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GEOMETRY AND PHYSICS] 
TWENTYyears ago the abstract point of 

view i n  geometry was becoming a familiar 
one to mathematicians. The essential element 
in the movement of thought a t  that  time 
seemed to be the freeing of geometry from all 
reference to physical reality. Geometry as  
studied by mathematicians must be a set of 
propositions arranged i n  a sequence of logicd 
deduction, proceeding from a set of unproved 
propositions (the axioms, o r  postulates) which 
are stated i n  terms of undefined elements. If 
the undefined elements are  points and lines, 
for  instance, the mathematician does not in-
quire what is a point o r  line. All he cares to 
know about them is  stated explicitly in  the 
axioms. 

This point of view made i t  possible fo r  the 
first time i n  history to see geometry as  a clear- 
cut x~hole. It v a s  definitely separated from 
philosophy on the one side and from other 
brailches of physics and mathematics on the 
other. The result mas a great gain f o r  clear- 
ness of thought in  all these fields, a gain which 
has not been accompanied by any loss of mutn- 
a1 contact o r  support. 

During the following years mathematicians 
have continued to develop the postulational or 
logistic method, so that by now it has demon- 
strated its value as a practical scheme of ar-
rangement and cxposition i n  the most diverse 
branches of mathematics. While doing this it 
has, of course, lost in  freshness what it has 
gained in respectability. But  dnring the same 
period a series of brilliant discoveries i n  phys- 
ics has been making the abstract point of view 
ri vital issue in that science also. 

~f we the branches of 
physius we shall find that the main elements 
of the abstract point of view have been im- 

1 Address as retiring vice-president and ohair- 

man of Section A-Xathematics, American Asso- 
ciation for  the Advancement Of Boston, 
December, 1922. 



 licit in then1 for  a long time. I n  fact, if me 
stafc ~vi th sl~fficient clearness in physical terms 
what we mean by undefined elements, unproved 
pi@opoeitions, and so on, 13-e are a p t  to find 
that a physicist classifies these ideas as  tru-
isms of little importance. T am inclined to 
think that he is justified in  this attitilde, so 
f a r  as practical results arc concerned, during 
the earlier and ciuder stages of physical 
theory. Hut experience is showing that when 
the results of a more refined experimental 
trchniqi~e force a reconsideration of funda-
niental as.uml&ions. the technique oP the study 
of these assumptions must undergo a coyre-
sponding refinement. Let us therefore take the 
risk ol: banality and glance a t  some of the 
branches of physics from the point of riew 
of an axiomatist. 

Lest any one should expect any clo-.cly 
~easoned  body of doctrine to result from sucb 
a survey--and thereby be sadly disappointed- 
let me remintl any non-mathematicians who 
may be present that when a mathematician lays 
clown the elaborate tools by which he achieves 
precision in his orrn domain, he is unprepared 
and awkward in handling the ordinary tools 
of language. This is why math~maticians al- 
ways disappoint the expectation that they will 
be prrcise ancl reasonable and clear-cut in  their 
statements about everyday affairs, and why 
they are, i n  fact, more fallible than ordinary 
mortals. Therefore, please be satisfied i n  this 
case with some rather disconnected remarks. 

W e  shall begin with elementary geometry, 
the oldest branch of physics. Having the 
mathematical, o r  abstract, science of geometry 
before us in  its present highly developed folm, 
1.e vish to apply it  - to the nlorlcl of esperi--

ment. I t  consists of a seclueiice of statementi 
arranged in a certain logical order but void 
of all physical meaning. Tn order to apply 
them to nature we identify the undefined terms 
(points, lines, etc.) as  names of recognizable 
objects. Thc anprored propositions (axioms) 
are then given a meaning, and we can ask 
whether they are true statements. I f  they are 
tme, then mc expect that the theorems which 
are their logical consequences are also trnc and 
that the abstract geometry will take its place 
as a useful brailch of physics. 

This, I think, is a fair  statement of the ac- 
cepted point of view. But it is full of serious 

difflcnlties. The most obvious one is that i t  is 
impossible to identify anything i n  nature as  
a point or a line o r  a plane except by means 
of more or less gross app~osimations. The 
statement tliat a point has neither length, 
breadth nor thiclcness is a ~lseful clescript,iori 
in many of the applications of abstract geome- 
try, but it  is never strictly true of a physical 
point. Thc identification of any physical ob- 
ject as a point (or  a hexagon or a sphere) 
takes place only rvith a certain margin of 
error. But if this error is imperceptible in  
i-erifying the postulates t:iemselves, there may 
well be an accumulation of errors when the 
post~xlates have been used many times in tho 
proof of a complicated theorem. Thus the 
postulates ma,y appear true .rrit,l~in the limits 
of error of a direct test, and yet some of the 
theorems may be perceptibly false. This 
makes it  necessary to verify not merely the 
postulate:, but. also as many theorems as possi- 
ble. 

Here let me digress long enough to point 
out the bearing of this 011 the problems of 
teaching. The branch of physics which is 
called Elementary Geometry was long ago de- 
livered into the hands of matl~ematicians fo r  
tllc purposes of instruction. Bilf while mathe- 
~na t ic ia~ lsare often qnite coinpetent in  their 
!rnorvledge of the abstract structtxe of the 
subject, they are rarely so in  t'heir grasp of 
its physical meaning. In recent years this de- 
fect; has bccomc g la~ ing ly  apparent and the 
teachers of elementary geometry are begin-
ning to cultivate the experimental technique 
of the sul~ject. What I wish to say is that 
they shoi~ld do this rrith a view not merely to 
making the concepts of geometry clear to their 
rtudents, bat also with a vierv to removing 
the legitimate doubts of its trntli which stn-
dents liam a right to entertain. 

