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GEOMETRY AND PHYSICS!

TWENTY years ago the abstract point of
view in geometry was becoming a familiar
one to mathematicians. The essential element
in the movement of thought at that time
seemed to be the freeing of geometry from all
reference to physical reality. Geometry as
studied by mathematicians must be a set of
propositions arranged in a sequence of logical
deduetion, proceeding from a set of unproved
propositions (the axioms, or postulates) which
are stated in terms of undefined elements. If
the undefined elements are points and lines,
for instance, the mathematician does not in-
quire what is a point or line. All he cares to
know about them is stated explicitly in the
axioms,

This point of view made it possible for the
first time in history to see geometry as a clear-
cut whole. It was definitely separated from
philosophy on the one side and from other
branches of physies and mathematics on the
other. The result was a great gain for clear-
ness of thought in all these fields, a gain which
has not been accompanied by any loss of mutu-
al contaet or support.

During the following years mathematicians
have continued to develop the postulational or
logistic method, so that by now it has demon-
strated its value as a practical scheme of ar-
rangement and exposition in the most diverse
branches of mathematics. While doing this it
has, of course, lost in freshness what it has
gained in respeetability. But during the same
period a series of brilliant diseoveries in phys-
ics has been making the abstract point of view
a vital issue in that science also.

If we examine the eclassical branches of
physics we shall find that the main elements
of the abstract point of view have been im-

1 Address as retiring vice-president and chair-
man of Section A—Mathematics, American Asso-
ciation for the Advancement of Science, Boston,
December, 1922,
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plicit in them for a leng time. In faet, if we
state with sufficient clearness in physical terms
what we mean by undefined elements, unproved
propositions, and so on, we arve apt to find
that a physieist classifies these ideas as tru-
isms of little importance. I am inelined to
think that he is justified in this attitude, so
far as practical results are concerned, during
the earlier and eruder stages of physical
theory. But experience is showing that when
the results of a more refined experimental
technique forece a reconsideration of funda-
mental assumptions, the technique of the study
of these assumptions must undergo a corre-
sponding refinement. Let us therefore take the
risk of banality and glanee at some of the
branches of physies from the point of view
of an axiomatist.

Lest any one should expect any closely
reasoned body of doctrine to result from such
a suvvey-—and thereby be sadly disappointed—
let me vemind any non-mathematicians who
may be present that when a mathematician lays
down the elaborate tools by which he achieves
precision in his own domain, he is unprepared
and awkward in handling the ordinary tools
of language. This is why mathematicians al-
ways disappoint the expectation that they will
be precise and veasonable and elear-cut in their
statements about everyday affairs, and why
they are, in fact, more fallible than ordinary
mortals. Therefore, please be satisfied in this
case with some rather disconnected remarks.

We shall begin with elementary geometry,
the oldest branch of physics. Having the
mathematical, or abstract, science of geometry
before us in its present highly developed form,
we wish to apply it to the world of experi-
ment. It consists of a sequence of statements
arranged in a certain logieal order but void
of all physical meaning. In order to apply
them to nature we identify the undefined terms
(points, lines, ete.) as names of recognizable
objects. The unproved propositions (axioms)
are then given a meaning, and we can ask
whether they are true statements. If they are
true, then we expect that the theorems which
are their logical consequences are also true and
that the abstraect geometry will take its place
as a useful branch of physies.

This, I think, is a fair statement of the ac-
cepted point of view. But it is full of serious
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difficulties. The most obvious one is that it is
impossible to identify anything in nature as
a point or a line or a plane except by means
of more or less gross approximations. The
statement that a point has neither length,
breadth nor thickness is a useful description
in many of the applications of abstract geome-
try, but it is never strictly true of a physiecal
point. The identification of any physical ob-
ject as a point (or a hexagon or a sphere)
takes place only with a certain margin of
error. But if this error is imperceptible in
verifying the postulates themselves, there may
well be an accumulation of errors when the
postulates have been used many times in the
proof of a complicated theorem. Thus the
postulates may appear true within the limits
of error of a direct test, and yet some of the
theorems may be perceptibly false. This
makes it necessary to verify mot merely the
postulates, but also as many theorems as possi-
hle.

Here let me digress long enough to point
out the bearing of this on the problems of
teaching. The branch of physies which is
called Elementary Geometry was long ago de-
livered into the hands of mathematicians for
the purposes of instruction. But, while mathe-
maticians are often quite competent in their
knowledge of the abstract structure of the
subject, they are rarely so in their grasp of
its physical meaning. In recent years this de-
feet has become glaringly apparent and the
teachers of elementary geometry are begin-
ning to cultivate the experimental technique
of the subject. What I wish to say is that
they should do this with a view not merely to
making the concepts of geometry clear to their
students, but also with a view to removing
the legitimate doubts of its truth which stu-
dents liave a right to entertain.

