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EINSTEIN’S LAW OF GRAVITATION!

TaE by-laws of our society make it one of
the duties of its president to deiiver an ad-
dress before its members. This fact renders
it necessary for the president to select a sub-
ject; and this year the selection is to a
certain degree forced by the public press.
‘When a daily newspaper considers Einstein’s
work on gravitation a topic of sufficiently
general interest to devote to it valuable space
and cable funds, surely here is justification
for my selection of this as the subject of my
presidential address.

Einstein’s original memoirs upon gravita-
tion appeared in the years 1916 to 1918; and
there are two excellent papers in English ex-
pounding and explaining his method, one by
Professor deSitter, of Leyden, and one by
Professor Eddington, of Cambridge. While
Einstein’s work may be known to many of
you either in its original form or in one of
the two papers mentioned, I fear that the
attention of most of us was first directed
seriously to the matter by the articles in the
newspapers to which I have referred. I con-
fess that I was one of those who had post-
poned any serious study of the subject, until
its immense importance was borne in upon
me by the results of the recent eclipse expedi-
tion. I have all the enthusiasm of the dis-
coverer of a new land, and feel compelled to
describe to you what I have learned.

Albert Einstein, although now a resident
of Berlin and holder of a research professor-
ship of the Kaiser Wilhelm Institute, is
legally a Swiss. He is forty-five years old
and was for some time a professor in the
Zurich Technical School, and later in the
University of Prague. He is a man of liberal
tendencies, and apparently one whom any of

1 Presidential address delivered at the St. Louis
meeting of the Physical Society, December 30,
1919,
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us would be glad to welcome for personal
reasons in our international meetings of the
future. He protested against the famous
manifesto of the German professors in 1914
and was one of the eager supporters of the
German Republic when it arose from the
wreck of the Empire.

But, in presenting the subject of Einstein’s
study of the law of gravitation, I must begin
many years ago. In the treatment of Max-
well’s equations of the electromagnetic field,
several investigators realized the importance
of deducing the form of the equations when
applied to a system moving with a uniform
velocity. Omne object of such an investiga-
tion would be to determine such a set of
transformation formulse as would leave the
mathematical form of the equations unaltered.
The necessary relations between the new
space-coordinates, those applying to the mov-
ing system, and the original set were of
course obvious; and elementary methods led
to the deduction of a new variable which
should replace the time coordinate. This
step was taken by Lorentz and also, I believe,
by Larmor and by Voigt. The mathematical
deductions and applications in the hands of
these men were extremely beautiful, and are
probably well known to you all.

