SCIENCE

FRIDAY, APRIL 30, 1915

CONTENTS

The American Association for the Advance- ment of Science:— Standards of Ventilation in the Light of	
Recent Research: Professor C. E. A. WINSLOW	625
Some Engineering Problems in Ventilation: D. D. KIMBALL	632
Conditions at the University of Utah	637
The Pacific Association of Scientific Societies: PROFESSOR W. W. CAMPBELL	637
The American Association for the Advance-	
ment of Science: Dr. L. O. HOWARD	638
Scientific Notes and News	640
University and Educational News	644
Discussion and Correspondence:— The Preservation of the Fundamental Con- ceptions of Mechanics: DR. GORDON S. FULCHER. Get the Units Right: PROFESSOR ALEXANDER MCADIE. A Spurious Case of Multiple Human Births: PROFESSOR G. H.	
Parker	644
Scientific Books:— Kelly on Some American Medical Botanists: DR. F. H. GARRISON. Best on the Deaf: JOHN D. WRIGHT. Dr. Gifford's Natural Sines: PROFESSOR DAVID EUGENE SMITH. Tower, Smith and Turton's Principles of Physics: PROFESSOR G. W. STEWART	649
Special Articles:— Antagonism and Balanced Solutions: DR. RODNEY H. TRUE. On the Osmotic Pressure of the Juices of Desert Plants: DR. J. AR- THUR HARRIS, JOHN V. LAWRENCE, DR. ROSS AITKEN GORTNER. On the Genus Trachodon: CHARLES W. GILMORE	653
The Society of American Bacteriologists: Dr. A. Parker Hitchens	660
Societies and Academies:— The Biological Society of Washington: M. W. LYON, JR. The New Orleans Academy of Sciences: PROFESSOR R. S. COCKS	664

THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE1 STANDARDS OF VENTILATION IN THE LIGHT OF RECENT RESEARCH

THE fact that the stagnant air of an occupied room becomes uncomfortable and makes those who are exposed to it listless and inert is a matter of common experience. When overcrowding in a close unventilated space reaches a certain point the results may even be fatal within a few hours, as in the Black Hole of Calcutta, the underground prison at Austerlitz and the hold of the ship Londonderry. Conversely the value of fresh air in the treatment of tuberculosis and other diseases is one of the fundamentals of medical and hygienic practise.

For the sanitarian it is necessary, however, to know something more than this general fact that bad air is bad. He must not only have some workable conception as to its operation, but also a more or less definite standard of permissible deviation from absolute purity.

In the earlier days of ventilation this was an easy task. It was natural to assume that the evil effects of the air of occupied rooms was due, either to lack of oxygen or excess of carbon dioxide, or to the presence of some specific organic poison of human origin—morbific matter or anthropotoxin, as this hypothetical substance was called. Of either of these changes the amount of carbon dioxide should serve as a fair measure, and a carbon dioxide standard was therefore confidently advanced by the older sanitarians as a practically all-suffi-

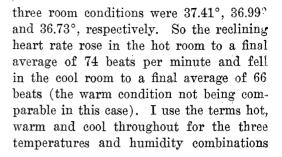
¹ Papers presented at a Symposium on Ventilation at the Philadelphia meeting.

MSS. intended for publication and books, etc., intended for review should be sent to Professor J. McKeen Cattell, Garrison-On-Hudson, N. Y.

cient measure of atmospheric vitiation. Even as late as 1910 in the excellent textbook of Hoffman and Raber one could read that carbon dioxide

is constantly being diffused throughout the air of the room, thus rendering it unfit for use. If this carbonic acid gas could be dissociated from the rest of the air and expelled from the room without taking large quantities of otherwise pure air with it, the problem of the heating engineer would be simplified, but this can not be done.

Yet Pettenkofer as long ago as 1863 showed clearly that carbon dioxide in itself is guite without effect in the highest concentrations which it ever attains in occupied rooms, and during the last fifteen years the researches of Flügge, Haldane, Hill, Benedict and other physiologists have rendered the older and more naïve view of the subject entirely untenable. Their studies indicate beyond any reasonable doubt that the more obvious effects experienced in a badly ventilated room are due to the heat and moisture produced by the bodies of the occupants, rather than to the carbon dioxide or other substances given off in their breath. Two fundamental experiments have been repeated again and again by these observers which alone would suffice to demonstrate, as Professor F. S. Lee has so well expressed it, that the problem of ventilation is not chemical, but physical-not respiratory, but cutaneous. These are, first, that subjects immured in close chambers, and exposed to the heat as well as the chemical products formed therein, are not at all relieved by breathing pure outdoor air through a tube; and, second, that they are completely relieved by keeping the chamber artificially cool without changing the air at all, and are relieved to a considerable extent by the mere cooling effect of an electric fan.