The knowledge that the experimental veri-
fication of any theorem, however far removed
from the axioms, is a veal argument in favor
of the wvalidity of the whole science should
strengthen the hands of those who want to
make the teaching of geometry as eoncrete
and physical as possible. Gauss and other
experimenters who have taken pains to verify
that the sum of the angles of a triangle is 180
degrees were not wasting their time; and
neither is a teacher doing so who finds new
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tests for this and other theorems of geometry.

At the same time it will not be forgotten
that the physical reality of geometry cannot
be put in evidence with full clarity unless there
is an abstract theory also. The faults in the
traditional teaching of geometry, about which
we hear so much to-day, are in a large measure
due to the opinion that geometry is a system
of a priori truth of such a nature that our be-
lief in it cannot be influenced by experiment.
A science resting on such a supernatural basis
was fittingly taught by the method of dogmatic
indoetrination.

The existence of a margin of error in the
process of identifying concretely the abstract
terms of geometry means that we never verify
a very large number of cases of a very large
number of theorems in a single group of ex-
periments. In one experiment, and with one
interpretation of the terms, we verify the
theorem of Pythagoras, but it is in another
experiment, and with another interpretation
of the terms, that we verify the theorem of
Desargues. Thus we ean know the physical

truth of geometry only, as it were, in patches. *

The unity of the science is in its abstract for-
mulation.

This situation is not an unusual one in phys-
ical seience, for theories are by no means un-
known in which the postulates and many of
the theorems are quite beyond the reach of
experiment. Such theories have to be tested
by verifying some of their consequences. I
suppose that it is a very exceptional theory
which can be fully tested by a single series
of experiments.

There is, however, an experimental diffieulty
which is especially characteristic of elementary
geometry. This is the bewildering multiplicity
of concrete interpretations for the same ab-
straet term. A point, for the purposes of in-
struction, is usually a spot on a blackboard.
If you are trying to steer a course at sea you
may fix your attention on two points which
are a lighthouse and a red spar respectively.
In this case you are making use of the propo-
sition that a straight line is uniquely deter-
mined by two of its points. The same propo-
sition ean be verified by driving the nails 4,
B, and C into a wooden board and observing
that if a stretched string which touches A4
and B also touches C, then a stretched string
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which touches B and € can be made to touch
4. The same experiment can be repeated by
sighting from one nail to the others or by
the use of a straight edge or by firing a bullet
from a gun.

I could continue enumerating these illustra-
tions indefinitely, but the point I am making
is sufficiently evident. There is no unique way
of defining a point or a line for the purpose
of experiment. Indeed, the great usefulness
of elementary geometry is very largely due to
the fact that there is such an extraordinary
multiplicity of things which can profitably be
regarded as points and lines.

In this multiplicity of interpretation of its
fundamental terms, elementary geometry is in
sharp contrast with the more recent and ree-
ondite branches of physies. Thus, for ex-
ample, while the term electron may have more
than one physical meaning, it is by no means
such a protean object as a point or a triangle.
The old way of accounting for this difference
was to say that the electron is a substantial
object, whereas the point is only an abstrac-
tion. This way of dismissing the question will
not satisfy us to-day, for we believe that the
electron and the point are hoth abstractions.
Moreover, the difference which we are seeking
to explain is one of degree rather than of
kind.

What we are calling elementary geometry
is, of course, not a single logical unit. It com-
prises first of all a group of theorems of
analysis situs. These culminate in the theorem
that the points are in one-to-one correspond-
ence with the totality of ordered sets of three
numbers, (x, y, z); in other words, that an
analytic geometry is possible. In this part of
geometry, the multiplicity of possible physical
interpretations of the terms is at its highest
piteh. Following this we have projective geom-
etry, the general theory of straightness; affine
geometry, the theory of parallels; and, finally,
the metric geometry. Each one of these groups
of theorems is logically distinguished from its
predecessor by the appearance of new rela-
tions which are brought in either by means of
new axioms and undefined terms or by means
of definitions which limit attention to a re-
stricted class among the totality of possible
geometrical objects. At each stage the free-
dom of physical interpretation is restricted
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until, at the final stage, it is necessary to be
able to specify the physical significance of a
measuring stick and of a rectangular cartesian
coordinate system.

Next after geometry, according to the
classieal way of looking at things, we can take
up either kinematies or statics or the geometry
of masses. Let us choose the first of these
three alternatives.

For kinematies we must have a theory of
time. This is very simple; the undefined terms
are “instant” and “before” or “after,” and we
use as postulates one of the sets of postulates
for the linear continuum. The main theorem
is that there is a one-to-one continuous corre-
spondence between the instants of time and
the numbers of the real number system. This
makes possible the subdivision of time into
equal intervals, and the measurement of time.
‘While the abstract theory is very simple at
this stage, the physical applications involve
all the technique of clocks and other time de-
viees.