Tho kno~vleclge that the veri-e ~ p e ~ i m e n t a l  
fication of any theorem, however f a r  removed 
from the axioms, is  a real argument in  favor 
of the Vialidity of the whole science should 
strengthen the hands of those who want to 
make the teaehing of geometry as  concrete 
and physical as possible. Gauss and other 
experimenters who have taken pains to verify 
that the sum of the angles of a triangle is 180 
<legi.ees were not masting their time; and 
neither is a teaehey doing so who finds new 



tests for  this and other theorems of geometry. 
S t  the same time it  will not be forgotten 

that the physical reality of geometry cannot 
be put i n  evidence with full clarity unless there 
is a n  abstract t l l eo~y  also. The faults i n  the 
traditional teaching of geometryt about which 
we hear so much to-day, are in  a large measure 
due to the opinion that geometry is a system 
of a priovi truth of such a n a t ~ ~ r e  that our be- 
lief in it  cannot be inflnenced by experiment. 
A science resting on such a supernatural basis 
was fittingly taught hy the method of dogmatic 
indoctrination. 

The existence of a margin of error i n  the 
process of identifying concretely the abstract 
terms of geometry means that we never verify 
a very large number of cases of a veyy large 
number of theorems in a single group of es-
perirnents. In one experiment, and with one 
interpretation of the terms, we verify the 
theorem of Pythagoras, but it  is i n  another 
experiment, and ~r-ith another interpretation 
of the terms, that we verify the theorem of 
Desargues. Thus we can knotv the physical 
truth of geometry only, as i t  mere, in  patches. " 

The unity of the science is in  its abstract for- 
mulation. 

This situation is not a n  unusual one in  phys- 
ical science, fo r  theories are by no means un- 
known in which the postulates and many of 
the theorems are quite beyond the reach of 
experiment. Such theories have to be tested 
by verifying some of their consequences. I 
suppose that it is a very exceptional theory 
which can be fully tested by a single series 
of experiments. 

There is, however, a n  experimental difficulty 
which is especially characteristic of elementary 
geometry. This is  the bewildering multiplicity 
of concrete interpretations f o r  the same ab-
stract term. A point, f o r  the purposes of in- 
stmction, is usually a spot 'on a blackboard. 
I f  you are trying to steer a course a t  sea you 
may fix your attention on two points which 
are a lighthouse and a red spar  respectively. 
I n  this case you are  making use of the propo- 
sition that a straight line is uniquely deter-
mined by two of its points. The same propo- 
sition oan be verified by driving the nails A, 
B, and C into a wooden board and observing 
that if n stretched string which touches A 
and B also touches C, then a stretched string 

which touches B and C can be made to ~oucl i  
8. The same experiment can be repeated by 
.sighting from one nail to the others o r  by 
the use of a straight edge or by firing a bi~llct 
from a gun. 

I could continue enumerating these illustra- 
tions indefinitely, bat the point I am making 
is sufficiently evident. Tllere is no unique way 
of defining a point oor a line fo r  the purpose 
of experiment. Indeed, the great usefulness 
of elementary geometry is very largely due to 
the fact that there is such a n  extraordinary 
multiplicity of things which can profitably be 
regarded as points and lines. 

I n  this multiplicity of interpretation of its 
fundamental terms, elementary geometry is i n  
sharp contrast with the more recent and rec-
ondite branches of physics. Thns, fo r  ex-
ample, while the term electron may have more 
than one physical meaning, i t  is by no means 
such a protean object as a point o r  a triangle. 
The old ma,y of accounting for  this difference 
was to say that the electron is a substantial 
object, whereas the point is only a n  abstrac-
tion. This way of dismissing the question will 
not satisfy us to-day, fo r  we believe that the 
electron and the point are both abstractions. 
Moreover, the diffel.ence which we are seeking 
to explain is one of degree rather than of 
kind. 

What we are calling elementary geometry 
is, of course, not a single logical unit. I t  com- 
prises first of all a group of theorems of 
analysis situs. These culminate in the theorem 
that the points are i n  one-to-one correspond-
ence with the totality of ordered sets of three 
numbers, (x, y, z) ; i n  other words, that a n  
analytic geometry is possible. I n  this par t  of 
geometry, the multiplicity of possible physical 
interpretations of the terms is a t  its highest 
pitch. Following this we have projecti:~e geom- 
etry, the general theory of straightness; affine 
geometry, the t,heory of parallels; and, finally, 
the metric geometry. Each one of these groups 
ef theorems is logically distinguished from its 
predecessor by the appearance of new rela-
tions which are brought in  either by means of 
new axioms and undefined terms or  by means 
of definitions which limit attention to a re-
stricted class among the totality of possible 
geometrical objects. At  each stage the free- 
dom of physical interpretation is restricted 
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nntil, at the final stage, it  is necessary to be 
ahle to specify the physical significance of a 
measuring stick and of a ~.ectangular cartesian 
coordinate system. 

Nest after geometry, according to the 
classical way of looking at things, we can take 
up either Irinematics or statics or the geometry 
of masses. Let us choose the first of these 
three alternatives. 

For kinematics we must have a theory of 
time. This is very simple; the undefined terms 
are "instant" a.nd "before" or "after," and we 
use as postulates one of the sets of postulates 
for the linear continuum. The main theorem 
is that there is a one-to-one continuous corre-
spondence between the instank of time and 
the numbers of the real number system. This 
makes possible the subdivision of time into 
equal intervals, and the measurement of time. 
While the abstract theory is very simple a t  
this stage, the physical applications involve 
all t,he technique of clocks and other lime de- 
vices. 

