SCIENCE

FRIDAY, SEPTEMBER 23, 1921

Address of the President of the British Asso-	
ciation for the Advancement of Science:	
SIR T. EDWARD THORPE	257
Aerial Observation of Earthquake Rifts: DR.	
BAILEY WILLIS	266
Scientific Events:	
International Exploration of the Upper Air;	
The World's Supply of Wheat; An English	
View of American Biology; The Retirement	
of Dr. W. H. Jordan	2 68
Scientific Notes and News	271
University and Educational News	273
Discussion and Correspondence:	
Sauropod Dinosaur Remains in the Upper	
Cretaceous of New Mexico: CHARLES W. GIL-	
MORE. Leaf Stripe Disease of Sugar Cane in	
the Philippines: Dr. H. Atherton Lee	
and MARIANO G. MEDALLA. English Pronun-	
ciation for the Metric System: Professor	
THADDEUS L. BOLTON. Gregor Mendel and	
the Support of Scientific Work at Brünn:	
PROFESSOR E. B. BABCOCK	274
Notes on Meteorology and Climatology:	
Determining the True Mean Temperature:	
C. LEROY MEISINGER	276
Special Articles:	
On the Elimination of the X-chromosome	
from the Egg of Drosophila melanogaster by	
X-rays: DR. JAMES W. MAVOR. Epidemic	c
Pneumonia in Reptiles: DR. G. A. MAC-	
Callum	277
The Ohio Academy of Science: Professor Ed-	
WARD L. RICE	281

ADDRESS OF THE PRESIDENT OF THE BRITISH ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE 1

Π

I TURN now to a question of scientific interest which is attracting general attention at the present time. It is directly connected with Lord Kelvin's address fifty years ago.

The molecular theory of matter-a theory which in its crudest form has descended to us from the earliest times and which has been elaborated by various speculative thinkers through the intervening ages, hardly rested upon an experimental basis until within the memory of men still living. When Lord Kelvin spoke in 1871, the best-established development of the molecular hypothesis was exhibited in the kinetic theory of gases as worked out by Joule, Clausius, and Clerk-Maxwell. As he then said, no such comprehensive molecular theory had ever been even imagined before the nineteenth century. But, with the eye of faith, he clearly perceived that, definite and complete in its area as it was, it was "but a well-drawn part of a great chart, in which all physical science will be represented with every property of matter shown in dynamical relation to the whole. The prospect we now have of an early completion of this chart is based on the assumption of atoms. But there can be no permanent satisfaction to the mind in explaining heat, light, elasticity, diffusion, electricity and magnetism, in gases, liquids and solids, and describing precisely the relations of these different states of matter to one another by statistics of great numbers of atoms when properties of the atom itself are simply assumed. When the theory, of which we have the first instalment in Clausius and Maxwell's work, is complete, we are but brought face to face with a superlatively grand ques-

¹ Edinburgh, September 7, 1921.

MSS. intended for 'publication and books, etc., intended for review should be sent to The Editor of Science, Garrison-on-Hudson, N. Y.

tion: "What is the inner mechanism of the atom?"

If the properties and affections of matter are dependent upon the inner mechanism of the atom, an atomic theory, to be valid, must comprehend and explain the all. There can not be one kind of atom for the physicist and another for the chemist. The nature of chemical affinity and of valency, the modes of their action, the difference in characteristics of the chemical elements, even their number, internal constitution, periodic position, and possible isotopic rearrangements must be accounted for and explained by it. Fifty years ago chemists, for the most part, rested in the comfortable belief of the existence of atoms in the restricted sense in which Dalton, as a legacy from Newton, had imagined them. Lord Kelvin, unlike the chemists, had never been in the habit of "evading questions as to the hardness or indivisibility of atoms by virtually assuming them to be infinitely small and infinitely numerous." Nor, on the other hand, did he realize, with Boscovich, the atom "as a mystic point endowed with inertia and the attribute of attracting or repelling other such centers." Science advances not so much by fundamental alterations in its beliefs as by additions to them. Dalton would equally have regarded the atom "as a piece of matter of measurable dimensions, with shape, motion, and laws of action, intelligible subjects of scientific investigation."