For kinematics we must also have the con-
cept of substance, something which can move
and which ean have a duration in time. The
postulates for substance will state its existence,
as we say, in space and in time. They may be
phrased somewhat as follows:

1. Given any substance and any instant of
time, there exists a unique set of points called
the position of the substance at the given in-
stant of time.

A substance whose position at any time is
a single point is called a particle.

2. The position of any particle at any time
is a single point. This position is a continu-
ous function of the time.

3. For every point P of the position of a
substance § at any time there is a particle
whose position is P. The position of § at any
other time ' is the set of points which are the
positions of these particles at the time #'.
These particles arve called the particles of the
substanee S.

4. No two particles of the same substance
can have the same position at the same time.

5. Let (%o, Yo %o) be the coordinates in a
cartesian coordinate system of the position of
any particle of a substance § at a time ¢, and
let (x, y, 2z) be the coordinates of the same

SCIENCE

[VoL. LVII, No. 1466

particle at a time ¢, then there exist three
analytie funetions 7, f,, 7, such that

Ty (@ Yo 2,)
I, @y Yy 2,)
= f:’. (woy Yo zo)
for all the particles of S.

The first four of these postulates correspond
to our most general intuitions about substance,
and the fifth is intended as a basis for analytic
operations. While I have studied out some of
their eonsequences, I have not made anything
like a full investigation and should not be sur-
prised to find that they contain both omissions
and redundancies. I give them here largely to
emphasize the fact that very little work has
yet been done in this direetion.

Before we have the actual structure of the
classical kinematics we must limit our atten-
tion not merely to the consequences of these
axioms of time and substance, but also to a
group of theorems determined by certain
definitions. The most important of these is the
definition of uniform motion of translation. A
substance is in uniform motion of translation
if with respect to a definite cartesian co-
ordinate system and a definite time variable,
we have for every particle of the substance

RS

This simple way of stating the definition ean
be replaced by the apparently more compli-
cated statement:

If a substance S is at rest there is a eartesian
coordinate system and a system of time meas-
urement sueh that the coordinates of each par-
ticle of § satisfy the conditions

x — constant
Yy — constant
¢ — constant
t = arbitrary.

If a substance 8’ is in uniform motion of
translation there is another coordinate system
such that each particle of S’ is denoted by

constant
constant
constant
arbitrary.

ol nlwl gl

I T T

and the relation between the two coordinate
systems is given by equations
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(1) T=a t4+b
a;_: a11w+a12y -+ a,.# -+ blt + e,
y—_:a2]m+a22y+a232+b2t-|—cg

N

=a,.x +“32y + a2 —+ b3t + o,
in which the coefficients are constants such that
a7 4 dy? + 432 = de® 4 dy? - de2

Before the physical applications can be made
in detail, corresponding definitions must be
made of uniform motion of rotation and of
other special types of motion. But we need
not go into this question here.

The physical interpretation of the abstract
theory is much more definite and restrieted at
the present stage than it was at that of geom-
etry. The table before us, the floor on which
we stand, we ourselves, the whole earth, are all
substances moving together through space with
a high velocity. Any deseription of the whole
or any part of this aggregation of substances
is a conerete application of kinematies and
gives rise to ‘an experimental test of it.

‘We now see that the multiplicity of eonerete
interpretations of geometry was due in part
(though not wholly) to the fact that geometry
is used to deseribe an instantaneous eross sec-
tion of the substantial universe. At this stage
also we have to meet the difficulties due to the
fact that the motion of any substance can only
be detected physically as the motion of the one
substance relative to the other substances.

The abstract theory which we have described
provides for absolute motion, . e., a substance
is in motion if the set of points which we call
its position is not the same at all instants of
time. But it is also true that the theorems of
the universe of substance will be unchanged in
meaning if we replace the abstract time and
space which underlie the theory of substance
by a new time and space related to the old
ones by formulas of the same form as (1). It
is for this reason that an absolutely definite
statement of what we mean physically by par-
ticular substances does not earry with it a
unique determination of what we mean by par-
ticular instants of time or points of space.

The fact, somewhat obscurely understood,
that it is possible to make these transforma-
tions of the space and . time underlying kine-
maties without altering the kinematies itself has
often been taken as an argument against the
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classical theory of space and time. I do not
think it can be accepted as a valid objection,
however. What it really does prove is that
when the eclassical theories of space and time
are combined in the theory of substance, the
result is more complicated than a simple-
minded person would expect.

