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EINS"J.'EIN'SLAW OF GRAVITATIONt 
THE by-laws of our society make it  one of 

the duties of its president to deiiver an ad-
dress before its members. This fact renders 
i t  necessary for the president to select a sub- 
ject; and this year the selection is to a 
certain degree forced by the public press. 
When a daily newspaper considers Einstein's 
work on gravitation a topic of sufficiently 
general interest to devote to i t  valuable space 
and cable funds, surely here is justification 
for my selection of this as the subject of my 
presidential address. 

Einstein's original memoirs upon gravita-
tion appeared in the years 1916 to 1918; and 
there are two excellent papers in English ex- 
pounding and explaining his method, one by 
Professor desitter, of Leyden, and one by 
Professor Eddington, of Cambridge. While 
Einstein's work may be lrnown to many of 
you either in its original form or in one of 
the two papers mentioned, I fear that the 
attention of most of us was first directed 
seriously to the matter by the articles in the 
newspapers to which I have referred. I con-
fess that I was one of those who had post- 
poned any serious study of the subject, until 
its immense importance was borne in upon 
me by the results of the recent eclipse expcdi- 
tion. I have all the erlthusiasnl of tho dis- 
coverer of a new land, and feel compelled to 
describe to you what I hare lcarned. 

Albert Einstein, although now a resident 
of Berlin and holder of a research professor- 
ship of the Kaiser Wilhelin Institute, is 
legally a Swiss. He is forty-five years old 
and was for some time a professor in the 
Zurich Techilical School, and later in the 
University of Prague. He is a man of liberal 
tendencies, and apparently one whom any of 

Pr'Sidontial "livered at the St' Louis 
meeting the Ph~kfidSociety, December 30, 
1919. 
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us would be glad to welcome for personal 
reasons in our international meetings of the 
future. He protested against the famous 
manifesto of the German professors in 1914 
and was one of the eager supporters of the 
German Republic when it arose from the 
wreck of the Empire. 

But, in presenting the subject of Einstein's 
study of the law of gravitation, I must begin 
many years ago. I n  the treatment of Max-
well's equations of the electromagxetic field, 
several investigators realized the importance 
of deducing the form of the equations when 
applied to a system moving with a uniform 
velocity. One object of such an investiga-
tion would be to determine such a set of 
transformation formuls as would leave the 
mathematical form of the equations unaltered. 
The necessary relations between the new 
space-coordinates, those applying to ths mov- 
ing system, and the original set were of 
course obvious; and elementary methods led 
to the deduction of a new variable which 
should replace the time coordinate. This 
step was taken by Lorentz and also, I believe, 
by Larmor and by Voigt. The mathematical 
deductions and applications in the hands of 
these men were extremely beautiful, and are 
probably well known to you all. 

Lorentz' paper on this subject appeared in 
the Proceedings of the Amsterdam Academy 
in 1904. I n  the followillg year there was 
published in the Annalsn der PhysiL a paper 
by Einstcin, written without any knowledge 
of the work of Lorentz, in which he arrived 
at the same transformation equations as did 
tho latter, but with an entirely different and 
fundamentally new interpretation. Einstein 
called attention in his paper to the lack of 
definiteness in the concepts of time and space, 
as ordinarily stated and used. He analyzed 
clearly the definitions and postulates which 
ware necessary before one could speak with 
exactness of a length or of an interval of 
time. He disposed forever of the propriety 
of spealcing of the "true" length of a rod or 
of the "true " duration of time, showing, in 
fact, that tho numerical values which we 
attach to lengths or intervals of time depend 