In spite of the fact that the atomic theory, as formulated by Dalton, has been generally accepted for nearly a century, it is only within the last few years that physicists have arrived at a conception of the structure of the atom sufficiently precise to be of service to chemists in connection with the relation between the properties of elements of different kinds, and in throwing light on the mechanism of chemical combination.

This further investigation of the "superlatively grand question—the inner mechanism of the atom,"—has profoundly modified the basic conceptions of chemistry. It has led to a great extension of our views concerning the real nature of the chemical elements. The discovery of the electron, the production of helium in the radioactive disintegration of atoms, the recognition of the existence of isotopes, the possibility that all elementary atoms are composed either of helium atoms or of atoms of hydrogen and helium, and that these atoms, in their turn, are built up of two constituents, one of which is the electron, a particle of negative electricity whose mass is only 1/1800 of that of an atom of hydrogen, and the other a particle of positive electricity whose mass is practically identical with that of the same atom-the outcome, in short, of the collective work of Soddy, Rutherford, J. J. Thomson, Collie, Moseley and others-are pregnant facts which have completely altered the fundamental aspects of the science. Chemical philosophy has, in fact, now definitely entered on a new phase.

Looking back over the past, some indications of the coming change might have been perceived wholly unconnected, of course, with the recent experimental work which has served to ratify it. In a short paper entitled "Speculative ideas respecting the constitution of matter," originally published in 1863, Graham conceived that the various kinds of matter, now recognized as different elementary substances, may possess one and the same ultimate or atomic molecule existing in different conditions of movement. This idea, in its essence, may be said to be as old as the time of Leucippus. To Graham as to Leucippus "the action of the atom as one substance taking various forms by combinations unlimited, was enough to account for all the phenomena of the world. By separation and union with constant motion all things could be done." But Graham developed the conception by independent thought, and in the light of experimentally ascertained knowledge which the world owes to his labors. He might have been cognizant of the speculations of the Greeks, but there is no evidence that he was knowingly influenced by them. In his paper Graham uses the terms atom and molecule if not exactly in the same sense that modern teaching deSEPTEMBER 23, 1921]

mands, yet very differently from that hitherto required by the limitations of contemporary chemical doctrine. He conceives of a lower order of atoms than the chemical atom of Dalton, and founds on his conception an explanation of chemical combination based upon a fixed combining measure, which he terms the metron, its relative weight being one for hydrogen, sixteen for oxygen, and so on with the other so-called "elements." Graham, in fact, like Davy before him, never committed himself to a belief in the indivisibility of the Daltonian atom. The original atom may, he thought, be far down.