This complication of the abstract theory
shows itself on the physical side when we ask
how we shall know what are the simultaneous
positions of two distant substances. The dis-
cussions of the theory of relativity have shown
that the most natural physical method .of an-
swering this question corresponds with suffi-
cient aceuracy to the classical kinematics when
attention is limited to terrestrial objects of not
too fine-grained a character. On an astro-
nomiecal seale, however, the determination of
simultaneity fits in much better with the type
of kinematics known as the special theory of
relativity.

This theory we can regard as proceeding
from exactly the same axioms of space, time
and substance as those we have proposed for
the classical kinematics. But it makes use of
a different definition of uniform motion: A
substance §’ is in uniform motion of transla-
tion if, and only if, there is a coordinate sys-
tem such that each particle of 8’ is denoted by
Z = eonstant, y == eonstant, # = constant, t =
arbitrary, and the relation between this co-
ordinate system and the (z, y, 2, t) system is
given by any set of linear equations with con-
stant coefficient such that

da2 -+ dy2 + dz2 — c2di2 — dx2 + dy2 + dz2 — c2di2

where ¢ is a constant.

The relation of the relativity kinematies to
its underlying space and time is quite aralogous
to that of the classieal kinematies to its under-
lying space and time. Analogous transforma-
tions of the underlying space and time (the
Lorentz group) are possible without changing
the kinematics. But in the relativity theory
these transformations are put in evidence in
connection with the simplest problems, whereas
the classical kinematics can be treated in such
a way as to mask them.

This is not the place to go further with an
exposition either of the classical or of the rela-
tivity kinematics. I wish only to remark that
either of them can be based on an underlying
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theory of space and time as well as upon the
concept of a four dimensional space-time.
There is no essential difference of logieal sim-
plicity between the two types of kinematies.
The important difference is that the relativity
definition of simultaneity is more mnearly in
accordance with the physical means in actual
use by astronomers for determining when two
events are simultaneous than is the elassical
definition. Therefore in those cases where the
scale of operations is large cnough, or the
secheme of measurement fine enough, the rela-
tivity kinematics will he used. In other cases
the classical kinematics will be retained as a
sufficiently aceurate approximation to the
other.

In comparing the theorems of kinematics
with experience there is much less overlapping
than in geometry. For a physical object has
to be identified as a substance in the kinematic
sense not merely once but for all values of the
time. Nevertheless, a great multiplicity of
interpretation still persists, which will be
further reduced when we come into the domain
of mechanies.

Before we arrive at a full-fledged mechanics
we must introduce the eoncept of mass. This
may be done in two ways according as we are
developing a mechanics of diserete particles or
a mechanies of continuous substances. In the
first case we have merely to postulate a num-
ber associated with each particle and in the
second case to lay down a somewhat more ex-
tensive set of postulates from which the con-
cept of density may be derived. These postu-
lates will serve for example as a basis for the
differential equations of continuity.

Finally the postulates must be introduced
which determine how we shall use the terms
force and cause. I shall not now try to set
forth my ideas as to how these postulates
should be formulated, for I have already gone
more into detail than is desirable in a talk of
this kind in expounding the idea of substance.
It is enough to remark that there is an open
field here for a valuable postulational inves-
tigation.

Suppose now that we have before us the
complete logical structure which is built on
these postulates and consider a particular me-
chanical problem, as, for example, the problem
of two bodies. For the sake of this problem

SCIENCE

[Vorn. LVIIL, No. 1466

we add to the general postulates of mechanies
the postulate that the substance to be consid-
ered consists of two particles of given masses
moving under a particular law of force. The
differential egquations now bhecome perfectly
definite and numerical results can be worked
out.

In order to have a physical application we
may let the two particles be the two com-
ponents of 2 double star. In this case the
astronomical data have a low percentage pre-
cision and the theory gets along within a wide
margin of probable error. Again, we may let
the two particles he the sun and Jupiter. In
this case the precision of the astronomical data
is high. The theory serves as a first approxi-
mation. But it is scon seen that the sun and
Jupiter must be regarded as parts of a more
complicated mechanical system—and so, in
order to pursue the astronomical problem fur-
ther, we pass on to another abstract theory.
In general a whole series of more and more
complicated abstract theories will be applied to
the same astronomical problem. But the
further we go in this direction the more precise
becomes the physical significance of each term
and the further we are from that multiple
interpretation of terms which we noted in ele-
mentary geometry.

The same sort of remarks can be made about
any other ‘mechanical problem—~for example,
the problem to find the position of equilibrium
of a door hanging freely in a wind of given
velocity on hinges whose axes make a given
angle with the vertical. It is necossary to sup-
plement the general assamptions of mechanies
by additional ones which specify the particu-
lar problem. And when we have done so, the
application to nature is very definite.