Lorentz’ paper on this subject appeared in
the Proceedings of the Amsterdam Academy
in 1904. In the following year there was
published in the Annalen der Physik a paper
by Einstein, written without any knowledge
of the work of Lorentz, in which he arrived
at the same transformation equations as did
the latter, but with an entirely different and
fundamentally new interpretation. Einstein
called attention in his paper to the lack of
definiteness in the concepts of time and space,
as ordinarily stated and used. He analyzed
clearly the definitions and postulates which
were necessary before one could speak with
exactness of a length or of an interval of
time. He disposed forever of the propriety
of speaking of the “true” length of a rod or
of the “true” duration of time, showing, in
fact, that the numerical values which we
attach to lengths or intervals of time depend
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upon the definitions and postulates which we
adopt. The words “absolute” space or time
intervals are devoid of meaning. As an
illustration of what is meant Einstein dis-
cussed two possible ways of measuring the
length of a rod when it is moving in the
direction of its own length with a uniform
velocity, that is, after having adopted a scale
of length, two ways of assigning a number
to the length of the rod concerned. One
method is to imagine the observer moving
with the rod, applying along its length the
measuring scale, and reading off the positions
of the ends of the rod. Another method
would be to have two observers at rest on the
body with reference to which the rod has the
uniform velocity, so stationed along the line
of motion of the rod that as the rod moves
past them they can note simultaneousiy on a
stationary measuring scale the positions of
the two ends of the rod. Einstein showed
that, accepting two postulates which need no
defense at this time, the two methods of
measurements would lead to different numer-
ical values, and, further, that the divergence
of the two results would increase as the
velocity of the rod was increased. In assign-
ing a number, therefore, to the length of a
moving rod, one must make a choice of the
method to be wused in measuring it. Ob-
viously the preferable method is to agree that
the observer shall move with the rod, carrying
his measuring instrument with him. This.
disposes of the problem of measuring space
relations. The observed fact that, if we
measure the length of the rod on different
days, or when the rod is lying in different
positions, we always obtain the same value
offers no information concerning the “real”
length of the rod. It may have changed, or
it may not. It must always be remembered
that measurement of the length of a rod is
simply a process of comparison between it
and an arbitrary standard, e. g., a meter-rod
or yard-stick. In regard to the problem of
agsigning numbers to intervals of time, it
must be borne in mind that, strictly speaking,
we do not “measure” such intervals, <. e.,
that we do not select a unit interval of time
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and find how many times it is contained :in
the interval in question. (Similarly, we do
not “measure” the pitch of a sound or the
temperature of a room.) OQur practical in-
struments for assigning numbers to time-
intervals depend in the main upon our agree-
ing to believe that a pendulum swings in a
perfectly uniform manner, each vibration
taking the same time as the next ome. Of
course we can not prove that this is true, it
is, strictly speaking, a definition of what we
mean by equal intervals of time; and it is
not a particularly good definition at that.
Tts limitations are sufficiently obvious. The
best way to proceed is to consider the concept
of uniform velocity, and then, using the idea
of some entity having such a uniform veloc-
ity, to define equal intervals of time as such
intervals as are required for the entity to
traverse equal lengths. These last we have
already defined. What is required in addition
is to adopt some moving entity as giving our
definition of uniform velocity. Considering
our known universe it is self-evident that we
should choose in our definition of uniform
velocity the velocity of light, since this selec-
tion could be made by an observer anywhere
in our universe. Having agreed then to illus-
trate by the words “uniform velocity” that
of light, our definition of equal intervals of
time is complete. This implies, of course,
that there is no uncertainty on our part as to
the fact that the velocity of light always has
the same value at any one point in the uni-
verse to any observer, quite regardless of the
source of light. In other words, the postulate
that this is true underlies our definition.
Following this method Einstein developed a
system of measuring both space and time
intervals. As a matter of fact his system is
identically that which we use in daily life
with reference to events here on the earth.
He further showed that if a man were to
measure the length of a rod, for instance, on
the earth and then were able to carry the rod
and his measuring apparatus to Mars, the
sun, or to Arcturus he would obtain the same
numerical value for the length in all places
and at all times. This doesn’t mean that any
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statement is implied as to whether the length
of the rod has remained unchanged or not;
such words do not have any meaning—re-
member that we can not speak of true length.
It is thus clear that an observer living on the
earth would have a definite system of units
in terms of which to express space and time
intervals, 4. e., he would have a definite sys-
tem of space coordinates (x, y, 2) and a
definite time coordinate (¢); and similarly an
observer living on Mars would have his sys-
tem of coordinates (2, ', 2', t'). Provided
that one observer has a definite uniform
velocity with reference to the other, it is a
comparatively simple matter to deduce the
mathematical relations between the two sets
of coordinates. When Einstein did this, he
arrived at the same transformation formule
as those used by Lorentz in his development
of Maxwell’s equations. The latter had shown
that, using these formulw, the form of the
laws for all electromagnetic phefiomena main-
tained the same form; so Einstein’s method
proves that using his system of measurement
an observer, anywhere in the universe, would
as the result of his own investigation of
electromagnetic phenomena arrive at the same
mathematical statement of them as any other
observer, provided only that the relative
velocity of the two observers was uniform.

Einstein discussed many other most im-
portant questions at this time; but it is not
necessary to refer to them in connection with
the present subject. So far as this is con-
cerned, the next important step to note is that
taken in the famous address of Minkowski,
in 1908, on the subject of “ Space and Time.”
It would be difficult to overstate the impor-
tance of the concepts advanced by Minkowski.
They marked the begining of a new period in
the philosophy of physics. I shall not at-
tempt to explain his ideas in detail, but shall
confine myself to a few general statements.
His point of view and his line of development
of the theme are absolutely different from
those of Lorentz or of Einstein; but in the
end he makes use of the same transformation
formule. His great contribution consists in
giving us a new geometrical picture of their
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meaning. It is scarcely fair to call Min-
kowski’s development a picture; for to us a
picture can never have more than three
dimensions, our senses limit us; while his
picture calls for perception of four dimen-
gions. It is this fact that renders any even
semi-popular discussion of Minkowski’s work
so impossible. We can all see that for us to
describe any event a knowledge of four
coordinates is necessary, three for the space
specification and one for the time. A com-
plete picture could be given then by a point
in four dimensions. All four coordinates are
necessary: we never observe an event except