The idea of a primordial ylé, or of the essential unity of matter, has persisted throughout the ages, and in spite of much experimental work, some of it of the highest order, which was thought to have demolished it, it has survived, revivified and supported by analogies and arguments drawn from every field of natural inquiry. This idea of course was at the basis of the hypothesis of Prout, but which, even as modified by Dumas, was held to be refuted by the monumental work of Stas. But, as pointed out by Marignac and Dumas, any one who will impartially look at the facts can hardly escape the feeling that there must be some reason for the frequent recurrence of atomic weights differing by so little from the numbers required by the law which the work of Stas was supposed to disprove. The more exact study within recent years of the methods of determining atomic weights, the great improvement in experimental appliances and technique, combined with a more rigorous standard of accuracy demanded by a general recognition of the far-reaching importance of an exact knowledge of these physical constants, has resulted in intensifying the belief that some natural law must be at the basis of the fact that so many of the most carefully determined atomic weights on the oxygen standard are whole numbers. Nevertheless there were well authenticated exceptions which seemed to invalidate its universality. The proved fact that a so-called element may be a mixture of isotopes-substances of the same chemical attributes but of varying atomic weight-has thrown new light on the question. It is now recognized that the fractional values independently established in the case of any one element by the most accurate experimental work of various investigators are, in effect, "statistical quantities" dependent upon a mixture of isotopes. This result, indeed, is a necessary corollary of modern conceptions of the inner mechanism of the atom. The theory that all elementary atoms are composed of helium atoms, or of helium and hydrogen atoms, may be regarded as an extension of Prout's hypothesis, with, however, this important distinction, that whereas Prout's hypothesis was at best a surmise, with little, and that little only weak, experimental evidence to support it, the new theory is directly deduced from well-established facts. The hydrogen isotope H_3 , first detected by J. J. Thomson, of which the existence has been confirmed by Aston, would seem to be an integral part of atomic structure. Rutherford, by the disruption of oxygen and nitrogen has also isolated a substance of mass 3 which enters into the structure of atomic nuclei, but which he regards as an isotope of helium, which itself is built up of four hydrogen nuclei together with two cementing electrons. The atomic nuclei of elements of even atomic number would appear to be composed of helium nuclei only, or of helium nuclei with cementing electrons; whereas those of elements of odd atomic number are made up of helium and hydrogen nuclei together with cementing electrons. In the case of the lighter elements of the latter class the number of hydrogen nuclei associated with the helium nuclei is invariably three, except in that of nitrogen where it is two. The frequent occurrence of this group of three hydrogen nuclei indicates that it is structurally an isotope of hydrogen with an atomic weight of three and a nuclear charge of one. It is surmised that it is identical with the hypothetical "nebulium" from which our "elements" are held by astro-physicists to

These results are of extraordinary interest as bearing on the question of the essential unity of matter and the mode of genesis of the elements. Members of the British Association may recall the suggestive address on this subject of the late Sir William Crookes, delivered to the Chemical Section at the Birmingham meeting of 1886, in which he questioned whether there is absolute uniformity in the mass of the atoms of a chemical element, as postulated by Dalton. He thought, with Marignac and Schutzenberger, who had previously raised the same doubt, that it was not improbable that what we term an atomic weight merely represents a mean value around which the actual weights of the atoms vary within narrow limits, or, in other words, that the mean mass is "a statistical constant of great stability." No valid experimental evidence in support of this surmise was or could be offered at the time it was uttered. Maxwell pointed out that the phenomena of gaseous diffusion, as then ascertained, would seem to negative the supposition. \mathbf{If} hydrogen, for example, were composed of atoms of varying mass it should be possible to separate the lighter from the heavier atoms by diffusion through a porous septum. "As no chemist," said Maxwell, "has yet obtained specimens of hydrogen differing in this way from other specimens, we conclude that all the molecules of hydrogen are of sensibly the same mass, and not merely that their mean mass is a statistical constant of great stability."¹ But against this it may be doubted whether any chemist had ever made experiments sufficiently precise to solve this point.

The work of Sir Norman Lockyer on the spectroscopic evidence for the dissociation of "elementary" matter at transcendental temperatures, and the possible synthetic introstellar production of elements, through the helium of which he originally detected the existence, will also find its due place in the history of this new philosophy.

¹Clerk-Maxwell, Art. "Atom," Ency. Brit., 9th Ed.

Sir J. J. Thomson was the first to afford direct evidence that the atoms of an element, if not exactly of the same mass, were at least approximately so, by his method of analysis of positive rays. By an extension of this method Mr. F. W. Aston has succeeded in showing that a number of elements are in reality mixtures of isotopes. It has been proved, for example, that neon, which has a mean atomic weight of about 20.2, consists of two isotopes having the atomic weights respectively of 20 and 22, mixed in the proportion of 90 per cent. of the former with 10 per cent. of the latter. By fractional diffusion through a porous septum an apparent difference of density of 0.7 per cent. between the lightest and heaviest fractions was obtained. The kind of experiment which Maxwell imagined proved the invariability of the hydrogen atom has sufficed to show the converse in the case of neon.