This state of affairs i1s in part due to the
fact that the postulates for mechanies do not
form a eategorical set, and can not form a
categorical set until the substance aund the
forces ave specified in a particular way. In
the narrow sense of the words, mechanies is
not a mathematical seience, but is the group
of theorems common to a collection of sciences.
Fach particular problem involves certain
axioms in additien to tkose of mechanies in
general. ’

It should perhaps be emphasized once more
that nothing of this sort is true of elementary
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geometry. Its axioms form a categorical set.
The relations among the points of space are
completely determinate, and are unaffected by
any of the additional assumptions required for
a problem of mechanies. A typical problem
of geometry is to determine the truth or falsity
of a given theorem. Problems of this sort
arise in mechanics, but a typical problem of
mechanies requires the construetion of a new
theory. This is why mechanics is so interest-
ing and so difficult.

The abstract treatments of a great many
branches of physies fall within the provinece of
mechanics as it is here understood, but there
are a number of others, such as the theory of
heat and of electromagnetic phenomena, which
are not thus included and which I can not
touch on now. But in their classical forms
they have all had an underlying “spaee in
which”—-deseribed by the FEuclidean geometry
—and an underlying time continuum. Situ-
ated in this space and time there are particles
of substance (matter, electricity) all moving
about under the influence of forees. The more
abstract concepts, such as energy and entropy,
have been defined in terms of these more easily
comprehended wundefined terms. But it is
inevitable that the tendency to regard these
new concepts as more and more fundamental
should lead to the replacement of the old un-
defined terms by new ones which $eem more
adequate even if they are more perplexing.

An early illustration of the tendency' to
formulate problems in terms far removed from
the obvious ones is to be found in the general
equations of dynamics. Here we find as the
coordinates of a dynamical system any set of
parameters q!, ¢2, . . . ¢" adequate to define it.
In a very general class of cases these parame-
ters arve regarded as coordinates of a point in
a Riemann space whose linear element is deter-
mined by the expression for kinetic energy.
The geodesics of this space give the paths of
the representative point of a mechanical sys-
tem in the absence of impressed forces and the
Lagrange equations express the divergences
from these paths brought about by the im-
pressed forces.

In this general mechanics the Riemann space
figures as a mathematical device, in which it is
highly suggestive to regard the geodesics as
analogues of the straight lines in Euelidean
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space. For one of the most fruitful ways of
looking at a straight line physically is to regard
it as the path of a particle which has been
given an initial velocity and is far enough away
from other objects to be but little influenced by
them. The motion of a particle in a general
case is the result of a balaneing of the tendency
to follow a straight line with uniform veloeity
against the forces causing divergences from this
norm. With the use of generalized coordinates
this situation is reproduced in a generalized
form in a Riemann space.

It is an important step beyond thlb fo use
the Riemann geometry from the very heginning
as Kinstein does in his theory of gravitation.
To describe the motion of a particle which is
left to itself, this theory does not presuppose
an underlying space and time whose properties
are completely determined in advance. In-
stead, it assumes that any event in the history
of the particle can be identified in terms of
four coordinates, x!, 22, x3, 2%, and the totality
of these sets of coordinates is assumed to con-
stitute a Riemann space in which there is a
linear element,

(2) ds® =Y g, da* dai

L)

The relations of these geodesics among them-
selves are different in the neighborhood of ma-
terial bodies from what they are in regions
where there are no material bodies. In regions
of the latter type these relations are approxi-
mately the same as those among the geodesies
of the space-time manifold of the special rela-
tivity.

The relations among the geodesics are deter-
mined by the functions 9 Therefore, if we
wish to deseribe two different distributions of
matter we require two different Riemann
spaces. We can not, as in the old theories,
simply put a new filler in the old containex
space. The allowable choices of the functiong
g, are restricted by requiring them to satisfy
a set of partial differential equations which is
chosen, in the main, on the basis of its sim-
plicity. In one special case, the one-body prob-
lem, it is possible to solve these differential
equations and obtain a set of ¢’s and a Rie-
mann space which correspond to a single mass
of matter.

Let the numerical constant be chosen so that
this mass represents the sun. The planets are
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particles in comparison with the sun. There-
fore, the orbits should be determined by the
geodesics of this Riemann space. This deter-
mines for each planet a one-parameter con-
tinuous family of values of the quantities
b, 2%, 28, &%, which can he compared with
values obtained by observation.

Contrast this with the treatment of the same
problem by the Newtonian method. Here we
have a central attracting mass in a Euclidean
space and a system of ellipses as the particle
paths. If we go to the space-time manifold
we gel a system of spirals which have the
ellipses as projections. Thus, in this case as
in the other, we have a four-dimensional mani-
fold and in it a system of curves. Although
the mathematical theories from which the two
systems of curves were derived' are radieally
different, yet with proper restrictions the one
system of curves ecan be regarded as a good
approximation to the other, and we can pass
from the one to the other by means of a dif-
ferential correction.