at a certain time, and we never observe an

instant of time except with reference to space.
Discussing the laws of electromagnetic phe-
nomena, Minkowski showed how in a space of
four dimensions, by a suitable definition of
axes, the mathematical transformation of
Lorentz apd Einstein could be described by
a rotation of the set of axes. We are all
accustomed to a rotation of our ordinary
cartesian set of axes describing the position
of a point. We ordinarily choose our axes at
any location on the earth as follows: one
vertical, one east and west, one north and
south. So if we move from any one labora-
tory to another, we change our axes; they
are always orthogonal, but in moving from
place to place there is a rotation. Similarly,
Minkowski showed that if we choose four
orthogonal axes at any point on the earth,
according to his method, to represent a space-
time point using the method of measuring
space and time intervals as outlined by Ein-
stein; and, if an observer on Arcturus used a
similar set of axes and the method of meas-
urement which he naturally would, the set of
axes of the latter could be obtained from
those of the observer on the earth by a pure
rotation (and naturally a transfer of the
origin). This is a beautiful geometrical re-
sult. To complete my statement of the
method, I must add that instead of using as
his fourth axis one along which numerical
values of time are laid off, Minkowski defined
his fourth coordinate as the product of time
and the imaginary constant, the square root
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of minus one. This introduction of imagi-
nary quantities might be expected, possibly,
to introduce difficulties; but, in reality, it is
the very essence of the simplicity of the geo-
metrical deseription just given of the rotation
of the sets of axes. It thus appears that
different observers situated at different points
in the universe would each have their own set
of axes, all different, yet all connected by the
fact that any one can be rotated so as to
coincide with any other. This means that
there is no one direction in the four dimen-
sional space that corresponds to time for all
observers. Just as with reference to the
earth there is no direction which can be
called vertical for all observers living on the
earth. In the sense of an absolufe meaning
the words “ up and down,” “before and after,”
“gooner or later,” are entirely meaningless.

This concept of Minkowski’s may be made
clearer, perhaps, by the following process of
thought. If we take a section through our
three dimensional space, we have a plane, i. e.,
a two-dimensional space. Similarly, if a see-
tion is made through a four-dimensional
space, one of three dimensions is obtained.
Thus, for an observer on the earth a definite
section of Minkowski’s four dimensional space
will give us our ordinary three-dimensional
one; so that this section will, as it were,
break up Minkowski’s space into our space
and give us our ordinary time. Similarly, a
different section would have to be used for
the observer on Arcturus; but by a suitable
selection he would get his own familiar three-
dimensional space and his own time. Thus
the space defined by Minkowski is completely
isotropic in reference to measured lengths
and times, there is absolutely no difference
between any two directions in an absolute
sense; for any particular observer, of course,
a particular section will cause the space to
fall apart so as to suit his habits of measure-
ment; any section, however, taken at random
will do the same thing for some observer
somewhere. From another point of view,
that of Lorentz and Einstein, it is obvious
that, since this four dimensional space is
isotropic, the expression of the laws of elec-
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tromagnetic phenomena take identical mathe-
matical forms when expressed by any observer.