The element chlorine has had its atomic weight repeatedly determined, and, for special reasons, with the highest attainable accuracy. On the oxygen standard it is 35.46, and this value is accurate to the second decimal place. All attempts to prove that it is a whole number-35 or 36-have failed. When, however, the gas is analyzed by the same method as that used in the case of neon it is found to consist of at least two isotopes of relative mass 35 and 37. There is no evidence whatever of an individual substance having the atomic weight 35.46. Hence chlorine is to be regarded as a complex element consisting of two principal isotopes of atomic weights 35 and 37 present in such proportion as to afford the mean mass 35.46. The atomic weight of chlorine has been so frequently determined by various observers and by various methods with practically identical results that it seems difficult to believe that it consists of isotopes present in definite and invariable proportion. Mr. Aston meets this objection by pointing out that all the accurate determinations have been made with chlorine derived originally from the same source, the sea, which has been perfectly mixed for cons. If samples of the element could be obtained from some other original source it is possible that other values of atomic weight would be obtained, exactly as in the case of lead in which the existence of isotopes in the metal found in various radioactive minerals was first conclusively established.

Argon, which has an atomic weight of 39.88, was found to consist mainly of an atomic weight of 40, associated to the extent of about 3 per cent. with an isotope of atomic weight 36. Krypton and xenon are far more complex. The former would appear to consist of six isotopes, 78, 80, 82, 83, 84, 86; the latter of five isotopes, 129, 131, 132, 134, 136.

Fluorine is a simple element of atomic weight 19. Bromine consists of equal quantities of two isotopes, 79 and 81. Iodine, on the contrary, would appear to be a simple element of atomic weight 127. The case of tellurium is of special interest in view of its periodic relation to iodine, but the results of its examination up to the present are indefinite.

Boron and silicon are complex elements, each consisting of two isotopes, 10 and 11, and 28 and 29, respectively.

Sulphur, phosphorus, and arsenic are apparently simple elements. Their accepted atomic weights are practically integers.

All this work is so recent that there has been little opportunity, as yet, of extending it to any considerable number of the metallic elements. These, as will be obvious from the nature of the methods employed, present special difficulties. It is, however, highly probable that mercury is a mixed element consisting of many isotopes. These have been partially separated by Brönsted and Hervesy by fractional distillation at very low pressures, and have been shown to vary very slightly in density. Lithium is found to consist of two isotopes, 6 and 7. Sodium is simple, potassium and rubidium are complex, each of the two latter elements consisting, apparently, of two isotopes. The accepted atomic weight of cæsium, 132.81, would indicate complexity, but the mass spectrum shows only one line at 133. Should this be confirmed cæsium would afford an excellent test case. The accepted value for the atomic weight is sufficiently far removed from a whole number to render further investigation desirable.

This imperfect summary of Mr. Aston's work is mainly based upon the account he recently gave to the Chemical Society. At the close of his lecture he pointed out the significance of the results in relation to the Periodic Law. It is clear that the order of the chemical or "mean" atomic weights in the periodic table has no practical significance; anomalous cases such as argon and potassium are simply due to the relative proportions of their heavier and lighter isotopes. This does not necessarily invalidate or even weaken the periodic law which still remains the expression of a great natural truth. That the expression as Mendeléeff left it is imperfect has long been recognized. The new light we have now gained has gone far to clear up much that was anomalous, especially Moseley's discovery that the real sequence is the atomic number, not the atomic weight. This is one more illustration of the fact that science advances by additions to its beliefs rather than by fundamental or revolutionary changes in them.

The bearing of the electronic theory of matter, too, on Prout's discarded hypothesis that the atoms of all elements were themselves built up of a primordial atom—his *protyle* which he regarded as probably identical with hydrogen—is too obvious to need pointing out. In a sense Prout's hypothesis may be said to be now reestablished, but with this essential modification—the primordial atoms he imagined are complex and are of two kinds—atoms of positive and negative electricity—respectively known as protons and electrons. These, in Mr. Aston's words, are the standard bricks that nature employs in her operations of element building.

