is said to be alge-
braic, if all the numbers that are divisible by a are 
algebraic. (2)  An algebraic modul a is an  integral 
algebraic modul if all the quantities that are divisible 
by a are algebraic integers. ( 3 )  An integral alge- 
braic modul is a unit modul,  if 1is divisible by this 
modul. These three definitions are restricted to finite 
moduls. To show that a finite modul is algebraic, 
it is only necessary to show that the modul has a basis 
which consists of only algebraic integers. 

Theorem.-If a i s  a finite modut which belongs t o  
a n  algebraic realm 52, there exists a finite modul 
b of such that  ab i s  a unit modul which consists 
only  of algebraic integers. 

Theorem.-All t7~e  algebraic integers of a realm of 
the n t h  degree constitute a fimite modul o f  the  n t h  
order. 

There exists always in such a realm a modul v whose 
discriminant has a minimum value. This modul v is 

such that v2 = v and' = v, so that v plays the 
v 

same ritle in the algebraic realm as 1 does in the 
usual realm of rational numbers. 

Theorem.-If a is a n  arbitrary modul of the  n t h  
order in a realm Q of the n t h  degree, t hen  every 
number B of Q m a y  through multiplication b y  a 
rational integer be transformed in to  a number that  i s  
divisible b y  a. 

An ideal is a modul of the nth order in a real~n 
of the nth degree formed of the complex of values 
of a linear form a5 1- 13711- y5 1- . . . , in which 
a, 8, r, . . . are integral or fractional algebraic num- 
bers of a fixed realm Q and where E ,  n, I;, . . . are 
any integers of Q. If  a is an ideal and v the modul 
defined above, then is va =a. This is characteristic 
of an ideal and serves to define it, being in fact the 
best definition of an ideal. I t  may be proved that the 
greatest common divisor, the least common multiple, 
the product and the quotient of two or more ideals 
are ideals. 

I f  a is an arbitrary number of 61, then is va an 
ideal, a principal ideal. Theorem.--If a and b are 
t w o  ideals of Q, there is  one and only one ideal 
k such that ak=  b. 

I t  may be proved that 

where r is an arbitrary number of Q and N denotes 
its norm. This property of the principal ideal VI 
leads to the following definition. If  a is an arbitrary 
ideal. then is 

from which it follows that N(v)  =1. 
An ideal is said to be integral if it  consists only 

of algebraio integers and this is true if U, B, Y, . . . 
above are integers. We may observe further that in 
every such ideal there exist n integers Y,, Y,, . . . m 
which have the property that every integer L of the 
ideal may be expressed in the form L =g, r, +g, Y, 
g3y3+. . . ; where the g's are rational integers. 

If g is an integral ideal, observe that 

And this, as seen above, is the number of classes into 
which the integers of may be distributed with re- 
spect to the integral ideal g. This number plays 
fundamental rales in the further development of the 
theory, for example, in the proof of Fermat's Lesser 
Theorem for ideals, in the determination of the num- 
ber of classes into which an integral ideal mag b~ 
distributed, etc. 

Theorem I.-If t w o  integral ideals a and b are 
relatively prime, and that  is, have no ideal factor in 
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common save v, and i f  c is a third ideal, then i f  bc is 
divisible by a, the ideal c is divisible by a. 

Theorem II.-If a and b are two integral ideals 
that are relatively prime and if a and c are two 
integral ideals that are relatively prime, then the 
greatest common divisor of a and c, this common 
divisor of a and c, this common divisor being v. 

Theorem III.-An integral ideal a is divisible by 
only a finite number of other ideals. 

If an integral ideal a has the property that it is 
divisible by itself and by no other ideal save v, it  is 
called a prime ideal. 

Theorem IV.-If a product of several integral 
ideals is divisible by a prime ideal, one of the ideals is 
divisible by this prime ideal. 

Theorem V.-The Fundamental Theorem. Every 
integral ideal that is not v or a prime ideal may be 
factored into a product o f  prime ideals and this fac- 
torization is unique. 