‘When it comes to the comparison of these
two systems of curves with nature, we have to
recognize that the astronomers work out what
they assign as the coordinates of the heavenly
bodies by eclaborate and indireet observation
and caleulation. The parameters which they
thus determine have to be compared in a some-
what arbitrary way with those which enter into
the abstract theories. It was found that in
the case of the planet Mercury this fit could
not he made with complete exactness for the
clagsical theory, but that when the differential
correction was applied which corresponds to
the transition to the new theory, the fit became
as good as could be expected.

The differential equations of the geodesics
can be written in the form

a’at dx (Za:B

(3) Foy T =0
% B

ast a3 “ds ds

Among the curves which satisfy these equa-
tions are not only the geodesics whiech we have
been talking about, but also a family of curves
for which ds = 0. These curves differ but
little from those which represent the motion of
light in the older theories. It us therefore
assume that the new curves represent the mo-
tion of light. If we do, the differential change
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from the old to the new curves gives the mag-
nitude of the effect on light of a gravitational
field. This effect was predicted by Einstein
and the prediction was brilliantly fulfilled.
Both of these sueccesses of the new theory
have to do with properties of the differential
equations (3) and ounly indirectly with the
funetions 9 of (2). The functions I‘; which

appear in (3) are expressed in terms of the
¢’s in (2) but do not depend on the physical
meaning of the g¢’s. It is otherwise with the
third important prediction of Finstein, that
having to do with a shift of the spectral lines.
This depends on an explicit physical interpre-
tation of the g's. Its experimental verification
is very complicated and whether the outecome
will be favorable or unfavorable is doubtful.
In the meantime it is interesting to notice that
this prediction is logieally separable from the
other two.

The general situation which ariges here is
worthy of a great deal of study. A set of dif-
ferential equations (3) in which the functions
T are arbitrary, determines a system of curves
having the property that any two points in a
sufficiently small region are joined by one and
only one of the curves. We are thus in the
presence of a broad generalization of the Rie-
mann geometry which it has been proposed,
in a paper by Professor Eisenhart and myself,
to call the geometry of paths. The intuitive
idea suggested by this name is that we are
dealing not with the empty void of analysis
situs, but with a manifold in which we find our
way around by means of the paths. It may
also serve to remind us that we bave a gen-
eralization of an inertial field, for the charac-
teristic of a field of inertia is that through
every point and in every direction, there is a
path which may be taken by a free particle.

A system of paths is also that which takes
the place of the ether which has played so
varied a rdle in the physics of the last hun-
dred years. It is the paths in the space-time
manifold which are the bearers of the energies
and stresses which lead to the properties of
light and electromagnetism.

From the work of Weyl, who has made the
most important contributions to the geometry
of paths, it follows that there is not only an
affine but also a projective geometry of paths.
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The affine geometry consists of those theorems
which deal with the concept of infinitesimal
parallelism defined by means of the functions
I"- The projective geometry deals with those
properties of the paths that are so general as
to be independent of any particular definition
of parallelism. That there is such a projective
geometry follows {rom the fact that more than
one set of funetions [’ can he found to define
the same set of paths.

Incidentally, it is an interesting comment on
the progress of mathematics that the classifiea-
tion of theorems into projective, affine and
metrice is not here based on the group concept.
For the group of a space of paths is in general
the identity.

These remarks are, of course, very gencral

and ean have little meaning to one who has

not given some consideration to the analytic
details. But it is essential that they should be
made in the sort of a survey I am attempting,
because the geometry of paths can be regarded
as a generalization both of the earliest part of
elementary geometry and of some of the most
refined of physical theorics. The study of the
projective, the affine and the metric geometry
of paths ought to result in a eomprchensive
idea of what types of physical theory it is pos-
sible to construet along the lines which have
heen suceessful in the past.

The development of physical theories in the
recent past has been characterized by a pro-
gressively greater and greater use of different
types of non-Euclidean geometry. In all cases,
however, the underlying analysis situs proper-
ties are the same. Whether we ave dealing
with three, four or # dimensions, we are dealing
with a cell, 7. e., a portion of a manifold which
can be mapped continuously on the intevior of
a sphere in a FEuelidean space of the right
number of dimensions.