upon the defmitions and postulates which we 
adopt. The words " absolute" space or time 
intervals are devoid of meaning. As an 
illustration of what is meant Einstein dis-
cussed two possible ways of measuring the 
length of a rod when it is moving in the 
direction of its own lengtli with a uniform 
velocity, that is, after having adopted a scale 
of length, two ways of assigning a number 
to the length of the rod concerned. One 
method is to imagine the observer moving 
with the rod, applying along its length tho 
measuring scale, and reading off the positions 
of the ends of the rod. Another method 
would be to have two observers at rest on the 
body with reference to which the rod has the 
uniform velocity, so stationed along the line 
of motion of the rod that as the rod moves 
past them they can note simultancousiy on a 
stationary measuring scale the positions of 
the two ends of the rod. Einstein showed 
that, accepting two postulates which need no 
defense at this time, the two methods of 
measurements would lead to different numer- 
ical values, and, further, that the divergence 
of the two results would increase as the 
velocity of the rod was increased. I n  assign- 
ing a number, therefore, to the length of a 
moving rod, one must make a choice of the 
method to be used in measuring it. Ob-
viously the preferable method is to agree that 
the observer shall move with the rod, carrying 
his measuring instrument with him. This 
disposes of the problem of measuring space 
relations. The observed fact that, if we 
measure the length of the rod on different 
days, or when the rod is lying in different 
positions, we always obtain the same value 
offers no information concerning the "real " 

length of the rod. It may have changed, or 
it nlay not. It must always be remembered 
that measurement of the length of a rod is 
simply a process of comparison between it 
and an arbitrary standard, s. g., a meter-rod 
or yard-sticlc, In  regard to the problem of 
assigning numbers to intervals of time, it 
must be borne in mind that, strictly speaking, 
we do not "measure" such intervals, i. e., 
that we do not select a unit interval of time 
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and find how many times i t  is contained in 
the interval in question. (Similarly, we do 
not "measurev the pitch of a sound or the 
temperature of a room.) Our practical in-
struments for assigning numbers to time-
intervals depend in the main upon our agree- 
ing to believe that a pendulum swings in a 
perfectly uniform manner, each vibration 
taking the same time as the next one. Of 
course we can not prove that this is true, i t  
is, strictly speaking, a definition of what we 
mean by equal intervals of time; and i t  is 
not a particularly good definition at that. 
Its limitations are sufficiently obvious. The 
best way to proceed is to consider the concept 
of uniform velocity, and then, using the idea 
of some entity having such a uniform veloc- 
ity, to define equal intervals of time as such 
intervals as are required for the entity to 
traverse equal lengths. These last we have 
already defined. What is required in addition 
is to adopt some moving entity as giving our 
definition of uniform velocity. Considering 
our known universe it is self-evident that we 
should choose in our definition of uniform 
velocity the velocity of light, since this selec- 
tion could be made by an observer anywhere 
in our universe. Having agreed then to illus-
trate by the words "uniform velocity" that 
of light, our definition of equal intervals of 
time is complete. This implies, of course, 
that there is no uncertainty on our part as to 
the fact that the velocity of light always has 
the same value at any one point in the uni- 
verse to any observer, quite regardless of the 
source of light. I n  other words, the postulate 
that this is true underlies our dehition. 
Following this method Einstein developed a 
system of measuring both space and time 
intervals. As a matter of fact his system is 
identically that which we use in daily life 
with reference to events here on the earth. 
He further showed that if a man were to 
measure the length of a rod, for instance, on 
the earth and then were able to carry the rod 
and his measuring apparatus to Mars, the 
sun, or to Arcturus he would obtain the same 
numerical value for the length in all places 
and at all times. This doesn't mean that any 

statement is implied as to whether the length 
of the rod has remained unchanged or not; 
such words do not have any meaning-re-
member that we can not speak of true length. 
It is thus clear that an observer living on the 
earth would have a definite system of units 
in terms of which to express space and time 
intervals, i. e., he would have a definite sys- 
tem of space coordinates (x, y, z) and a 
definite time coordinate (t) ;and similarly an 
observer living on Mars would have his sys- 
tem of coordinates (x', y', z', t'). Provided 
that one observer has a definite uniform 
velocity with reference to the other, i t  is a 
comparatively simple matter to deduce the 
mathematical relations between the two sets 
of coordinates. When Einstein did this, he 
arrived at the same transformation formula 
as those used by Lorentz in his development 
of Maxwell's equations. The latter had shown 
that, using these formulee, the form of the 
laws for all electromagnetic phehomena main- 
tained the same form; so Einstein's method 
proves that using his system of measurement 
an observer, anywhere in the universe, would 
as the result of his own investigation of 
electromagnetic phenomena arrive at the same 
mathematical statement of them as any other 
observer, provided only that the relative 
velocity of the two observers was uniform. 