The true value of any theory consists in its comprehensiveness and sufficiency. As applied to chemistry, this theory of "the inner mechanism of the atom" must explain all its phenomena. We owe to Sir J. J. Thomson its extension to the explanation of the periodic law, the atomic number of an element, and

of that varying power of chemical combination in an element we term valency. This explanation I give substantially in his own words. The number of electrons in an atom of the different elements has now been determined, and has been found to be equal to the atomic number of the element, that is to the position which the element occupies in the series when the elements are arranged in the order of their atomic weights. We know now the nature and quantity of the materials of which the atoms are made up. The properties of the atom will depend not only upon these factors but also upon the way in which the electrons are arranged in the atom. This arrangement will depend on the forces between the electrons themselves and also on those between the electrons and the positive charges or protons. One arrangement which naturally suggested itself is that the positive charges should be at the center with the negative electrons around it on the surface of a Mathematical investigation shows sphere. that this is a possible arrangement if the electrons on the sphere are not too crowded. The mutual repulsion of the electrons resents overcrowding, and Sir J. J. Thomson has shown that when there are more than a certain number of electrons on the sphere, the attraction of a positive charge, limited as in the case of the atom in magnitude to the sum of the charges on the electrons, is not able to keep the electrons in stable equilibrium on the sphere, the layer of electrons explodes and a new arrangement is formed. The number of electrons which can be accommodated on the outer layer will depend upon the law of force between the positive charge and the electrons. Sir J. J. Thomson has shown that this number will be eight with a law of force of a simple type.

To show the bearing of this result as affording an explanation of the Periodic Law, let us, to begin with, take the case of the atom of lithium, which is supposed to have one electron in the outer layer. As each element has one more free electron in its atom than its predecessor, glucinum, the element next in succession to lithium, will have two electrons in the outer layer of its atom, boron will have three, carbon four, nitrogen five, oxygen six, fluorine seven and neon eight. As there can not be more than eight electrons in the outer layer, the additional electron in the atom of the next element, sodium, can not find room in the same layer as the other electrons, but will go outside, and thus the atom of sodium, like that of lithium, will have one electron in its outer layer. The additional electron, in the atom of the next element. magnesium, will join this, and the atom of magnesium, like that of glucinum, will have two electrons in the outer layer. Again, aluminium, like boron, will have three; silicon, like carbon, four; phosphorus, like nitrogen, five; sulphur, like oxygen, six; chlorine, like fluorine, seven; and argon, like neon, eight. The sequence will then begin again. Thus the number of electrons, one, two, three, up to eight in the outer layer of the atom, will recur periodically as we proceed from one element to another in the order of their atomic weights, so that any property of an element which depends on the number of electrons in the outer layer of its atom will also recur periodically, which is precisely that remarkable property of the elements which is expressed by the periodic law of Mendeléeff, or the law of octaves of Newlands.

The valency of the elements, like their periodicity, is a consequence of the principle that equilibrium becomes unstable when there are more than eight electrons in the outer layer of the atom. For on this view the chemical combination between two atoms, A and B, consists in the electrons of A getting linked up with those of B. Consider an atom like that of neon, which has already eight electrons in its outer layer; it can not find room for any more, so that no atoms can be linked to it, and thus it can not form any compounds. Now take an atom of flourine, which has seven electrons in its outer layer; it can find room for one, but only one, electron, so that it can unite with one, but not with more than one, atom of an element like hydrogen, which has one electron in the outer layer. Fluorine, accordingly, is monovalent. The oxygen atom has six electrons; it has, therefore, room for two more, and so can link up with two atoms of hydrogen: hence oxygen is divalent. Similarly nitrogen, which has five electrons and three vacant places, will be trivalent, and so on. On this view an element should have two valencies, the sum of the two being equal to eight. Thus, to take oxygen as an example, it has only two vacant places, and so can only find room for the electrons of two atoms; it has, however, six electrons available for filling up the vacant places in other atoms, and as there is only one vacancy to be filled in a fluorine atom the electrons in an oxygen atom could fill up the vacancies in six fluorine atoms, and thereby attach these atoms to it. А fluoride of oxygen of this composition remains to be discovered, but its analogue, SF., first made known by Moissan, is a compound of this type. The existence of two valencies for an element is in accordance with views put forward some time ago by Abegg and Bödlander. Professor Lewis and Mr. Irving Langmuir have developed, with great ingenuity and success, the consequences which follow from the hypothesis that an octet of electrons surrounds the atoms in chemical compounds.