The obvious question suggests itself, whether
it will not be necessary in the fulure to reeon-
sider this assumption also. The question
whether space should be assumed to be con-
tinwous has indeed already been raised in a
shadowy form by Riemann and others. But
even if space be assumed continuous it does
not follow that every point in it can be enclosed
by a region like the interior of a sphere. Many
examples to the contrary are known to stu-
dents of analysis situs. One such example is
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a singular manifold defined by “polar eco-
ordinates” r, 0, ¢, in which (0, 0, ¢) represent
a single point, the origin, no matter what
0 and ¢ are and in which (r, 0, ¢) represents
the same point as (r, 6 + 2nx, ¢ + 2mx) in
case 0 < » < 1. The locus » = constant is an
anchor ring and encloses the origin. You can
readily convinee yourself that there is no
sphere enclosing the origin and hence that the
origin is a point which has no neighborhood of
the sort that exists in the Fueclidean or Riemann
geometries,

A corresponding line singularity ean easily
be defined in a four dimensional manifold and
may well turn out to be a promising candidate -
for consideration as the world line of an ulti-
mate particle of some sort. It has an extra-
ordinary degree of indestructibility, and the
paths that can be drawn in its neighborhood
fall into discrete classes in a most suggestive
way. It is not at all impossible that this or
some other type of analysis situs singularity
will enable us to maintain the continuity of
space and yet take account of the discontinuous
phenomena that are being ohserved.

Suppose, however, that it should turn out to
be necessary to assume some sort of a discon-
tinuous space. This would have at least one
effect that would be pleasing to some of us. It
would upset a great many of the cosmological
speculations of the present era. In particular
it would do away with that depressing view
which is so often presented to us of the future
state of the universe, a dead, cold world at a
uniform level of energy and entropy. It would
also tend to prevent our following a light ray
too far off toward infinity—or all the way
round a elosed path—whichever the case may
he supposed to be.

In order to have a definite idea of a discon-
tinuous space-time, let us consider a modular
case, i. e., a space-time defined by four co-
ordinates (=, y, 2, t) which are whole numbers
reduced modulo P, and let us suppose that P
is an enormously large prime. The number
system, modulo P, is one in which every rational
operation can be earried out. Let us set a por-
tion of these numbers into correspondence with
the ordinary number system of analysis in the
following manner: Let & be a fixed number
which is small in eomparison with P and yet
large in comparison with the numbers used in
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physies and astronomy; and let every rational
fraction p/q in the modular number system
for which p and ¢ are less than %, correspond
to the number p/q of the ordinary number
system.

This correspondence between the number
systems determines an’ analogous partial cor-
respondence between the modular spaee-time
and the ordinary space-time, by the expedient
of letting the event (=, y, 2, t) of the modular
space-time correspond to the event (z, y, z, t)
of the ordinary spaee-time, provided that the
coordinates are all numbers which correspond.

If we wish to distinguish physically between
the two space-times it is obvious that we must
sueceed in identifying an event in the one
which does not have a corresponding event with
the same coordinates in the other.
bility can be obviated for all experiments that
have hitherto becen made by simply choosing
I and P very large.

Nevertheless, if P is finite, the ovdinary
geometry, mechanics and eleetromagnetism are
only a sort of approximation to the underlying
modular geometry, mechanics and electromag-
netism. They do not state actual theorems but
only approximate results of a validity limited
by the number k. For example, when we say
that an event (=, y, 2, t) is between two events
(a, b, ¢, t) and (&, B, ¥, ¢t) we mean that
®x=a+ Me — a), y = b + AR — D),
2 = ¢ -+ My — ¢), where A is less than 1 and
expressible in the form p/q with g less than %.
If we managed to subdivide the interval be-
tween the two events more than % times we
should presently find that we were no longer
hetween the two original events, but somewhere
outside. Tor in the modular space-time there
is no absolute system of order relations. We
only have a partial system of order relations
based on the correspondence limited by the
number .

Tt is for this reason that there ave no abso-
lute inequalities of the sort that appear in or-
dinary mechanies, and that no statements ean
be made which apply to unlimited amounts of
space or of time or which require more than a
limited subdivision of space and time. Ience

the speculations to which I referred above
about the ultimate fate of the universe, or
about its distant parts, become impossible.
Indeed, it becomes impossible to formulate the
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questions which these speculations purport te
answer.

But if the current geometry and mechanies
can be fitted so exactly to a space-time of so
utterly different a chavacter as a modular one,
there are doubtless many other types of dis-
continuous space-time to which they can be
equally well fitted. The moral with regard te
all speculation which goes beyond the reach of
experiment is obvious. But if it should be
found that one of these disecontinuous space-
times fitted experimental results better than the
continuous one, the situation might be rad-
ically altered.

Let us, however, apply our moral to our-
selves and let these idle speculations go no
further. Instead, let me urge once more the
importance of further studies of the founda-
tions of the classical branches of mechanies.
It is true that the new conceptions of space and
time are so varied as to have in ecommon not
mueh mere than the idea that it is possible te
characterize natural phenomena in an orderly
way by means of sets of numbers. This is
about as much as all experimental physicists
and mathematicians would accept dogmatieally.
It is also true that elementary geometry and
mechanics lay down a very particular system
of rules according to which the sets of numbers
are to be applied to phenomena. But these
rules are such as our everyday expervience has
made second nature to us, for the experiments
confirming them, although crude, are being con-
tinually repeated. Moreover, the rules are so
good that they can bhe used in almost any
theory as the preliminary way of assigning
the coordinates from which the final coor-
dinates can be calculated by variational meth-
ods. New theories are very apt to funection
merely as differential corrections to old oues.