Einstein discussed many other most im-
portant questions at this time; but it is not 
necessary to refer to them in connection with 
the present subject. So far as this is con-
cerned, the next important step to note is that 
taken in the famous address of Minkowski, 
in 1908, on the subject of " Space and Time." 
It would be difficult to overstate the impor- 
tance of the concepts advanced by Minkowski. 
They marked the begining of a new period in 
the philosophy of physics. I shall not at-
tempt to explain his ideas in detail, but shall 
confine myself to a few general statements. 
His point of view and his line of development 
of the theme are absolutely different from 
those of Lorentz or of Einstein; but in the 
end he makes use of the same transformation 
formulse. His great contribution consists in 
giving us a new geometrical picture of their 
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meaning. It is scarcely fair to call Min-
kowski's development a picture; for to us a 
picture can never have more than three 
dimensions, our senses limit us; while his 
picture calls for perception of four dimen-
sions. I t  is this fact that renders any even 
semi-popular discussion of Minkowski's work 
so impossible. We can all see that for us to 
describe any event a knowledge of four 
coordinates is necessary, three for the space 
specification and one for the time. A com-
plete picture could be given then by a point 
in four dimensions. A11 four coordinates are 
necessary: we never observe an event except 
at a certain time, and we never observe an 
instant of time except with reference to space. 
Discussing the laws of electromagnetic phe- 
nomena, Minkowski showed how in a space of 
four dimensions, by a suitable definition of 
axes, the mathematical transformation of 
Lorentz apd Einstein could be described by 
a rotation ctE the set of axes. We are all 
accustomed to a rotation of our ordinary 
Cartesian set of axes describing the position 
of a point. We ordinarily choose our axes at 
any location on the earth as follows: one 
vertical, one east and west, one north and 
south. So if we move from any one labora- 
tory to another, we change our axes; they 
are always orthogonal, but in moving from 
place to place there is a rotation. Similarly, 
Minkowski showed that if we choose four 
orthogonal axes a t  any point on the earth, 
according to his method, to represent a space- 
time point using the method of measuring 
space and time intervals as outlined by Ein- 
stein; and, if an observer on Arcturus used a 
similar set of axes and the method of meas-
urement which he naturally would, the set of 
axes of the latter could be obtained from 
those of the observer on the earth by a pure 
rotation (and naturally a transfer of the 
origin). This is a, beautiful geometrical re- 
sult. To complete my statement of the 
method, I must add that instead of using as 
his fourth axis one along which numerical 
values of time are laid off, Minkowski deiined 
his fourth coordinate as the product of time 
and the imaginary constant, the square root 

of minus one. This introduction of imagi-
nary quantities might be expected, possibly, 
to introduce difficulties; but, in reality, i t  is 
the very essence of the simplicity of the geo- 
metrical description just given of the rotation 
of the sets of axes. It tlius appears that 
different observers situated at different points 
in the universe would each have their own set 
of axes, all different, yet all connected by the 
fact that any one can be rotated so as to 
coincide with any other. This means that 
there is no one direction in the four dimen- 
sional space that corresponds to time for all 
observers. Just as with reference to the 
earth there is no direction which can be 
called vertical for all observers living on the 
earth. I n  the sense of an absolute meaning 
the words "up and down,'' "before and after," 
" sooner or later," are entirely meaningless. 

This concept of Minkowski's may be made 
clearer, perhaps, by the -following process of 
thought. If we take a section through our 
three dimensional space, we have a plane, i. e., 
a two-dimensional space. Sinlilarly, if a sec- 
tion is made through a four-dimensional 
space, one of three dimensions is obtained. 
Thus, for an observer on the earth a dehi te  
section of Minkowski's four dimensional space 
will give us our ordinary three-dimensional 
one; so that this section will, as it were, 
break up Minkowski's space into our space 
and give us our ordinary time. Similarly, a 
different section would have to be used for 
the observer on Arcturus; but by a suitable 
selection he ~vould get his own familiar three- 
dinlensional space and his own time. Thus 
the space defined by Minkowski is completely 
isotropic in reference to measured lengths 
and times, there is absolutely no difference 
between any two directions in an absolute 
sense; for any particular observer, of course, 
a particular section will cause the space to 
fall apart so as to suit his habits of measure- 
ment; any section, however, taken at random 
will do the same thing for some observer 
somewhere. From another point of view, 
that of Lorentz and Einstein, i t  is obvious 
that, since this four dimensional space is 
isotropic, the expression of the laws of elec- 
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tromagnetic phenomena take identical mathe- 
matical forms when expressed by any observer. 