The question of course must be raised as
to what can be said in regard to phenomena
which so far as we know do not have an
electromagnetic origin. In particular what
can be done with respect to gravitational
phenomena? Before, however, showing how
this problem was attacked by Einstein; and
the fact that the subject of my address is
Einstein’s work on gravitation shows that
ultimately I shall explain this, I must empha-
size another feature of Minkowski’s geometry.
To describe the space-time characteristics of
any event a point, defined by its four coordi-
nates, is sufficient; so, if one observes the life-
history of any entity, e. g., a particle of mat-
ter, a light-wave, etc., he observes a sequence
of points in the ‘space-time continuum; that
is, the life-history of any entity is described
fully by a line in this space.
called by Minkowski a ¢ world-line.” Further,
from a different point of view, all of our
observations of nature are in reality observa-
tions of coincidences, e. g., if one reads a
thermometer, what he does is to note the
coincidence of the end of the column of
mercury with a certain scale division on the
thermometer tube. In other words, thinking
of the world-line of the end of the mercury
column and the world-line of the scale divi-
sion, what we have observed was the inter-
section or crossing of these lines. In a
similar manner any’ observation may be
analyzed; and remembering that light rays,
a point on the retina of the eye, etc., all have
their world lines, it will be recognized that it
is a perfectly accurate statement to say that
every observation is the perception of the in-
tersection of world-lines. Further, since all
we know of a world-line is the result of ob-
servations, it is evident that we do not.know
a world-line as a continuous series of points,
but simply as a series of discontinuous points,
each point being where the particular world-
line in question is crossed by another world-
line.

Tt is clear, moreover, that for the desecrip-
tion of a world-line we are not limited to the
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particular set of four orthogonal axes adopted
by Minkowski. We can choose any set of
four-dimensional axes we wish. It is further
evident that the mathematical expression for
the coincidence of two points is absolutely
independent of our selection of reference
axes. If we change our axes, we will change
the coordinates of both points simultaneously,
so that the question of axes ceases to be of
interest. But our so-called laws of nature
are nothing but descriptions in mathematical
language of our observations; we observe only
coincidences; a sequence of coincidences when
put in mathematical terms takes a form which
is independent of the selection of reference
axes; therefore the mathematical expression
of our laws of nature, of every character,
must be such that their form does not change
if we make a transformation of axes. This is
a simple but far-reaching deduction.

There is a geometrical method of picturing
the effect of a change of axes of reference, <. e.,
of a mathematical transformation. To a man
in a railway coach the path of a drop of water
does not appear vertical, 4. e., it is not parallel
to the edge of the window; still less so does it
appear vertical to a man performing mancevres
in an airplane. This means that whereas with
reference to axes fixed to the earth the path of
the drop is vertical; with reference to other
axes, the path is not. Or, stating the conclu-
sion in general language, changing the axes of
reference (or effecting a mathematical trans-
formation) in general changes the shape of any
line. If one imagines the line forming a part
of the space, it is evident that if the space is
deformed by compression or expansion the
shape of the line is changed, and if sufficient
care is taken it is clearly possible, by deforming
the space, to make the line take any shape de-
sired, or better stated, any shape specified by
the previous change of axes. It is thus possible
to picture a mathematical ¢ransformation as a
deformation of space. Thus I can draw a line
on a sheet of paper or of rubber and by bending
and stretching the sheet, I can make the line:
assume a great variety of shapes; each of these
new shapes is a picture of a suitable transfor-
mation.
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Now, consider world-lines in our four dimen-
sional space. The complete record of all our
knowledge is a series of sequences of intersec-
tions of such lines. By analogy I can draw in
ordinary space a great number of intersecting
lines-on a sheet of rubber; I can then bend and
deform the sheet to please myself; by so doing
I do not introduce any new intersections nor
do I alter in the least the sequence of intersec-
tions. So in the space of our world-lines, the
space may be deformed in any imaginable man-
ner without introducing any new intersections
or changing the sequence of the existing inter-
gections. It is this sequence which gives us the
mathematical expression of our so-called ex-
perimental laws; a deformation of our space is
equivalent mathematically to a transformation
of axes, consequently we see why it is that the
form of our laws must be the same when re-
ferred to any and all sets of axes, that is, must
remain unaltered by any mathematical trans-
formation.

Now, at last we come to gravitation. We can
not imagine any world-line simpler than that of
a particle of matter left to itself; we shall
therefore call it a “straight ” line. Our experi-
ence is that two particles of matter attract one
another. Expressed in terms of world-lines,
this means that, if the world-lines of two iso-
lated particles come near each other, the lines,
instead of being straight, will be deflected or
bent in towards each other. The world-line of
any one particle is therefore deformed; and we
have just seen that a deformation is the equiva-
lent of a mathematical transformation. In
other words, for any one particle it is possible
to replace the effect of a gravitational field at
any instant by a mathematical transformation
of axes. The statement that this is always pos-
gible for any particle at any instant is Ein-
stein’s famous “ Principle of Equivalence.”