The term "atomic weight" has thus acquired for the chemist an altogether new and much wider significance. It has long been recognized that it has a far deeper import than as a constant useful in chemical arithmetic. For the ordinary purposes of quantitative analysis, of technology, and of trade, these constants may be said to be now known with sufficient accuracy. But in view of their bearing on the great problem of the essential nature of matter and on the "superlatively grand question, What is the inner mechanism of the atom?" they become of supreme im-Their determination and study portance. must now be approached from entirely new standpoints and by the conjoint action of chemists and physicists. The existence of isotopes has enormously widened the horizon. At first sight it would appear that we should

require to know as many atomic weights as there are isotopes, and the chemist may be appalled at such a prospect. All sorts of difficulties start up to affright him, such as the present impossibility of isolating isotopes in a state of individuality, their possible instability, and the inability of his quantitative methods to establish accurately the relatively small differences to be anticipated. All this would seem to make for complexity. On the other hand, it may eventually tend towards simplification. If, with the aid of the physicist we can unravel the nature and configuration of the atom of any particular element, determine the number and relative arrangement of the constituent protons and electrons, it may be possible to arrive at the atomic weight by simple calculation, on the assumption that the integer rule is mathematically valid. This, however, is almost certainly not the case, owing to the influence of "packing." The little differences, in fact, may make all the difference. The case is analogous to that of the so-called gaseous laws in which the departures from their mathematical expression have been the means of elucidating the physical constitution of the gases and of throwing light upon such variations in their behavior as have been observed There would appear, therefore, to occur. ample scope for the chemist in determining with the highest attainable accuracy the departures from the whole-number rule, since it is evident that much depends upon their exact extent.

These considerations have already engaged the attention of chemists. For some years past, a small international committee, originally appointed in 1903, has made and published an annual report in which they have noted such determinations of atomic weight as have been made during the year preceding each report, and they have from time to time made suggestions for the amendment of the tables of atomic weights, published in textbooks and chemical journals, and in use in chemical laboratories. In view of recent developments, the time has now arrived when the work of this international committee must be reorganized and its aims and functions extended. The mode in which this should be done has been discussed at the meeting in Brussels, in June last, of the International Union of Chemistry Pure and Applied, and has resulted in strengthening the constitution of the committee and in a wide extension of its scope.

The crisis through which we have recently passed has had a profound effect upon the world. The spectacle of the most cultured and most highly developed peoples on this earth, armed with every offensive appliance which science and the inventive skill and ingenuity of men could suggest, in the throes of a death struggle must have made the angels weep. That dreadful harvest of death is past, but the aftermath remains. Some of it is evil, and the evil will persist for, it may be, generations. There is, however, an element of good in it, and the good, we trust, will develop and increase with increase of years. The whole complexion of the world-material, social, economic, political, moral, spiritualhas been changed, in certain aspects immediately for the worse, in others prospectively for the better. It behooves us, then, as a nation to pay heed to the lessons of the war.

The theme is far too complicated to be treated adequately within the limits of such an address as this. But there are some aspects of it germane to the objects of this association, and I venture, therefore, in the time that remains to me, to bring them to your notice.