The question of course must be raised as 
to what can be said in regard to phenomena 
which so far as we know do not have an 
electromagnetic origin. I n  particular what 
can be done with respect to gravitational 
phenomena? Before, however, showing how 
this problem was attacked by Einstein; and 
the fact that the subject of my address is 
Einstein's work on gravitation shows that 
ultimately I shall explain this, I must empha- 
size another feature of Minkowski's geometry. 
To describe the space-time characteristics of 
any event a point, defined by its four coordi- 
nates, is sufficient; so, if one observes the life- 
histoiy of any entity, e. g., a particle of mat- 
ter, a light-wave, etc., he observes a sequence 
of points in the space-time continuum; that 
is, the life-history of any entity is described 
fully by a line in this space. Such a line was 
called by Minkowski a ''world-line." Further, 
from a different point of view, all of our 
observations of nature are in reality observa- 
tions of coincidences, e.  g., if one reads a 
thermometer, what he does is to note the 
coincidence of the end of the column of 
mercury with a certain scale division on the 
thermometer tube. In  other words, thinking 
of the world-line of the end of the mercury 
column and the world-line of the scale divi- 
sion, what we have observed was the inter- 
section or crossing of these lines. I n  a 
similar manner any observation may be 
analyzed; and remembering that light rays, 
a point on the retina of the eye, etc., all have 
their worldlines, i t  will be recognized that it 
is a perfectly accurate statement to say that 
every observation is the perception of the in- 
tersection of world-lines. Further, since all 
we know of a world-line is the result of ob- 
servations, i t  is evident that we do not know 
a world-line as a continuous series of points, 
but simply as a series of discontinuous points, 
each point being where the particular world- 
line in question is crossed by another world- 
line. 

I t  is clear, moreover, that for the descrip- 
tion of a world-line we are not limited to the 

particular set of four orthogonal axes adopted 
by Minkowski. We can choose any set of 
four-dimensional axes we wish. It is further 
evident that the mathematical expression for 
the coincidence of two points is absolutely 
independent of our selection of reference 
axes. If we change our axes, we will change 
the coordinates of both points simultaneously, 
so that the question of axes ceases to be of 
interest. But our so-called laws of nature 
are nothing but descriptions in mathematical 
language of our observations; we observe only 
coincidences; a sequence of coincidences when 
put in mathematical terms takes a form which 
is independent of the selection of reference 
axes; therefore the mathematical expression 
of our laws of nature, of every character, 
mnst be such that their form does not change 
if we make a transformation of axes. This i s  
a simple but far-reaching deduction. 

There is a geometrical method of picturing 
the .effect of a change of axes of reference, i. e., 
of a mathematical transfonmlation. To a man 
in a railway coach the path of a drop of water 
does not appear vertical, i. e., it is not parallel 
to the edge ob the window; istill less RO does it 
appear vertical to a man performing mancevres 
in an airplane. This means that whereas wi& 
reference to axes fixed to the earth ithe path of 
bhe drop is vertical; with reference to other 
axes, the path is not. Or, stating the concln- 
sion tin general language, changing the axes of 
reference (or effecting a unathematicd trans- 
formation) in general changes the shape of any 
line. If one imagines sthe line forming a part 
of the epace, it is evident that if *he mace is 
deformed by compression or expansion the 
shape of the line [is rahanged, and if d c i e n t  
care is taken i t  is clearly lpossible, by deforming 
the apace, ito make the line take any shape de- 
sired, or better &abed, any shape specified by 
he previous change of axes. I t  is thus possible 

to picture a mathematical transformation as a 
defamation of space. Thus I can draw a line 
on a she& of paper or of rubber and by bending 
and stretching the sheet, I can make the line 
assume a great variety of shapes; each of these 
nm shapes is a picture of a suitable transfor- 
mation. 