Let us rest for a moment, while I call atten-
tion to a most interesting coincidence, not to
be thought of as an intersection of world-lines.
Tt is gaid that Newton’s thoughts were directed
to the observation of gravitational phenomena

by an apple falling on hig head; from this.

striking event he passed by natural steps to a
consideration of ‘the universality of gravita-
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tion. Einstein in describing his mental proc-
ess in the evolution of his law of gravitation
says that his attention was called to a new
point of view by discussing his experiences
with a man whose fall from a high building he
had just witnessed. The man fortunately suf-
fered no serious injuries and assured Einstein
that in the course of his fall he had not been
conscious in the least of any pull downward on
his body. In mathematical language, with
reference to axes moving with the man the
force of gravity had disappeared. This is a
case where by the transfer of the axes from the
earth itself to the man, the force of the gravi-
tational field is annulled. The converse change
of axes from the falling man to a point on the
earth could be considered as introducing the
force of gravity into the equations of motion.
Another illustration of the introduction into
our equations of a force by means of a change
of axes is furnished by the ordinary treatment
of a body in uniform rotation about an axis.
For instance, in the case of a so-called conical
pendulum, that is, the motion of a bob sus-
pended from @ fixed point by a string, which is
so set in motion that the bob describes a hori-
zontal circle and the string therefore describes
a circular cone, if we transfer our axes from
the earth and have them rotate around the ver-
tical line through the fixed point with the
same angular velocity as the bob, it is neces-
sary to introduce into our equations of motion
a fictitious “force” called the centrifugal
force. No one ever thinks of this force other
than as a mathematical quantity introduced
into the equations for the sake of simplicity of
treatment ; no physical meaning is attached to
it. 'Why should there be to any other so-called
“ foree,” which, like centrifugal force, is inde-
pendent of the nature of the matter? Again,
here on the earth our sensation of weight is
interpreted mathematically by combining ex-
pressions for centrifugal force and gravity; we
have no distinct sensation for either separately.
Why then is there any difference in the essence
of the two? Why not consider them both as
brought into our equations by the agency of
mathematical transformations? This is Ein-
stein’s point of view.
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Granting, then, the principle of equivalence,
we can o choose axes at any point at any in-
stant that the gravitational field will disappear;
these axes are therefore of what Eddington
calls the “ Galilean” type, the simplest pos-
sible. Consider, that is, an observer in a box,
or compartment, which is falling with the ac-
celeration of the gravitational field at that
point. He would not be conscious of the field.
If there were a projectile fired off in this com-
partment, the observer would desecribe its path
as being straight. In this space the infinitesi-
mal interval between two space-time points
would then be given by the formula

ds* = da®, + da®, + da®s + do’,,

where ds is the interval and x,, x,, ,, x,, are co-
ordinates. If we make a mathematical trans-
formation, <. e., use another set of axes, this
interval would obviously take the form

ds® == g,,da* + g, da% + guda% + g.d27%
+ 2¢..dz.dz, + ete.,

where #,, x,, #, and ¥, are now coordinates re-
ferring to the new axes. This relation involves
ten coefficients, the coefficients defining the
transformation.

But of course a certain dynamical value is
also attached to the ¢’s, because by the transfer
of our axes from the Galilean type we have
made a change which is equivalent to the in-
troduction of a gravitational field; and the
9’s must specify the field. That is, these ¢’s
are the expressions of our experiences, and
hence their values can not depend upon the
use of any special axes; the values must be the
same for all selections. In other words, what-
ever function of the coordinates any one g is
for one set of axes, if other axes are chosen,
this g must still be the same function of the
new coordinates. There are ten ¢’s defined by
differential equations; so we have ten covariant
equations. Einstein showed how these g’s
could be regarded as generalized potentials of
the field. Our own experiments and observa-
tions upon gravitation have given us a certain
knowledge concerning its potential; that is, we
know a value for it which must be so near the
truth that we can properly call it at least a first
approximation. Or, stated differently, if Ein-
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stein succeeds in deducing the rigid value for
the gravitational potential in any field, it must
degenerate to the Newtonian value for the
great majority of cases with which we have
actual experience. Einstein’s method, then,
was to investigate the functions (or equations)
which would satisfy the mathematical condi-
tions just described. A transformation from
the axes used by the observer in the following
box may be made so as to introduce into the
equations the gravitational field recognized by
an observer on the earth near the box; but this,
obviously, would not be the general gravita-
tional field, because the field changes as one
moves over the surface of the earth. A solu-
tion found, therefore, as just indicated, would
not be the one sought for the general field; and
another must be found which is less stringent
than the former but reduces to it as a special
case. He found himself at liberty to make a
selection from among several possibilities, and
for several reasons chose the simplest solution.
He then tested this decision by seeing if his
formule would degenerate to Newton’s law for
the limiting case of velocities small when com-
pared with that of light, because this condi-
tion is satisfied in those cases to which New-
ton’s law applies. His formule satisfied this
test, and he therefore was able to anmounce a
“law of gravitation,” of which Newton’s was a
special form for a simple case.

