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SPECIAL ARTICLES 

T H E  PRESSURE OF SOUND WAVES 


INhis " Wkmestrahlung"1 Planck, after 
proving from electromagnetic theory that the 
pressure of radiation equals the volume den- 
sity of radiant energy, shows that the corpus- 
cular theory of light would give a pressure 
twice as great. From this he infers that the 
Maxwell radiation pressure can not be deduced 
from energy considerations, but is peculiar to 
the electromagnetic theory and is a confirma- 
tion of that theory. The implied conclusion 
is that mechanical waves would not exert a 
pressure of this magnitude. It may be well to 
recall, therefore, that Lord Rayleigh has 
shown, from energy consideration,z that trans- 
verse waves in a cord exert a pressure equal 
to the linear energy density, and that sound 
waves in air must cause a pressure equal to the 
volume density of energy in the vibrating 
medium. Altberg" has made the conclusions 
of Rayleigh the basis of a method of deter- 
mining the intensity of sounds. 

As the pressure due to sound waves in a gas 
must be ultimately the result of molecular im- 
pacts, i t  would seem probable that the magni- 
tude of this pressure may be determined from 
the elementary kinetic theory, and this proves 

W!iirmestrahlung, 2d ed., p. 58. 

z Phil. Mag., 3, 338, 1902. 

3Ann. der Phys., 11, 405, 1903. 


to be the case. Consider an extended wave 
incident normally on a unit surface. Accord-
ing to the kinetic theory, the molecules which 
strike this surface are reflected with the same 
velocity that they had just before impact. As 
the surface is small in comparison with the 
extent of the wave front, we need not follow 
the history of these reflected molecules, which 
will immediately become dispersed in the pass- 
ing wave in  all directions. I n  other words, 
under these conditions no stationary waves 
will be formed by reflection, and we may con- 
fine our attention to the effect of the incident 
wave. Of course there will also be increased 
pressure on the rear surface due to the dif- 
fracted waves, but this will not affect the pres- 
sure on the front surface. At the instant that 
the wave front strikes the surface imagine the 
whole wave length divided into thin strips 
parallel to the surface, s in number and each 
of thickness x, so that sx is equal to one wave- 
length. Tho velocities of displacement due to 
the wave are mass effects, but it seems proper 
to add them to the different individual veloc- 
ities of the gas molecules which move en 
masse. Let the velocities of wave displace-
ment in the successive strips be u,, u,, . . . us. 
The coinponent velocities of translation of the 
gas molecules normal to the surface are Ul, 
U,, . . . U,,. The two other components con- 
tribute nothing to the pressure on the surface. 
The resultant relocity of the molecules having 
a velocity of translation U, in the first strip 
will be U,+ u,. As they are reflected with 
the same velocity, the change of momentum 
of each molecule is 

2m(U, -+ u,) =f.dt, 

where m is the mass of each molecule and 
j.dt the impulse of the force during collision. 
If N, is the number of molcculcs per unit 
volume having the velocity U,, the number in 
the strip of thickness n: is N,x and if t, is the 
time required for the strip to move a distances, 

N,z =N,(U, if- u,)t,. 

Taking account of the fact that half the 
molecules of this class will be moving away 
from the surface, the total change of momen- 
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tum of all the molecules of this class during 
the time t, is 

iV,m(U, $. ~ , ) ~ t ,2f.dt.= 

The average pressure during the interval t, is 
2f .dt/t,, therefore, 

N,m(U, + u,I2 =p,. 

Similarly for all the strips as they successively 
strike the surface up to the last, where 

N,m(U, + us)' =,Ps. 

Squaring and adding for all values of u 
from u, to us, 

N,m(sU,2 4- 2U,s2uS + 2uS2) =*Yips. 

But Xu, throughout the wave is zero, Xp/s  is 
the average pressure during the impact of the 
whole wave, and 2u"/s is u2, the mean square 
velocity due to vibration, hence after divid- 
ing by s, 

N,m(UI2+ u2)==PI 

and the same is true of all the other classes of 
molecules with velocities from U, to U,. If 
the total number of molecules of all classes is 
N, =N, + N, ,+N,, etc., the final resultant 
"effect after adding all the expressions for P, 
will be 

Nm (U2 3.u2) =:Spa=P, 

where U2 is the mean square translational 
velocity --$V,Un2/N. The kinetic theory 
shows that the pressure is NmU2 when no 
sound waves are passing. Hence the increased 
pressure due to the waves is 

Nmu2=pu2, 

where P is the density of the gas. 
If the equation of the wave motion is 

y =a cos (2r/A) (X -Vt), 

u =cly/dt =;a(2r/A)V sin (2r/A) (x -Vt), 

and, since the mean value of sin2 is 1/2, 

u 33a2 (2r/1r/r) =&a2&?, 

and the pressure due to the waves is 
pu2=- & P ~ ~ w ~ ,which also represents the maxi- 
mum kinetic energy or mean total energy of 
the waves per unit volume, in agreement with 
Rayleigh's conclusion. 