258 SCIENCE [N. X. VOL. LI.NO.1315 

Now,i~nsider  world~lines in our four dimen- 
sional space. The complete record of all our 
knowledge is a series of sequences 08 intersec- 
tions of such lines. By analogy J can draw in 
ordinary slpaoe a great number of intmsecbilly; 
lines on a 'sheet of rubber; I can then bend and 
deform the sheet to please myself; by so doing 
I do not introduce any new intersections nor 
do I alter in the least the sequence of intersec- 
tions. So in the space of our world-lines, the 
space may be deformed in any imaginable man- 
ner without introducing any new inZiersecitions 
or changing the sequence of tho existing inter- 
sections. It is this sequence which gives UB the 
mathematical expression of our so-called ex- 
perimental laws; a deformahion of our space is 
equivalentt mathema6ically to a transformation 
of axes, consequently we see why it  is &at the 
form of our laws must be the same when re- 
ferred to any and all sets of axes, that is, must 
remain unaltered by any mathematical trans- 
formation. 

Now, at last we come to gravitation. We can 
not imagine any world-line simpler than that of 
a particle of matter left to itself; we shall 
therefore call it a ",straight" line. Our experi- 
ence is that two particles of matter attract one 
another. Expressed in terns of world-lines, 
this means that, if the world-lines of itwo iso- 
lated particles come noaT each other, the lines, 
instead of being straight, will be deflected or 
bent in towards each other. The world-line of 
any one particle is therefore ddormed; and we 
have just \seen that a.deformation is the equim- 
lent of a mathematical t~~anaformation. I n  
other words, for any one particle i t  is possible 
to replace Zihe effect of a gravitational field a t  
any instant by a mabhmartical transformation 
of axes. The statement that this is always p0S- 
siMe for any particle at any instant is Ein- 
stain's famous "Principle of Equivalence." 

Let us ra& for a momenrt, while I call atten- 
tion to a most interesting coincidence, not to 
be thought of as an in.bersection of world-lines. 
It is a i d  that Newton's thoughts wwe directed 
to the observation of gravitational phenomena 
by an apple falling on his 'head; from this 
striking event he passed by natural isteps (to a 
consideration of 'the universality of gravita-

tion. Eindtrin in descgbing his mental proc- 
ess in the evolution of his law of gravitation 
says that {his attention was lcallsd to a new 
point of view by discussing his experiences 
with a maa d o s e  fall from a high building he 
had just witnessed. The man fortunately suf- 
fered no serious injuries and assured Einstein 
$hat in the course of his fall he had not been 
conscious in tbe least of any pull dowmard on 
his body. I n  mathematical l a n g u a ~ ,  with 
reference to axes moving with the man the 
force of gravity had disappeared. This is a. 
case where by the transfer of the axes from the 
earth iteelf to the man, the Eorce of the gravi- 
tational field is annulled. The converse change 
of axes from l?he falling man to a point on the 
earth eould be considered as introducing the 
force of gravity into the equations of motion. 
Ano8her illu~tration of the introduction into 
our equations of a force by means of a chawe 
of axes is furnished by the ordinary treatment 
of a body in unliEorm rotation about an axis. 
For inlstance, in the case of a so-called conical 
pendulum, that is, the motion of a bob sws-
pendcd from a fixed point by a string, which is 
so set in motion %ha% the bdb describe9 a hori- 
zontal oirc1t.l and he string therefore describes 
a circular cone, if we transfer our axas from 
the eiarth and have them rotate around the vw- 
tical line through the fixed point with the 
same angular velocity as the bob, i t  is neces- 
sary to introduce into our equation^ of motion 
a fictitious "force" called thc centrifugal 
force. No one ever thinks of this force other 
than as a mabhemak,ical quantity idroduced 
inbo he equatiocs for the siahe of simplicity of 
treatment; no physical meaning is attached to 
it. Why should there be to any other so-ealled 
"force," which, like centrifugal force, is i d e -  
pendent of the nature of the matter? Again, 
here on the earth our sen~sation of weight is 
interpreted mathematically by combining ex-
pressions for centrifugal force and gravity; we 
have no distinct sensation for either separately. 
Why then is there any difference in the essence 
of @he two? Why not consider them both as 
brought (into our equations by the agency of 
mathmatical tranlslfomation~s? This is Ein- 
stein'~~point of view. 
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Granting, then, the principle of equivalence, 
we can so choose axes a t  any point at any in- 
stank that the: gravitational field will disappear; 
these axes are therefore of what Eddiwton 
calls the Galilean" type, the simplest pos- 
sible. Consider, that is, an orbserver in a box, 
or compartment, whidh is falling with the ac- 
celeration of the gravitational field at that 
point. He would not be oonscioue of the field. 
If there were a projectile fired off in this oom- 
partment, the observer would describe its path 
as being straight. In this space the infinitesi- 
mal interval between two space-time points 
would then be given by the formula 