For kinematics sve must also have the con-
cept of substance, something which can move 
and si+ich can have a duration in time. The 
postulates for substance will state its existence, 
as v-e say, in space and in time. They may be 
phrased somewhat as follows : 

1. Given any substance and any instant of 
time, there exists a unique set of points called 
the position of the substance at the given in- 
stant of time. 

A snbsta,nce whose position at any time is 
a single point is called a particle. 

2. The position of any particle a t  any time 
is a single point. This position is a contintl-
011s function of '  the time. 

3. For every point P of the position of a 
sttbstance S at any time there is a particle 
whose position is P. The position of S at  any 
other time t' is the set of points which are the 
positions of these particles at t,he time t ' .  
These particles are called the particles of the 
substance S. 

4. No two particles of the same substance 
can have the same position a t  the same time. 

5. Let (x,, yo, 2,) be the coordinates in a 
cartesian coordinate system of the position of 
any particle of a substance S at a time to and 
let (x, y, 8) be the coordinates of the same 

particle at a time t, then there exist three 
analytic functions f,, f,, f, such that 

x = fl  Yo, B ~ >  

Y = fz (xO,Yo, ZO) 
= r3 (ao, ?lo,z0) 

for all the particles of S. 
The first four of these postulates correspond 

to our most general intuitions abont substance, 
and the fifth is intended as a basis for analytic 
operations. While I have stndied out some of 
their consequences, I have not made anything 
like a full investigation and should not be sur- 
prised to find that they contain both omissions 
and recinndaiicies. I g i ~ ethem here largely to 
emphasize the fact that very little work has 
yet been done in this direction. 

Before we have the actual structure of the 
classical kinematics we must limit our atten-
tion not merely to the conseqv;ences of these 
axioms of time and substance, but also to a 
group of theorems determined by certain 
definitions. The most inlportant of these is the 
definition of uniform motion of translation. A 
substance is in uniform motion of translation 
if with respect to a definite cartesian co-
ordinate system and a definite time variable, 
we have for every particle of the substance 

This simple way of stating the definition can 
be replaced by the apparently more compli-
cated statement : 

If  a substance S is a t  rest there is a cartesian 
coordinate system and a sy5tc.m of time meas- 
urement such that the coordinates of each par- 
ticle of S satisfy the conditions 

m = constalit 
g = constant 
a = collotant 
t = arbitrary. 

If a substance S' is in uniform molion of 
translation there is another coordinate system 
snch that each particle ol: S' is denoted by 

-
-x = constant 

-y = constant 
z = constant-
t = arbitrary. 

and the relation between the two coordinate 
systems is given by equations 
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in  which the coefficients are constants such that 

Before the physical applications can be made 
i n  detail, corresponding definitions must be 
made of uniform motion of rotation and of 
other special types of motion. Rut we need 
not go into this question here. 

The physical interpretation of the abstract 
theory is much more definite and restricted a t  
the present stage than it was at  that of geom- 
etry. The table before us, the floor on which 
we stand, we ourselves, the whole earth, are all 
substances moving together through space with 
a high velocity. Any description of the xlhole 
o r  any par t  of this aggregation of substances 
is a concrete application of kinematics and 
gives rise to a n  experimental test of it. 

We now see that the multiplicity of concrete 
interpretations of geometry wau due in par t  
(though not wholly) to the fact that geometry 
is  used to describe an instantaneous cross sec-
tion of the substantial universe. At  this stage 
d s o  we have to meet the difficnlties due to the 
fact that the motion of any substance can only 
be detected physically as  the motion of the one 
substance relative to the other substances. 

The abstract theory which we have described 
provides f o r  absolute motion, i.e., a substance 
is in  motion if the set of point;; which we call 
its position is not the same a t  all instants of 
time. But  i t  is also true that the theorems of 
the universe of substance will be unchanged in 
meaning if we replace the abstract time and 
space which underlie the theory of substance 
by a new time and space related to the old 
ones by formulas of the same form as (1). I t  
is  fo r  this reason that a n  absolutely definite 
statement of what we mean physically by par-  
ticular substances does not carry with it  a 
unlqne determination of what we mean by par- 
ticular instants of lime or points of space. 

The fact, somewhat obscurely understood, 
that it  is possible to make these transforma-
tions of the space and time underlying Bine- 
matics without altering the kinematics itself has 
often been taken as a n  argument against the 

classical kheory of space and time. I do not 
think it  can be accepted as  a valid objection, 
however. T17hat it  really does prove is that 
when the classical theories of space and time 
are combined in the theory of substance, the 
result is more complicated than a simple-
mindecl person would expect. 

This complication of the abstract theory 
sho\rs itself on the physical side when me ask 
how x7e shall Imo1~7 what are the simultai~eous 
positions of two distant snbstances. The clis- 
cussions of the t,heory of relativity have shown 
that the most natural physical method of an-
swering this question corresponds with SUE-
cient accuracy to the ciassical kinematics when 
attention is limited to terrestrial objects of not 
too fine-grained a character. On an astro-
nomical scale, however, the deternination of 
simultaneity fits in much better with the t r p e  
of kinematics known as  the special theory of 
relativity. 

This theory we can regard as proceeding 
from exactly the same axioms of space, time 
and substance as  those we haye proposed for  
the claesical kinematics. But  it  makes use of 
a different definition of uniform motion: A 
substance S' is in  uiliform motion of transla- 
tion if, and only if, there is a coordinate sys- 
tem such that each particle of S' is denoted by 
5 -- constant, = constant, a = constant, t = 
arbit,rarp, and the relation between this co-
ordinate system and the (x,g, z ,  t )  system is  
given by any set of linear equations TI-ith con- 
stant coefficient such that 

where c is a constant. 
The relation of the relativity kinematics to 

its ~ ~ n d e r l y i n g  space ancl time is quite acalogous 
to that of the classical kinematics to its under- 
lying space and time. -Inalogons transforma- 
t ~ o n sof the underlying space ancl time (the 
lo rent^: group) are possible without changing 
the kinemat~cs. But in  the relativity theory 
these transformations are pu t  in  evidence i n  
conneciion with the simplest problems, wherr>as 
the classical k~nematics can he treatecl in such 
a way as to mask them. 