The Great War differed from all previous internecine struggles in the extent to which organized science was invoked and systematically applied in its prosecution. In its later phases, indeed, success became largely a question as to which of the great contending parties could most rapidly and most effectively bring its resources to their aid. The chief protagonists had been in the forefront of scientific progress for centuries, and had an accumulated experience of the manifold applications of science in practically every department of human activity that could have any possible relation to the conduct of war. The military class in every country is probably the most conservative of all the professions and the slowest to depart from tradition. But when nations are at grips, and they realize that their very existence is threatened, every agency that may tend to cripple the adversary is apt to be resorted to-no matter how far it departs from the customs and conventions of war. This is more certain to be the case if the struggle is protracted. We have witnessed this fact in the course of the late war. Those who, realizing that in the present imperfect stage of civilization, wars are inevitable, yet strove to minimize their horrors, and who formulated the Hague Convention of 1899, were well aware how these horrors might be enormously intensified by the applications of scientific knowledge, and especially of chemistry. Nothing shocked the conscience of the civilized world more than Germany's cynical disregard of the undertaking into which she had entered with other nations in regard, for instance, to the use of lethal gas in warfare. The nation that treacherously violated the Treaty of Belgium, and even applauded the action, might be expected to have no scruples in repudiating her obligations under the Hague Convention. April 25, 1915, which saw the clouds of the asphyxiating chlorine slowly wafted from the German trenches towards the lines of the Allies, witnessed one of the most bestial episodes in the history of the Great War. The world stood aghast at such a spectacle of barbarism. German Kultur apparently had absolutely no ethical value. Poisoned weapons are employed by savages, and noxious gas had been used in Eastern warfare in early times, but its use was hitherto unknown among European nations. How it originated among the Germans-whether by the direct unprompted action of the Higher Command, or, as is more probable, at the instance of persons connected with the great manufacturing concerns in Rhineland, has, so far as I know, not transpired. It was not so used in the earlier stages of the war, even when it had become a war of position. It is notorious that the great chemical manufacturing establishments of

SEPTEMBER 23, 1921]

Germany had been, for years previously, sedulously linked up in the service of the war which Germany was deliberately planningprobably, in the first instance, mainly for the supply of munitions and medicaments. We may suppose that it was the tenacity of our troops, and the failure of repeated attempts to dislodge them by direct attack, that led to the employment of such foul methods. Be this as it may, these methods became part of the settled practise of our enemies, and during the three succeeding years, that is from April, 1915, to September, 1918, no fewer than eighteen different forms of poison-gases, liquids and solids-were employed by the Germans. On the principle of Vespasian's law, reprisals became inevitable, and for the greater part of three years we had the sorry spectacle of the leading nations of the world flinging the most deadly products at one another that chemical knowledge could suggest and technical skill contrive. Warfare, it would seem, has now definitely entered upon a new phase. The horrors which the Hague Convention saw were immanent, and from which they strove to protect humanity, are now, apparently, by the example and initiative of Germany, to become part of the established procedure of war. Civilization protests against a step so Surely comity among nations retrograde. should be adequate to arrest it. If the League of Nations is vested with any real power, it should be possible for it to devise the means, and to ensure their successful application. The failure of the Hague Convention is no sufficient reason for despair. The moral sense of the civilized world is not so dulled but that, if roused, it can make its influence prevail. And steps should be taken without delay to make that influence supreme, and all the more so that there are agencies at work which would seek to perpetuate such methods as a recognized procedure of war. The case for what is called chemical warfare has not wanted for advocates. It is argued that poison gas is far less fatal and far less cruel than any other instrument of war. It has been stated that "amongst the 'mustard gas' casualties the deaths were less than 2 per