as2=dxZ1+ dxZ2+ dx23+ dxZ4, 

where ds is she interval and xl, x,, x,, x,, are co- 
ordinates. If we make a mathematical trans- 
formation, i. e., use another !set & axes, 
interval woulid obviously take the form 

where xl, x,, x, and x, are now coordinates re- 
ferring to the new axes. This relation involves 
ten aoefficie&s, ,the coefficients defining lthe 
transfornation. 

But of course a certain dynamical value is 
also attached to the g'ts, because by the transfer 
of our axes from the Galilean type we have 
made a change: whioh lis equivalent to the in- 
troduction of a gravitational field; and the 
g'is must specify thme field. That is, these g's 
are the exprmsions of our experiences, and 
hence their values aan niot depend upon the 
use of any :special axes; the val'ues mu& be the 
same for all seIe&io~ns. In  other words, what- 
ever funation of %he ooordinattes any one g is 
far one s t  of axes, if other axes are chosen, 
$hi's g must still be the same function of the 
new cmrdixiatm. There are ten g's defined by 
&Berential equatiions; so we have ten corvariant 
equations. Einstein showed ho'w these g's 
could 'be regarded as generalaized pokentials of 
the field. Our own experiments and observa- 
tions upon gravitation have given us a certain 
kuowledge 'concerning tits potential; athiat b, we 
k m  a value for it whilch must be so near the 
truth thbak we can properly call it at least a first 
approximation: Or, stated differently, if Ein- 

stein ~succeds in deducing $he rigid value for 
the gravitational potential in lany field, it muat 
degenerate to the Newtonian value for the 
great majority of csllsles with whimch we have 
actual experience. Einstein's mebhod, then, 
was to inm&igate the fumetiom (or equations) 
which wloalrd satisfy the mathematical codi-  
tions just described. A transformation from 
the axes used by th,e observer in the following 
box may be made so as to introduce into the 
equations the gravitsutional field recognized by 
an observer on the earth near the box; but %is, 
obviously, would not be the general gravita- 
tional field, because the field changes as one 
moves over the surface of the earth. A solu-
tion found, therefore, as just indicated, would 
not be the one sought for the general field; and 
another must be found whioh is less stringent, 
th,an the former but reducers to i t  as a special 
case. He found himself at liberty t o  make a 
seleation from a$ong several possibilihies, and 
for sevenal reasons chose the simplest solution. 
He then tested this deci<sion by seeing if his 
formulae would degenerate Do Newtonfs law for 
the limiting case of velocities ,small w h  corn-
pard  with bhat of light, because this cond,i- 
tion ils satisfied in %hose cases to which New- 
ton's law applies. Hits formul~e satisfied this 
test, and he therefore was able to anhounoe: a 
"Jaw of gravihbationi," of whimch Newaon's was a 
special foinm for a simple case. 

To @he ondinary ,scholar the difficulties sur- 
mounted by Einstei'n in his investigations ap- 
pear stupendous. It is not improbable that 
the statement which he is alleged to have 
made $0 hiis editor, thak only t m  men in the 
world could understand hie treatment of the 
subject, is true. I am fully prepared to be-
lieve it, and wish it0 add that I certainly am 
not m e  of +he ten. But I can also say that, 
arftm a careful and serious &udy of his papers, 
I feel colnfident that there is nothing in them 
which I can not understand, given @he time .to 
beoome famlili~a with hhs special mathmatiml 
processes usdd. The moqe I work over Ein- 
steids papers, the more impressed I am, not 
pimiply by his genius in viewing the problem, 
but dm by his great technical skill. 