To the ordinary scholar the difficulties sur-
mounted by Einstein in his investigations ap-
pear stupendous. It is not improbable that
the statement which he is alleged to have
made to his editor, that only ten men in the
world could understand his treatment of the
subject, is true. I am fully prepared to be-
lieve it, and wish to add that I certainly am
not one of the ten. But I can also say that,
after a careful and serious study of his papers,
I feel comfident that there is nothing in them
which I c¢an not understand, given the time to
become familiar with the special mathematical
processes used. The moxe I work over Ein-
stein’s papers, the more impressed I am, not
simply by his genius in viewing the problem,
but also by his great technical skill.

Following the path outlined, Einstein, as
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just said, arrived at certain mathematical laws
for a gravitational field, laws which reduced
to Newton’s form in most cases where observa-
tions are possible, but which led to different
conclusions in a few cases, knowledge concern-
ing which we might obtain by careful observa-
tions. I shall mention a few deductions from
Einstein’s formule.

1. If a heavy particle is put at the center of
a circle, and, if the length of the circumference
and the length of the diameter are measured,
it will be found that their ratio is not =
(8.14159). In other words the geometrical
properties of space in such a gravitational
field are not those discussed by Euclid; the
space is, then, non-Euclidean. There is no
way by which this deduction can be verified,
the difference between the predicted ratio and
7 is 400 minute for us to hope to make our
measurements with sufficient exactness to de-
termine the difference.

2. All the lines in the solar spectrum should
with reference to lines obtained by terrestrial
sources be displaced slightly towards longer
wave-lengths. The amount of displacement
predicted for lines in the blue end of the
spectrum is about one hundredth of an Ang-
strom unit, a quantity well within experimen-
tal limits. Unfortunately, as far as the testing
of this prediction is concerned, there are sev-
eral physical causes which are also operating
to cause displacement of the spectrum-lines;
and so at present a decision can not be rend-
ered as to the verification. St. John and other
workers at the Mount Wilson Observatory have
the question under investigation.

3. According to Newton’s law an isolated
planet in its motion around a central sun
would describe, period after period, the same
elliptical orbit; whereas Einstein’s laws lead to
the prediction that the successive orbits tra-
versed would not be ddentically the same.
Each revolution would start the planet off on
an orbit very approximately elliptical, but
with the major axis of the ellipse rotated
slightly in the plane of the orbit. When calcu-
lations were made for the various planets in
our solar system, it was found that the only
one which was of interest from the standpoint
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of verification of Einstein’s formule was Mer-
cury. It has been known for a long time that
there was actually such a change as just de-
scribed in the orbit of Mercury, amounting to
574" of arc per century; and it has been shown
that of this a rotation of 532" was due to the
direct action of other planets, thus leaving an
unexplained rotation of 42” per century. Ein-
stein’s formule predicted a rotation of 43”, a
striking agreement.