This is not the place to go further with a n  
exposition either of the classical or of the rela- 
tivity kinematics. I wish only to remark that 
either of them can be based on a n  underlying 
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theory of space and time as  well as upon the 
concept of a four  climensional space-time. 
There is no essenbial difference of logical sim- 
plicity between the two types of lrinematics. 
The important difference is that the relativity 
definition of simultaneity is more nearly in 
accordance mith t,hc physical means iil act,ual 
use by astronomers fo r  determining when t ~ o  
events are simultaneous than is the classical 
definition. Therefore in  those cases here the 
scale of operations is large cilongh, or the 
scheme of measurement fine enougll, the rela- 
tivity kinematics mill be used. I n  other cases 
the classical kinematics will be ~etainci l  xs a 
sufiiciently acc~lratc? approximation to the 
ot l ie~.  

I n  comparing the theorems of liine~natics 
mith experience there is much less ove1,lapping 
than in geometry. Foi. a physical object has 
to be identified as  a substance in the kinematic 
sense not merely once but fo r  all values of thc 
time. Nevertheless, a great m~xltiplicity of 
interpretation still persists, which ~ i i l l  be 
further reduced when \ye come. into tlic domain 
of mechanics. 

Before me arrive i-ct a full-fleclgecl mechanics 
we mast introduce the concept of mass. This 
may be done in two ways accordir~g as we are 
developing a mechanics of discretc particles or 
a mechanics of continuous substances. I n  the 
first case a-e have tnerely to postulste a num-
ber associated with each particle and in the 
second case to lay down a somewhat more ex- 
tensive set of postulates thc co11.- from ~ ~ l ~ i c h  
cept of density may be derivecl. These postu- 
lates will sen7e for  example as a basis fo r  the 
differential equations of continnitj-. 

Finally the postulates must be introduced 
which determine how me shall use the terms 
force and cause. I. shall not now try to set 
forth my ideas as to 1101~ these postulates 
should be formulated, f o r  I have already gone 
more into detail than is desirabie in a talk of 
this kind in expounding t,he idea of substance. 
It is enough to remark that there is a n  open 
field here for  a valuable postnlatioiral inves-
tigation. 

Suppose now that we haye before us the 
complete logical structure 17:hicli is built on 
these postulates and consider a particnlar me-

15-e add to tllc general postulates of mechanics 
the postulate that the substarlce to be consid- 
ered coilsista of t ~ v o  particles of given masses 
moving msder a part,icular law of foiace. The 
differential eqnations now become perfectly 
definite an11 ~~nmer ica l  reslilts can be worked 
out. 

I11 o?der to ha-:e n physical application IT^ 

nldy let the two part,icles be the two com-
ponents of n donble star. I n  this casc the 
astronomical data llarc n lo^ pcreentage pre- 
cision a i d  tlic tl:cory gets along ~vithin a wide 
margin of p robabl~  error, bqaia, rre may let 
the trvo particlies l)e the snn ancl Jupiter.  I n  
this casr the prceision of thc astronoinical data 
is I..lgh. The theory serves as  a first approxi- 
mation. But it is soon seen that tl:e w111 and 
J l~p i te r  must he regarclecl as parts of a more 
complicated mechaujcal ~yrtcm-and so, in 
order to pursue the astror~oni~cal problem fur-  
ther, \IT pass on to anoti1c.r abstract theory. 
I11 gcliernl a whole aeries of rnore an(X more 
complicated abstract theories will kc applied to 
the same astrorlomical ~?rohlem, But tltc 
further we go in this direction .the more precise 
becornea the physical significance of each term 
aucl the further me are f r o n ~  that multiple 
interpretation of terms uihich we noted in ele- 
mcntary geometry. 

The same sort of remarks can be made about 
ally othey 6mecl:anical problem--for example, 
the problem to find the position of eyuilibrii~m 
of a cloor hanging f ~ e e l y  in  a mind. of given 
velocity on hinges \\rho:;c axes make a given 
angle mith the ~er t i ca l .  It is necessary to sup-
plement the general asii-umptions of :neehaniw 
br  additional ones ivlrich specify the particu- 
lar p~obleni.  And when we 11ave clone so, the 
application to nature is very definite. 

This state of aR'air~ is iil 1jai"t due to the 
fact that the postulates fo r  mechanics do not 
form a cntegolical set, and call not folm a 
categorical sct until the suhsta:~ce and the 
forces are speciflei1 in a par i i cu la~way. I n  
the narrow sense of tile ~.orcls, mechanics is  
not a mathematical science, but is tile group 
of t!ici.l:,~:nx ( O ~ ~ ~ J I I O I Ito a collection of sciences. 
I<';RcII l>:li'ticlll:>r problem irlvolves certain 
axiom:< in adclitian to tlaose of mechanics in  
general. 

chanical problem, as, for  example, the ~~l 'ob lem It should perhaps be emphasizecl once more 
of two bodies. F o r  the sake of 'chis prol~lcm that n6thing of this sort is true of eleme~ltarg 



geometry. I t s  axioms form a categorical set. 
The relations among the points of sprtce are 
completely determinate, and are unaffected by 
any of the additional assumptions required for  
a problem of mechanics. A typical problem 
of geometry is to determine the t r ~ ~ t h  or falsity 
of a given theorem. Problems of this sort 
arise in  mechanics, but a typical problem of 
mechanics reqliires the construction of a new 
theory. This i~ why mechanici: is so ir~terert-
ing and so clifiioult. 