cent., and when death did not ensue complete recovery generally ultimately resulted. ... Other materials of chemical warfare in use at the Armistice do not kill at all; they produce casualties which, after six weeks in hospital, are discharged practically without permanent hurt." It has been argued that, as a method of conducting war, poison-gas is more humane than preventive medicine. Preventive medicine has increased the unit dimension of an army, free from epidemic and communicable disease. from 100.000 men to a million. "Preventive medicine has made it possible to maintain 20.000.000 men under arms and abnormally free from disease, and so provided greater scope for the killing activities of the other military weapons. . . . Whilst the surprise effects of chemical warfare aroused anger as being contrary to military tradition, they were minute compared with those of preventive medicine. The former slew its thousands, whilst the latter slew its millions and is still reaping the harvest." This argument carries no conviction. Poison gas is not merely contrary to European military tradition; it is repugnant to the right feeling of civilized humanity. It in no wise displaces or supplants existing instruments of war, but creates a new kind of weapon, of limitless power and deadliness. "Mustard gas" may be a comparatively innocuous product as lethal substances go. It certainly was not intended to be such by our enemies. Nor, presumably, were the Allies any more considerate when they retaliated with it. Its effects, indeed, were sufficiently terrible to destroy the German *morale*. The knowledge that the Allies were preparing to employ it to an almost boundless extent was one of the factors that determined our enemies to sue for the Armistice. But if poisonous chemicals are henceforth to be regarded as a regular means of offence in warfare, is it at all likely that their use will be confined to "mustard gas," or indeed to any other of the various substances which were employed up to the date of the Armistice? To one who, after the peace, inquired in Germany con-

cerning the German methods of making

Menoher, chief. The aviator was Sergeant T. J. Fowler. The photographic equipment consisted of a mapping camera, K.1 model, fixed in the bottom of the plane. This camera is designed to take successive pictures automatically and can be so adjusted for the altitude of the plane and the apparent air speed that the exposures take a small overlap. The views can therefore be combined in a continuous mosaic. Theoretically the action should be perfect and the continuity of the pictures unbroken. In practise, the tilting of the plane is equivalent to turning a camera through a greater or less angle on a tripod and successive views may jump interspaces of greater or less extent. One remedy, with this type of camera, would be to repeat, a recourse which is practicable when flying over a restricted area, but impracticable in a flight between distant landing fields. A clinometer would enable the photographer to note the inclination of the plane and a finder might be used. The flights here noted covered a course of

approximately 400 miles each way and were made in 4 hours 40 minutes on the southward trip and 4 hours 13 minutes on the northward.

The San Andreas Rift, the object of observation, is that major continental structure which extends from Humboldt County in northern California to the Mohave Desert in the southern part of the state, a distance of about 600 miles. It is an ancient fault, the locus of innumerable movements, which have given rise to pronounced topographic features. Displacements have been upward or downward or lateral along different sections of the fault or during different movements along the same section. We have yet much to learn about the effects of faulting expressed in the details of geology along the rift.

The earthquake of April, 1906, produced marked surface features, which were carefully studied by Branner, Gilbert, Lawson and other geologists and which have been fully described in the report of the California State Earthquake Commission, publication 87 of the Carnegie Institution of Washington. One is often asked to what extent those features are still "mustard gas," the reply was:— "Why are you worrying about this when you know perfectly well that this is not the gas we shall use in the next war?"

I hold no brief for preventive medicine, which is well able to fight its own case. I would only say that it is the legitimate business of preventive medicine to preserve by all known means the health of any body of men, however large or small, committed to its care. It is not to its discredit if, by knowledge and skill, the numbers so maintained run into millions instead of being limited to thousands. On the other hand, "an educated public opinion" will refuse to give credit to any body of scientific men who employ their talents in devising means to develop and perpetuate a mode of warfare which is abhorrent to the higher instincts of humanity.

This association, I trust, will set its face against the continued degradation of science in thus augmenting the horrors of war. It could have no loftier task than to use its great influence in arresting a course which is the very negation of civilization.

T. EDWARD THORPE

AERIAL OBSERVATION OF EARTH-QUAKE RIFTS

THE Seismological Society of America is interested in mapping the earthquake rifts of California, with a view to increasing our knowledge of the structures related to earthquakes and to promoting security in the engineering work of the state. Data of a general and comprehensive character already exist in published and unpublished maps, but additional surveys are desirable. Faults may be located in several ways and it is possible that a method of tracing them may be developed with the airplane, as was first suggested to the writer by H. O. Wood. To test the idea, a flight was made by me from San Francisco to Los Angeles and return on June 9 and 11, so far as practicable over the San Andreas Rift, to observe and photograph it.

The plane was furnished by the Air Service of the U. S. Army, by courtesy of Major H. H. Arnold, under authority of General C. T.