4. In accordance with Einstein’s formule a
ray of light passing close to a heavy piece of
matter, the sun, for instance, should experi-
ence a sensible deflection in towards the sun.
This might be expected from “ general” con-
siderations. A light ray is, of course, an il-
lustration of energy in motion; energy and
mass are generally considered to be identical
in the sense that an amount of energy E has
the mass /¢’ where ¢ is the velocity of light;
and consequently a ray of light might fall
within the province of gravitation and the
amount of deflection to be expected could be
calculated by the ordinary formula for gravi-
tation. Another point of view is to consider
again the observer inside the compartment
falling with the acceleration of the gravita-
tional field. To him the path of a projectile
and a ray of light would both appear straight ;
so that, if the projectile had a velocity equal
to that of light, it and the light wave would
travel side by side. To an observer outside the
compartment, e. g., to one on the earth, both
would then appear to have the same deflection
owing to the sun. But how much would the
path of the projectile be bent? What would
be the shape of its parabola? One might apply
Newton’s law; but, according to Finstein’s
formulze, Newton’s law should be used only for
small velocities. In the case of a ray passing
close to the sun it was decided that according
to Einstein’s formula there should be a de-
flection of 17.75 whereas Newton’s law of
gravitation predicted half this amount. Care-
ful plans were made by various astronomers.
to investigate this question at the solar eclipse
last May, and the result announced by Dyson,
Eddington and Crommelin, the leaders of as-
tronomy in England, was that there was a de-
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flection of 17.9. Of course the detection of
such a minute deflection was an extraordinar-
ily difficult matter, so many corrections had to
be applied to the original observations; but
the names of the men who record the conclu-
sions are such as to inspire confidence. Cer-
tainly any effect of refraction seems to be ex-
cluded.

It is thus seen that the formulee deduced by
Einstein have been confirmed in a variety of
ways and in a most brilliant manner. In con-
nection with these formule one question must
arise in the minds of everyone: by what proc-
ess, where in the course of the mathematical
development, does the idea of mass reveal it-
self? It was not in the equations at the be-
ginning and yet here it is at the end. How
does it appear? As a maltter of fact it is first
seen as a constant of integration in the dis-
cussion of the problem of the gravitational
field due to a single particle; and the identity
of this constant with mass is proved when one
compares Einstein’s formule with Newton’s
law which is simply its degemerated form.
This mass, though, is the mass of which we
become aware through our experiences with
weight; and Einstein proceeded to prove that
this quantity which entered as a constant of
integration in his ideally simple problem also
obeyed the laws of conservation of mass and
conservation' of momentum when he investi-
gated the problems of two and more particles.
Therefore Einstein deduced from his study of

gravitational fields the well-known properties

of matter which form the basis of theoretical
mechanics. A durther logical consequence of
Einstein’s development is to show that energy
has mass, a concept with which every one now-
adays is familiar.

The description of Einstein’s method which
I have given so far is simply the story of one
success after another; and it is certainly fair
to ask if we have at last reached finality in our
investigation of nature, if we have attained to
truth, Are there no outstanding difficulties?
Is there no possibility of error? Certainly, not
until all the predictions made from Einstein’s
formulse have been investigated can much be
said; and further, it must be seen whether -any
other lines of argument will lead to the same
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conclusions. But without waiting for all this
there is at least one difficulty which is ap-
parent at this time. We have discussed the
laws of nafture as independent in their form of
reference axes, a concept which appeals
strongly to our philosophy; yet it is not at all
clear, at first sight, that we can be justified in
our belief. We can not imagine any way by
which we can become conscious of the transla-
tion of the earth in space; but by means of
gyroscopes we can learn a great deal about its
rotation on its axis. We could locate the posi-
tions of its two poles, and by watching a Fou-
cault pendulum or a gyroscope we can obtain a
number which we interpret as the angular ve-
locity of rotation of axes fixed in the earth;
angular velocity with reference to what?
Where is the fundamental set of axes? This
is a real difficulty. It can be surmounted in
several ways. Einstein himself has outlined a
method which in the end amounts to assuming
the existence on the confines of space of vast
quantities of matter, a proposition which is
not attractive. deSitter has suggested a pe-
culiar quality of the space to which we refer
our space-time coordinates. The consequences
of this are most interesting, but no decision
can as yet be made as to the justification of the
hypothesis. In any case we can say that the
difficulty raised is not one that destroys the
real value of Einstein’s work.

In conclusion I wish to emphasize the fact,
which should be obvious, that Einstein has not
attempted any explanation of gravitation; he
has been occupied with the deduction of its
laws. These laws, together with those of elec-
tromagnetic phenomena, comprise our store of
knowledge. There is not the slightest indica-
tion of a mechanism, meaning by that a pic-
ture in terms of our senses. In fact what we
have learned has been to realize that our desire
to use such mechanisms is futile.

J. S. AuEs
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