The abstract treatments of a great manly. 
branches of physics fall  within the prorince of 
mechanics as it  is here understood, but there 
are a number of others, such as the theory of 
heat and of electromagnetic phenomena, which 
are not thas included arid which I can not 
touch on no^-. But in  their classical forms 
they have all had an underlying L'spaoe in 
which"--descrilaed by the Euclidean geometry 
-and an underlying time continuum, Situ-
ated it1 this space and time there are particles 
of substance (matter, electricity) all moving 
about uncler the influence of forces. The more 
abstract concepts, silch as energy and entropy, 
have been defined in terms of these more' easily 
comprehended nnclefined terms. But it  is 
inevitable that the tendencg to regard these 
new concepts as more a.nd more fundamental 
should lead to the replacement of the old un-
defined ternis by new ones which Seem more 
adequate e \ ~ n  if they are more perplexing. 

An early illustration of the tendency' to 
fornlulate problems in terms fail removed from 
tlie obvious ories is to be found in the general 
equations of dynamics. Here ~ - efind as the 
coordinates of a dynamieal system any set of 
paiWametersq l ,  4" . . . qrl"adequate to define it. 
I n  a very general class of cases these parame- 
ters are regarclecl as coordinates of a point in 
a Riemann space ~vhose linear element is deter- 
mined by the expression for  lcinetic energy. 
The geodesics of this space give the paths of 
the representative point of a mechanical sys-
tem in the absence of impressed forces and the 
Lagrange equations express the divergences 
from these paths brought abont by the im-
pressed forces. 

I n  this general mechanics the Riemann space 
figures as a mathematical device, in  which it  is 
highly suggestive to regard the geodesics a s  
analogues of the straight lines in  Eudidean 

space. F o r  one of the most fruitful ways of 
loolring a t  a straight line physically is to regard 
it as the path of it particle which has been 
given an initial velocity and is f a r  enough away 
from other objects to be but little influe~iced by 
them. The motion of a particle in  a general 
case is the result of a balancing of the tendency 
to follow a straight line with uniform velocity 
against the forces causing divergences from this 
norm. With the use of generalized coordinates 
this situation is reproduced in a generalized 
form in a Riemann space. 

I t  is an important step beyond this t;o use 
the IZiemann geometry from the very beginning 
as  Einstein does in  his theo1.y of pravii-ation. 
To describe the motion of a particle ~vllich is 
left to itself,. this theory does not presuppose 
an uilderlying space and time whose properties 
are completely determined in advance. In-
stead, it  assumes that any event in  the history 
of tlie particle can he identifieti in lerrns of 
four  coordinates, ;cl, x" ,.c3, z4, ancl thc totality 
of these sets of coordinates is assunlecl to con-
stitute a Riemann space in which there is a 
linear element, 

.(2) ds" 2 gil dxi dxj 
i, j 

The relations of these geodesics among them- 
selves are different in the neighborhood of ma-
terial bodies from what. they are in  regions 
where there are  no material bodies. I n  regions 
of the latter type these relations are approxi- 
mately the same as those among the geodesics 
of the space-time manifold of the special rela- 
tivity. 

The relations among the geodesics are deter- 
mined by the functions gi,. Therefore, if we 
wish to describe two different distributions of 
matter we require t ~ v o  different Rieniann 
spaces. We can not, as in  the old theories, 
simply pu t  a new flller in the old container: 
space. The allo~vahle choices of the functions 
g . .  are restricted by recluiring them to satisfy 
' 11 

a set of partial differential equations which i u  
chosen, in the main, on the basis of its sim- 
plicity. I n  one special case, the one-body prob-  
lem, it is possible to solve these differential 
equations and obtain a set of g's and a Rie-
mann space vhich corresponcl to a single mass 
of m:ttl.er. 

Let the numerical constant be chosen so that 
this mass represents the sun. The planets are  

http:m:ttl.er
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particles in  comparison with the sun. There-
fore, the orbits slioulcl be determined by the 
geotlesics of this Riemann space. This deter- 
minef: fo r  each planet a one-parameter con-
tinuous family of values of the quantities 
.zl! x2, x3, x4, which can be compared with 
r a l ~ ~ e sohtaii~ecl by obsen~ation. 

Contrast tllis with the treat,ment of the same 
problem by the Ne~vtonian method, E e r e  we 
have a central attracting mass in  a Euclidean 
space and a system of ellipses as the particle 
paths. I f  me go to the space-time manifold 
ii7e get a system of spirals which have the 
ellipses as projections. Thus, in  this case as 
in  the other, me have a four-dimensional mani- 
fold and ia it  a system of curves. Although 
the mathematical theories from mhich the tivo 
systems of curves were derived aye radically 
different, yet with proper restrictioiis the one 
system of curves can be regarded as a good 
approxilnation to the other, and we can pass 
from the one to the other by means of a dif-
ferential correction. 

When it  comes to the cornpal-ison of the;e 
tivo systems of cunies with nature, we have to 
recognize that the astronomers work out what 
they assign as  the coordinates of the heavenly 
bodies by elaborate and iniii~ecb ol~scrvation 
and calculation. The palparueters ~vhicll they 
thus determine have to be compared i n  a some- 
what arbitrary \\-ay v i t h  those which enter into 
the abstract theories. I t  was fo~ulcl that in  
the case of the planet Mercury this fit could 
not be made with complete exactness fo r  the 
classical theory, but that when the differential 
correction xvas applied which corresponds to 
the trarisition to the new theory, the fit became 
as  good as could be expected. 