Observe that every algebraic integer when multi- 
plied by v is a principal ideal and that the above 
theorems are applicable to it. 

The integral ideals constitute one branch of the 
general theory of moduls. This general theory in its 
incipience comprises the ICronecker modular systems 
and indeed many other branches of mathematics that 
emanate from the general realms of rationality and 
include the Minkowski geometry of numbers, the 
treatment of the moduli of periodicity of the Abelian 
Integrals, etc. 

As a rule the text-books on the usual theory of 
numbers make the positive integer the starting point 
and the theorems regarding such integers form the 
foundation of the theory; it appears also that the 
text-books on the theory of algebraic numbers are 
going to start with the integral ideal. I t  should be 
emphasized that such ideals have their general setting 
in the general modul theory just as number is the 
more general concept of the usual positive integer. 

The theory as outlined above may be made de- 
pendent upon the fundamental theorems of Dedekind 
as given by him in the "Begrundung der Idealtheorie. 
Gtittinaen-Nachrichten 1895." 

I. If  the ideal c is divisible by the ideal a, there 
exists an ideal b such that c =ab. 

11. Every ideal may be changed through multiplica- 
tion by a properly chosen ideal into a principal ideal. 

111. Every finite modul that is different from zero 
may through multiplication by a properly chosen 
modul be changed into a modul which contains the 
number 1 and further consists o f  only integers. 

IV. I f  at, a,. . +,a n  denote any n numbers that are 
mot all zero of a realm 52 of the nth degree, i t  is pos- 
sible to derive by rational operations n other num-

bers b, $2, . . . 0, of Q which satisfy the two condi- 
tions, first that a1 I31 + . . . d- a, p, = 1,and secondly, 
that the n2  products a,,P, are all integers. 

If any three of the above theorems are proved, the 
fourth follows as a consequence. 

Observe that throughout the entire discussion of 
this article a fixed stock-realm R has been the realm 
of reference. This stock-realm was the usual realm 
of rational numbers. The theorems derived have been 
for the numbers of another realm, say 81,which was 
deduced by adding (adjoining) to R an algebraic 
q~~ant i ty .  This algebraic quantity was in turn the 
root of an algebraic equation whose coefficients were 
rational numbers (and that is, numbers of R) .  It is 
possible to introduce a third realm 8 2  which bears 
towards 91, the same relation as 81had with respect 
to R, and so on indefinitely. Instead of the ideals 
that are introduced for 81other (more general) ideals 
exist for  5 2 2  through the introduction of more general 
norms, discriminants, eta. I t  may be proved that the 
same rules, laws and principles exist in the more gen- 
eral realms as were true in 81. And thus it becomes 
manifest that the principles of arithmetic are true 
nniversally and that is, in any algebraic realm what- 
ever taken with respect to any arbitrary algebraic 
stock realm as realm of reference. 

HARRISHANCOCK 
UNIVERSITY CINCINNATIOF 

SCIENTIFIC EVENTS 
T H E  NANSEN POLAR EXPEDITION 

THE Christiania correspondent of the London Times 
writes: The news that Dr. Nansen, after nearly 30 
years spent in labor far  away from the Arctic, will 
again return to the work of his youth is sure to at- 
tract general attention. Dr. Nansen has taken his 
decision. He will not only join the North Pole Ex-
pedition of the German Commander Bruns, but he 
will become its leader. By his famous expedition with 
the Fram in the years 1893-96, Dr. Nansen gained a 
reputation which, coming after his crossing of Green- 
land, placed him in the highest rank of Arctic ex-
plorers, and his interest in the North Polar basin 
has not waned. 

Just a s  Dr. Nansen in 1893-96 had no ambition 
of reaching the North Pole apart from scientific ex- 
ploration, so he is without this ambition on this occa- 
sion also. At the meeting of the Geographical Society 
he declared the flight over the Pole to be a matter of 
secondary importance, and in a subsequent interview 
he expressed the hope that Captain Amundsen will 
reach that goal next summer. Dr. Nansen will cer-
tainly not try to overtake Amundsen. 

The projected Nansen Expedition is primarily in- 