Hence there need be no fear that further
work devoted to perfecting the classical the-
ovies will be wasted. They will eontinue to be
the instruments by which the vast majority of
the facts of science are classified and to be re-
garded as the necessary preliminaries to the
more esoteric theories. Those who have a taste
for logistic work may therefore bhe urged whole-
heartedly to devote their attention to formu-
lating the postulates of the classical theories..
There also seems to me to he a possibility of
simplifying and modernizing the methods used
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in these theories and of extending the results
by bringing in more of the modern methods of
mathematies, but that is not the present subject
of discussion. What I wish to emphasize now
is the need of logistic studies which will make
it possible to say more definitely than is yet
possible in this field what is assumed, what is
proved, and how the group of theorems and
definitions hang together. Incidentally, I
would propose that the number of undefined
terms be made large, rather than as small as
possible, for whenever we introduce a new
undefined term we separate off a group of
theorems in whieh this term appears. Thus
the undefined terms should be so chosen as to
subdivide the science into divisions which are
convenient both for mathematical and for phys-
ical purposes.

OswALD VEBLEN
PrINCETON UNIVERSITY

PASTEUR, THE MAN!

PasteUR has told us that scientific under-
standing comes to the “prepared mind.”” 1In
reading the splendid “Life of Pasteur” written
by his son-in-law, Vallery-Radot, as well as
the more recent tributes by Duclaux and by
Descour, one is impressed by the lack of detail
as to how Pasteur’s own mind became ‘pre-
pared.” The story has lately been told in
greater detail by Marc Tiffeneau.? Pasteur,
as everybody knows, was the son of a tanner
who had been a soldier under Napoleon. Pas-
teur entered the Xeole Normale at Paris when
he was twenty-one years old, and graduated
three years later in 1846. He became a dem-
onstrator (agrégé préparateur) in chemistry,
a position which had just been established in
order to allow young men to continue their
laboratory researches instead of exiling them
to provineial professorships. About the same
period, in the year 1845, Auguste Laurent left
the chair of chemistry at the University of
Bordeaux, which he had occupied since 1838,
because he did not find there sufficient oppor-

1 An address delivered on the centenary of the
birth of Pasteur on December 27, 1922, before a
meeting of the Federation of Societies for Ex-
perimental Biology held at Toronto, Canada.

2 Tiffeneau, M.: Bull. Soc. frangaise de 1a his-
toire de médicine, 1921, 15, 46.
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tunity for research. Arriving in Paris, he ac-
cepted the offer of a new laboratory in the
Xecole Normale, and it was not long before
Laurent recognized the exceptional character
of his young assistant, Pasteur, an ardent
worker and a brilliant thinker. Laurent was
at this time thirty-eight years old. He was the
son of simple French peasants; he was born,
lived and died poor. When twenty-two years
of age he graduated as engineer of mines and
later became the assistant of Dumas, who
taught him the principles of organic analysis.
His doector’s thesis considered the doctrine of
chemical substitutions, which is one of the
pillars of the atomic theory, and the thesis
described specifically the action of chlorine on
organic compounds. He and his inseparable
friend, Gerhardt, were the real founders of
the atomic theory. Laurent now suggested to
Pasteur the subject of his thesis, which also
involved the then great controversy of chem-
ical substitutions. On August 23, 1847, Pas-
teur presented for his doctorate a paper enti-
tled “Research into the saturation capacity of
arsenious aeid. A study of the arsenites of
potash, soda and ammonia.” Pasteur herein
writes regarding Laurent that he had been
“enlightened by the kindly advice of a man
so distinguished both by his talent and by his

. character.”

And on another occasion he says, “Laurent’s.
lectures are as bold as his writings, and his
lessons are making a great sensation among
chemists.” For Laurent, in 1846, gave the
first course on ‘“‘chemical anatomy” under the
Faeulty of Medicine of Paris to crowded elass-
rooms, and here for the first time enunciated
the atomic doctrine before medical students..

Laurent, having been trained as a mining
engineer, had a remarkable knowledge of
crystallography, and in 1845, according to
Tiffenean, had shocked his colleagues by de-
claring that substances which were isomerie
could erystallize in different systems.

‘When Laurent left the laboratory in 1847
Pasteur was already the master of his technie.
Shortly thereafter Pasteur became interested
in the relation between chemical structure and
the power to rotate polarized light, from which
arose his celebrated studies upon the molecular-
dissymmetry of tartaric acid published in 1848.

To Biot, an old man of seventy-four who