The differential equations of the geodesics 
can be written ia the form 

Among the curves which satisfy these equa-
tions are not only the geodesics which we have 
been tallring about, but also a family of curws 
for  mhich ds = 0. These curres differ but 
little from those ~vllich repyesent the motion of 
light in the older theories. Let us therefore 
assume that the new curres represent the mo-
tion of light. I f  ir-e do, the differential change 

from the old to the new curves gives the mag- 
nitude of the effect on light of a grax-itationd 
field. This nffect was predicted by Einstein 
and the prediction was briliiantly fulfilled. 

Both of these successcs of tbe new the or^ 
have to clo with properties of the differential 
equations ( 3 )  and only indirectly with the 
functions g?,of (2).  The fnnctions which

%B 
appear  in  (3)  are expressed in term; of the 
g's in ( 2 )  but do not depencl on the physical 
meaning of the g's. I t  is dther~risc mit,h the 
third important precliction of Einstein, that 
having to do with a shift of the spectral lines. 
This depends on all explicit physical interpre- 
tation of the 5's. I t s  experimental verification 
is very complicated and whether the outcome 
will be favorable or ilnfworable is doubtful. 
Tn t,he meantime it  is interesting to notice that 
this prediction is logically separable from the 
other two. 

The general situation \~-hicll arises here is 
~vorthy of a great deal of study. A set of dif- 
ferential equatio~is (3)  in ivhich the functions 
r are arbitrary, deteimines a system of curves 
having the property that any two poir~ts in a 
sufiici~xitly small region are ,joined by one and 
only one of the curves. W e  are thus in the 
prescnce of a b~oact generalization of the R,ie- 
mann geometry which it  has been proposed, 
in  a paper  by Professor Eisenhart and myself, 
to call the geometry of paths. The intuitive 
idea suggestecl by t,his name is that we are  
dealing not v i th  tile empty void of analysis 
situs, but with a manifold in mhich we fincl our 
v a y  around by means of the paths. It may 
also ser-re to renlincl us  that we have n gen-
eralization of a n  inertial field, fo r  the charac- 
teristic of a field of inertia is that through 
every point and in every direction, there is a 
path which may be taken by a free particle. 

A system of paths is also that which takes 
the place of the ether which has playcil so 
varied a r61e in  the physics of the last hun- 
dred years. I t  is the paths in  the space-time 
manifold which are the bearers of the energies 
and stresses which lead to the properties of 
light and electrornagnetibm. 

From the work of i'Teyl, who has made the 
most important contributions to the geometry 
of paths, i t  follows that there is not only an 
affine but also a projective geometry of paths. 



The affine geometry coui,ist> o i  tilose tlieo~e!ms 
which deal -vc-it11 the concept of infinitesimal 
parallelism defint?d by nlearis of the functions 
r. The projective geometry deals 1%-it11those 
properties of the patlis that are so general as  
to be independent of any particular ilcfinitiou 
of parallelism. Tliat tliere is s i l~ l l  ti projective 
geometry foilo.it-s from the fact thar Inore than 
one set of functions I' cnu he found to define 
the same set of path:.:. 

Incidentally, i t  is a n  interesting comment on 
the progress of matliematics tliat the classifica- 
tion of theorems into projective, afirie ancl 
metric is not here basecl on the group concept. 
F o r  the group of a space of paths is in  general 
the identity. 

These remarks are, of co~rrsc, very general 
and can 11ave little nieaning to one rcho Iias 
not given some consideration to the analytic 
details. Bnt  it is essential tl~iii lhey should be 
made i n  the sort of a snrvey I nm attempting, 
llccause the geometry of patiis can he regarded 
a s  a gene~alization both of the earliest par t  of 
elementary geometry ancl of some or" the inost 
refined of pliysical theories. The stucly of the 
projective, the affirie and the nletric geometry 
of paths onght to resi~lt in  a cornpreliensivc 
idea of what types of physical tlleory i t  is pos- 
sible to construct along tiit. linch \~hiel i  hare 
been successful in the past. 

The derelopment of physical tlleorics in the 
yecent past has been cliaracterizeii by a pro-
gressively greater and greater use trf tiiffcrent 
types of non-Euclidean geomelry. I n  all cases, 
however, t,he ~ulderlying analp.?is r:i*L~~s propel'-
tics are  tlie same. \lr;5'hethe~*1p.p are clealing 
.\\-it11 three, four  or $2 dimensions, -\l;*e are clcafing 
with a cell, i. e., a portion of a manifold ~rliicli 
can be mapped continnously on the interior of 
a sphere ill a Euc!idean space of the righl 
number of dimensions. 

The obvious question suggest:: itsel" 1n.1iether 
it  mill not be necessary in the fulure to rccon- 
sider this assumpt,ion also. Tllc question 
whether space shoulcl be assnlneil to be con-
tinuous has iiicleecl already been r a i ~ e d  in ti 

shadowy form by Riemann and others. But 
even if space be assumed continuous it doe:, 
not follow that every point in  it  can bc ertclosecl 
by a region lilio the interior of a sphere. Manx 
examples to the contrary are B n o ~ ~ n  stu-to 
clents of analysis situs. One such example is 

a sirigular manifold defined by "polar co-
o~dinates!',r, 0, p, i n  mllirh (0, 0, y )  represent 
n single point, llle origin, no matter what 
0 and y are and in rvlGch (r, 0, p )  represents 
the same point as  (r, 8 -t 2 m ,  ? -t. 2.11%) in 
case 0 < r < 1. The locus 1. -7. constant is  a n  
anchor ring arid encloses the origin. Yo11 can 
~ ' e a d i l ~ .convince yourself that there is no 
spl~ere enclosinig tlie origin ancl hence that the: 
o18igin is a point which liar: no neighborliooit of 
the sort that exists in  the Eucliclean or  Riemann 
geometries. 