The same result might have been reached 
directly by assuming that the pressure of a 
gas is proportional to the mean square velocity 
of the molecules, however that velocity may be 
produced. The symmetrical positive and 
negative values of u would cause the products 
U,u, to vanish in forming the squares of the 
resultant velocities, so that u2 would be the 
increase in the mean square velocity, leading 
to the same result as that given above. 

When we consider the propagation of sound 
waves in air in molecular rather than in mass 
terms the expression potential energy loses its 
meaning. The entire energy of the waves may 
be expressed in  terms of molecular kinetic 
energy. The conclusion that p =pu2 is equiv- 
alent to saying that the pressure due to sound 
waves is equal to twice the mean density of 
kinetic energy in the medium. When stated 
in this form, the results agree with those ob-
tained by Planck for the corpuscular theory. 
The mean kinetic energy is twice as great in 
one case as in  the other. 

I n  the case of stationary waves, the energy 
density is evidently twice as great as in the 
incident waves alone; and the mean square 
velocity from node to node deduced from the 
mathematical expression for the wave dis-
turbance, and hence the pressure, is likewise 
twice as great. 

The absolute temperature of a gas is pro- 
portional to the mean square velocity of the 
molecules. Ordinarily we should limit this 
relation to the case where the motion is en- 
tirely chaotic, not en masse. I n  either pro- 
gressive or stationary waves there is an in-
creased mean square velocity in the direction 
of propagation which would record itself as 
an increase of temperature on any measuring 
instrument. I n  particular, a t  the loops of 
stationary waves where there are no density 
changes no lateral change of pressure would 
occur, while in the direction in  which the 
waves travel there would be an increase of 
mean square velocity. I n  a sense there would 
be a state of polarized temperature. A thin 
bolometer strip would undoubtedly indicate 
a higher temperature when the waves are inci- 
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dent on its flat side than when they are inci- 
Males Females 

dent on its edge. The maximum sound-wave Apparent . ---____-_ 
Record 1 Eeredi- 1 1iqumber t a r y ~ o n - With Without Wlth Withoutpressure found by Altberg, for very intense elltutiOn Rue*- R u d l  Rudi- Rudi-

stationary waves, was about .26 dyne. Since 
the pressure of a gas is proportional to the 
absolute temperature, dT/T =,dP/P. From 
this i t  may be calculated that the increase of 
temperature indicated by a thin bolometer 
strip on which the waves exert a pressure of 
.26 dyne would be about .000075" at  atmos- 
pheric pressure and a temperature of 17" C. 
or 290" absolute. 

E. P. LEWIS 
UNIVERSITY CALIFORNIAOF 

RUDIMENTARY M A M M E  I N  SWINE A SEX-
LIMITED CHARACTER1 

TIIE inheritance of the rudimentary mammae 
found on the lower part of the scrotum of the 
boar and on the inside of the thighs to the rear 
of the inguinal pair in the sow, was reported 
as typically sex-limited by the writer in 1912 
and 1913. Later, in 1914, due to the failure 
to discover a boar homozsgous for the char- 
acter, an attempt was made to classify the in- 
heritance as sex-linked in nature. Certain 
more recent discoveries, due largely to a few 
selected matings, have cleared up the diffi- 
culties which in 1914 were believed to exist, 
and make the earlier interpretation more 
probable. 

The case in point is as follows: A Duroc 
Jersey boar possessing the rudimentaries was 
mated to a grade black sow lacking them. A 
litter of nine pigs was farrowed, four of the 
boars having rudimentaries, and one lacking 
them, while three of the sows lacked rudi- 
mentaries and the fourth possessed them. 
Couplcd with the evidence on the inheritance 
of this character published previously, this 
breeding performance indicates that both the 
Duroc Jersey boar and the grade black sow 
were heterozygous for this character. 

One of the boars possessing rudimentaries 
from this litter was mated to the four sows of 
the litter with the following results : 

1Paper No. 2 from the Laboratory of Animal 
Technology, Kansas Agricultural Experiment Sta- 
tion. 

mentarlee mentaries mentaries,mentaries 

Sow 23 ...... rr 3 0 0 2 
Sowm ... I r r- - --- I --4 0 I 0 I 4 

This breeding performance very dcfinitely 
indicates that the boar was homozygous for 
the rudimentary mammze. A11 of the boar pigs 
that he sired possessed the character, even 
though two of the sows were of a type not to 
transmit it at all. It' he were heterozygous 
for the character, then a t  least part of the 
seven male pigs from sows 28 and 29 should 
have lacked the rudimentaries; the chances 
of their all having them being one out of 128. 
The discovery .of a boar homozygous for the 
rudimentaries removes the principal stumbling 
block to the simple sex-limited theory. 

Davenport and Arkell have developed a 
scheme which bridges the discrepancies be-
tween sex-limited and sex-linked inheritance, 
even when apparently homozygous animals 
exist. Since, however, the sex-limited explana- 
tion advanced by Wood seems to cover all 
the facts that are involved in this case, and 
since it is much simpler, the writer prefers 
thus to interpret these results. 

EDWARDN. WENTWORTH 
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TEE 'sessions of the annual meeting of the Na- 
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