Following the path outlined, Einstein, as 



BCIENCE [N. 8.VOL.LI, NO. 1315 

just said, arrived dt certain mathematical laws 
for a gravitraitional fidd, lams whidh reduced 
to Newton's folm in  most cases where observa- 
tions are possible, but which led to different 
oonclursions in a few cases, knowledge concern- 
ing which we might obtain by careful observa- 
tions. I shall mention a few deductions from 
Einstein's formule. 

1. If a heavy particle is put at the center of 
a circle, and, if the length of the cincumference 
and the Jength of the diameter are measured, 
it will be found that their ratio is not * 
(3.14159). I n  otiher words the geometrical 
properties of space in such a gravitational 
field are not those diiscussed by Euclid; the 
space is, then, non-Euclidean. There is no 
way by whioh this deduction can be verified, 
the difference between the predicted ratio and 
* is too minute for us to hope to make our 
measurements with sufficient, exactness to de- 
termine the difference. 

2. All the lines in tihe solar spectrum should 
witih reference to lines obtained by te r rk r ia l  
sources be displaced slightly towards longer 
wave-lengths. The amount of displacement 
predicted for lines in the blue end of the 
spectrum is about one humidredth of an Ang- 
strom unit, a quantity well within experimen- 
tal limits. Unfontunately, as far as rthe testing 
of this prediction is concerned, there are sev- 
eral phyi8ical causes which are also operating 
to cause displacement of tihe speatrum-lines; 
and so at present a decision can not be rend- 
ered as to the veriification. St. John and other 
workers at the Mount Wilson Observatory have 
the question under investigation. 

3. Aomrding to Newton's law an isolated 
planet in its motion around a cenkral sun 
would describe, period after period, the same 
elliptical orbit; whereas Eindtein's laws lead to 
the prediction that the successive orbits tra- 
versed would not be identically the Euame. 
Each revo'lution would &art ithe planet off on 
an orbit very approximately elliptical, but 
with the major axis of Uhe ellipse rotated 
slightly in  the plane of the ohit .  When cahu- 
lations were made for ithe various planets in 
our eolar system, it was found that the only 
one which was of inhrest from the standpoint 

of verification of Einstein7,s formule was Mer- 
,cury. I6 has been known for a long time that 
there was actually such a change as just de- 
scrilbed in the orbit of Mercury, amounting to 
574" of arc per century; and it has been shosvn 
that of $his a rotation of 532" wzs due to the 
direct action of other planets, thus leaving an 
unexplained rotation of 42" per century. Ein-
stein;~ fo~rmub predicted a rotation of 43", a 
striking agreement. 

4. I n  accordance with Einstein',~ formule a 
ray 'of light pamifig close ;to a heavy piece of 
matter, the sun, for instance, should experi- 
edce a sefisJble ddection in towards the sun. 
Tihlis might be expected from '(general" con-
siderations. A light ray is, of course, an il-
lust~ation of energy in moti'om; energy and 
mass are generally considered to be identical 
in lthe sense that an ambunt of energy E has 
the mass E/c2where c is the velocity of light; 
and consequently a ray of light might fall 
within %he province of gravibation and the 
amount of deflectcon t,o be expected could be 
calculated by the ordinary formula for gravi- 
tation. Anather point of view is to consider 
again the observer inside the compartment 
falling with the acceleration of the gravita- 
tional field. To him the path of a projectile 
and a ray of light would both appear i&raight; 
so that, if the projectile had a velocity equal 
to that of light, i t  and the light wave would 
brave1 side by side. To an observer outside the 
compartment, e, g., to one on the eadh, both 
woulid then appear to have the same deflection 
m i n g  to the sun. But how much would the 
path of the projeotile be bent? What would 
be the shape of its parabola? One might apply 
Newtion's law; bat, according to Einstein's 
formulrt?, Newton's law should be used only for 
small velocities. I n  the cruse of a ray passing 
olose to the sun i t  was decided that according 
60 Einstein's formula there lshould be a de-
flection of 1".75 whereas Newton's law of 
gravitation predicted half this amount. Care-
ful plans were made by various astronomers. 
to .inve&igate this question at  the solar eckipise 
last May, a d  the result announced by Dyson, 
Eddtington and Crommelin, the leadems of as-
tronomy in England, wa.s ,that there was a de- 
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flection of 1".9. Of course the detection of 
such a minute deflection was an extraord' mar-
ily difficult matrter, so many correction^ had to 
be applied to the original observartions; but 
the names of the men who record the conolu- 
sions are such as to inspire confidmce. Cer-
tainly any effect of resraction seems to to ex-
cluded. 