-4 eorrespo~lding line singularity can easily 
be defined in a four dimensional manifolil and 
may well t.um out to be a promising cantlidato 
f o ~consideration as  the worlil line of an ulti-
mate particle of some sort. I t  has a n  extra-
ordinary degree of indestructibility, aild tlie 
paths that can be drawn i n  its noighborhootl 
fall  into cliscrete classes i n  a most suggestivt! 
~vay .  I t  is not a t  all impossible that this or 
some other type of analysis situs singularity 
will enable us to maintain t,he eontiiiuity of 
space and yet take account of t,he iiiscontinuous; 
phenomena that are being observeci. 

Suppose, ho~vever, that it  should tur11 out to 
be necessary to assume some sort of a discon-
tinnous space. !Chis ~voulil llave at  leas^ onct 
eft'ect that would be pleasing to some of us. It 
would upset a great many of thc cosmological 
speculations of the present cyan I n  particular 
it  monld do a1v.r.ay with that depressing view 
which is so often presented to us  of the future 
state of the universe, n. dead, cold ~vorld a t  a 
uniform level of energy and entropy. I t  would 
also tend to prevent our following a light ray 
too f a r  *off t o ~ ~ a r d  a11 the infinity-or way 
round a closed path-whichever the case may 
he supposed to be. 

I n  order to have a clefiniie idea of n cliscon- 
tinuons space-time, lct us considel. a n~odular  
case, i .  e., a space-time definecl hy four  co-
ordinates (a,?I,r,, t )  which are n.hole nnnlbers 
reduced modulo P, ancl let us suppose that P 
is a n  enormously large prime. The number 
system, modulo P, is one i n  ~vhich el-ery rational 
operation can be ca.rriccl out. Let us set a por- 
tion of these nnmbers into corresponclr~nce wit11 
tlie ordinary number system of analysis in  the 
following manlier: Let k be a Bxeci number 
~yhiclx is small in  comparison with P ancl get 
large in comparison with the numbers used i n  
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physics ancl astronomy; ancl let every ~ a t i o n a l  
fraction p/q in  the modular number system 
for  which 13 and g are less than k ,  correspond 
to the number p/q of the ol*dinary n~lmher  
system. 

This correspondence between the number 
systems deternlines an '  analogou> partla1 coy- 
respondelice between the modular space-time 
and the ordinary space-time, by the expedient 
of letting the event (x,y, z, t )  of the modular 
space-time correspond to the event (3,y, z, 5) 
of the ordinary space-time, provided that the 
coordinates arc all numbers which correspond. 

I f  TIT ~x~iqhto distinguish physically between 
the two space-times it is  obvious that  we must 
succeed in identifying a n  event i n  the one 
n bich doe? not have a corresponding event with 
the same coordinates i n  the other. This possi- 
bility can be obviated for  all experiments that 
have hitherto been made by  simply choosing 
li and P very large. 

Nevertheless, 11: P i q  finite, the ordi~iary 
geometry, mechanics and e lec t r~magnct i~m are 
only a sort of approximation to the underlying 
modular geometry, mechanics and electromag- 
netism. They do not state actual theorems but 
only approximate results of a validlty limited 
by the number k. F o r  example, when sav 
that  a n  event (x, g, z, t )  is between two events 
(a, b, c, t )  and (3,  p. y,  t )  we mean that  
~r= a 4- )$(a - a ) ,  y =. b + X(p - b ) ,  
a = c -+ A(y - c ) ,  where A is less than 1and 
expressible i n  the form p / q  with q less than k. 
If we managed to snbrlivide the interval be-
tTveen the t ~ v o  events more than 7; times we 
~l iould presently find that we were no longer 
between the ITTO original events, but  somelvhere 
outside. F o r  i n  tlie modular space-time there 
is no abaoluto system of order relations. TI-e 
only have a partial system of order relations 
based on tlic correspondence I~mitccl by the 
number 1;. 

I t  1s fo r  tllis reason that there are no nbso-
lute lnequalltles of the sort that  appear in  or- 
t l i n a r ~  mrihanicq, and that no statements can 
be made T I ! I ~ C ~  apply to  urillmiteci amount., of 
.pate o r  of time or which reclnire more than a 
limited subcilrision of space and time. Hence 
the spec.nlatlons to which I referred above 
about the ~iltiniate fate of the universe, o r  
about its distant parts, become impossible. 
Indeed, it  become.; impossible t c  formulate the 

questions which these speculations purport  to 
ansver. 

But  if the current geometry and mechauies 
can be fitted so exactly to a space-time of so 
utterly different a character as  a modular one, 
theye are cloubtless many other types of dis-
continuous space-time to which they can be 
cqually x-ell fittecl. The moral with to 
all speculation ~ ~ h i c h  goes beyond the reach of 
experiment is obvious. But  if it should be 
found that one of these discontinuous space- 
times fitted experimental results better than the 
continuous one, the situation might be 17at3-
ically altered. 

Let ns, however, apply our  moral to our-
selves and let these idle speculations go no 
further. Instead, let nic urge once more the 
im~~o'tance of further studies of the founcia- 
tions of the clasical branches of mechanics. 
I t  is  true that the new conceptions of space and 
time are so ~ a r i e d  as  to have i n  common not 
~uucii more than the idea that i t  is possible to 
chaiwterize natural phenomena i n  a n  oyderly 
way ?IF means of sets of numbers. This is 
ahout as  much a s  all experimental physicists 
and mathematicians \~-ould accept dogmatically. 
I t  is also true that elementary geometry and 
mechanics lay down a very particular system 
of rules according to which the sets of numbers 
are to be applied to phenomena. But  these 
rules are such a s  our ereryday experience has 
made second nature to us, for the experiments 
confin~ing them, altliongb crude, are  being con- 
tiiiuaily repeated. ?,Ioreover, the rules are so 
good that they can be used i n  almost any 
theory as  the preliminary \Yay of assigning 
the coordinates from which the final cool5-
dinates can be calculated by raria,tional meth- 
ods. New theories are  yery a p t  to function 
merely as  differential corrections to old oiies. 

Hence there need be no fear  that further 
11-ork devoteit lo pedecting the classical the-
o131esv:iil be -vr-astec!. They will continue to be 
t11c ins t r~~ments  by ~vhich the vast majority of 
the facts of science are classified and to be re- 
garded as  the necessary preliminaries to the 
mo1.e esoteric tlieo~.ies. Those who have a taste 
fo r  logistic work mag therefore be urged whole- 
heartedly to clevote their attention to formrr- ' 

lating the postulates of the rlassical theories. 
There also seems to me to be a possibility of 
simplifying and modernizing the methods used 



in these theories and of extending the results 
by bringing in more of the modern methods of 
mathematics, but that is not the present subject 
of discussion. What I wish to emphasize now 
is the need of logistic studies which will make 
it possible to say more definitely than is yet 
possible in this field what is assumed, what is 
proved, and how the group of theorems and 
definitions hang together. Incidentally, I 
would propose that the number of undefined 
terms be made large, rather than as small as 
possible, for whenever we introduce a new 
undefined term we separate off a group of 
theorems in mhich this term appears. Thus 
the undefined terms should be so chosen as to 
subdivide the science into divisions which are 
convenient both for n1athematics;l and for phys- 
ical purposes. 

OSWALDVEBLEN 
PRIX~ETOXUS:VERS~TY 

PASTEUR, THE MAN1 
PASTEI:~Ihas told us that scientific under- 

standing comes to the "prepared mind." I11 

reading the splendicl "Life of Pastenr" written 
by his son-in-law, Vallery-Radot, as well as 
ihe more recent tributes by Duclaux and by 
Descour, one is impressed by the lack of detail 
as to horn Pasteur's own mind became "pre- 
pared." The story has lately been told in 
greater detail by Marc T i f f enea~ .~  Pasteur, 
as everybody knows, mas the son of a tanner 
who had been a soldier under Napoleon. Pas- 
teur entered the ecole Normale a t  Paris when 
he was twenty-one years old, and graduated 
three years later in 1846. He became a dem- 
onstrator (agr8gk pr8parateur) in chemistry, 
a position which had just been established in 
order to allow young men to continue their 
laboratory researches instead of exiling them 
to provincial professorships. About the same 
period, in the year 1845, Auguste Laurent left 
the ehaii* of chemistry a t  the University of 
Bordeaux, which he had occupied since 1838, 
because he did not find there suftieient oppor- 

1 An address delivered on the centenary of the 
birth of Pasteur on December 27, 1922, before a 
meeting of the Federation of Societies for Ex-
perinlental Biology held at Toronto, Canada. 

2 Tiffeneau, &I.: d e  la ibis-Bull. Soc. frangaise 

toire de v~e'dici?ze, 1921, 15, 46. 


tunitg for research. Arriving in Paris, he ac- 
cepted the offer of a new laboratory in the 
eoole Nosmale, and it was not long before 
Laurent recognized the exceptional character 
of his young assistant, Pasteur, an ardent 
worker and a brilliant thinker. Laurent was 
at this time thirty-eight years old. He rvas the 
son of simple French peasants; he ri-as born, 
lived and died poor. When twenty-two years 
of age he graduated as engineer of mines and 
later became the assistant of Dumas, mho 
taught him the principles of organic analysis. 
His doctor's thesis considered the doctrine of 
chemical substitutions, which is one of the 
pillars of the atomic theory, and the thesis, 
described specifically the action of chlorine on 
organic compounds. He and his inseparable 
friend, Gerhardt, were the real founders of 
the atomic theory. Laurent now saggested to 
Pastenr the subject of his thesis, whlch also. 
involved the then great controversy of chem-
ical substitutions. On August 23, 1847, Pas- 
teur presented for his doctorate a paper enti- 
tled '(Research into the saturation capaclty of 
arsenious acid. A study of the arsenites of 
potash, soda and ammonia." Pasteur herein 
writes iegarding Laurent that he had been 
"enlightened by the kindly advice of a man 
so distinguished b ~ t h  by his talent and by his 
.character." 

And on another occasion he sags, "laurent'a 
lectures are as bold as his writings, and his- 
lessons are making a grertt sensation among 
chemists." For Laurent, in 1846, gave the 
first course on L'cl~emical anatomy" under the  
Faculty of Medicine of Paris to crowcled class- 
rooms, and here for the first time enunciatecl. 
the atomic doctrine before medlcal students. 

Laurent, having been trained as a mining 
engineer, had a remarlcable k~zowledge of 
crystallography, and in 1845, according to, 
Tiffeneau, had shocked his colleagues by de-
claring that substances which were isomeric 
could crystallize in different systems. 

When Laurent left the laboratory in 1847 
Pasteur was already the master of his technic- 
Shortly thereafter Pasteur became inteyested 
in the relation between chemical structure and 
the power to rotate polarized light, from which 
arose his celebrated studies upon the molecular 
dissymmetry of tartaric acid published in 1848. 

To Biot;, an old man of seventy-four who. 