I t  is thus seen that the fo rmu l~  deduced by 
Einstein have been ~ o ~ r m e d  in a variety of 
ways and in a most britliant manner. I n  con- 
nection witih these formuila one quwtion mmt 
arise in the minds of everyone: by what proc- 
ess, where in the course of the makhema[tical 
dwelopment, does the idea of mass reveal it- 
eelf? It was not in the equartions at the be- 
ginning and yet here i t  is a t  the end. How 
does i t  appear? As a mdttar of fact it is first 
seen as a constank of integration in the dis- 
cussion of the problem of tihe gravitational 
field due to a single particle; and the idenkity 
of this constan6 wid1 mass is proved when on,e 
compares Einlsrtein's formula with Newton's 
law which is simply its degenerated form. 
This mass, though, is the mass of which we 
become aware through our experiences with 
weight; a d  Einstein proceeded to prove that 
this quanttity w'hich entered sus! a constant of 
integration i n  his idally simple problem also 
obeyed the laws of conservation of mass and 
comervatim~ of momentum when he investi- 
gated the problem~s of two and more particles. 
Therefore Einstein deduced fliom his study of 
graviitational fields the well-known properties 
of matter whioh form the basis of theoretical 
mechanics. A further logical consequence of 
Xinsteids development i s  to show that energy 
has mags, a oonoept with which every one now- 
adays its familiar. 

The description of Einstein's method which 
I have gi-ven so far is simply the story of one 
success after another; and it, is certainly fair 
to ask if we have at last reached finality in our 
investigation of nlature, if we have attained to 
truth. Are [&ere no outsbanding difficulties? 
I s  there no possibility of error? Certainly, not 
until all the predictions made from Einstein's 
formuke have been investigated can much be 
said; and fur~her, i t  mu& $be wen whetiher any 
other lines of argument will lead tut the same 

~ l u d i o n s .But without waiting for all this 
there is at  least one difficulty which is ap- 
parent at lthis time. We have dilscuased the 
lams of naiture as independent in their form of 
referedce axas) a concept which appeals 
,str'ongly to our philoslopliy; yet i t  is not at all 
plear, at  first. sigh$ that we a m be justified in 
our belief. We can not imagine any way by 
;which we oan become conscious of the trarusla- 
tio~n of th,e earth in ,space; ;but by means of 
p g r ~ ~ ~ p e swe can learn a great deal a b u t  its 
sotation on l&ts axis. We could locate the posi-
tion's oh its two poles, and by watching s Fou-
,caulit pendulum or a gyrosimpe we can obtain a 
number which we interpret as the angular ve- 
locity of mtation of axes &ed in the earth; 
angular velolcity with reference to what? 
Where is the fundmental iset of axes? This 
i~sa real difficulity. It can be surmounted in 
several ways. Einstein himself has outlined a 
methold which in the end amounts to aslsuming 
the exi&lxce on the confines of space of vast 
quamtibim of matter, a proposition wlhich is 
pot aaractive. daSitter has suggested a pe-
pulfiar quality of the space to which we refer 
our space-time coordinates. The conlsequences 
pf thi's are most intere8ting, but no decision 
,can as yet ibe macle as to the justification of the 
bypothais. I n  any case we can ,say that the 
,difficulty railsed ,is not one that destroys the 
real value of Einstein's work. 
, I n  conclus~i~on I wi,sh to mph,asize the fact, 
which should be obvious, that E,inetein has not 
attempted any expianation of gravitation; he 
has been occupied with the deduction of its 
lawe. These laws, together dth those of elec- 
tromagnetic phenomena, cmplrise our store of 
knbwledge. There its nort the sIightest indica- 
$ion of a m,echanism, meaning by that a pic-
ture in terns of our senses. I n  fact what we 
have learned has been to realize that our desire 
to use such mechsnisinvs is futile. 

I J. S. AYES 
TEE JOHNS UNIVERSITYHOPEINS 
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ITwould tax the younger men of science 
beyond the compass of their imagination, if 

1 President's address at the fourth meeting of 
the Annual Conference of Biological Chemists, held 