When the New York State Commission on Ventilation began its work last year it seemed that in spite of the establishment of these broad principles the subject deserved further detailed study at its hands, particularly in regard to possible undetected effects of chemical impurities and in regard to the harmful influence of moderately but not excessively high temperatures which have received but little attention in earlier researches.

The work of the N.Y. State Commission was made possible by a generous gift of Mrs. Elizabeth Milbank Anderson through the N. Y. Association for Improving the Condition of the Poor, and the members of the commission are Mr. D. D. Kimball, Professor F. S. Lee, Dr. J. A. Miller, Professor E. B. Phelps, Professor E. L. The experi-Thorndike and the writer. ments so far conducted have been carried out in two experimental rooms placed at our disposal by the trustees of the College of the City of New York and now equipped so that the atmospheric conditions in one room can be very closely controlled by apparatus located in the other. In the observation room over one hundred different subjects in groups of four have been exposed for periods of from three and a half to eight hours a day for from one to eight weeks in each series of experiments, to known conditions of temperature and humidity and atmospheric vitiation and their physiological and psychological reactions and mental and physical efficiency observed and measured by the most exhaustive methods.

The results of our experiments to date have been presented before the American Public Health Association at its Jacksonville meeting and may be briefly summarized as follows:

Even quite extreme conditions of heat and humidity (86° with 80 per cent. relative humidity) had no measurable effect upon the rate of respiration; dead space in the lungs; acidosis of the blood; respiratory quotient; rate of digestion and rate of heat production (both measured by oxygen consumption); protein metabolism (measured by determinations of creatinine in the urine); or skin sensitivity.

On the other hand, the working of the circulatory and heat regulating machinery of the body was markedly influenced by even a slight increase in room temperature,

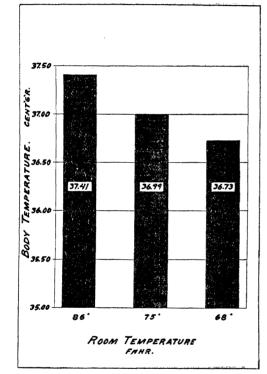


FIG. 1. Relation between Room Temperature and Average Rectal Temperature of all subjects at end of day.

as, for example, from 68° to 75° with 50 per cent. relative humidity in both cases. In a hot room (86° —80 per cent. relative humidity) the rectal body temperature usually rose during the period of observation; in a warm room (75° —50 per cent. relative humidity) it remained on the whole about constant; in a cool room (68° —50 per cent. relative humidity) it fell. The average body temperatures attained under these

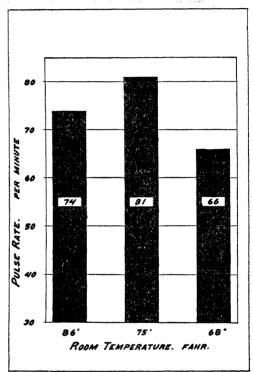


FIG. 2. Relation between Room Temperature and Average Reclining Pulse Rate of all subjects at end of day. (High value at 75° due to preceding physical work not duplicated at other temperatures.)

cited above. The increase of heart rate on passing from a reclining to a standing position became greater (by an average of 7 beats) during a sojourn in the hot room; while it became less by an average of 3 beats in the warm room and by an average of 7 beats in the cool room. The systolic blood pressure was slightly decreased in the hot room (112 mm. against 116) and the Crampton value was markedly decreased, averaging 35 for the hot room, 45 for the warm room and 60 for the cool room.

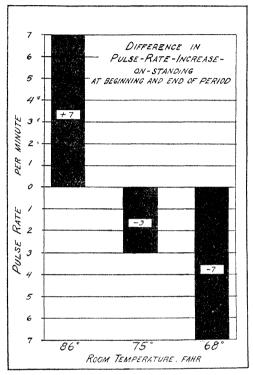


FIG. 3. Relation between Room Temperature and Average Difference between Increase-in-Pulse-Rate-on-Standing after reclining at end of period and similar increase at beginning of period.

Elaborate psychological tests of color naming, naming opposites, addition, cancellation, mental multiplication, typewriting and grading specimens of handwriting, rhymed couplets and prose compositions, all failed entirely to show any effect of even the severe 86°—80 per cent. relative humidity condition upon the power to do mental work under the pressure of a maximal efficiency test. Option tests of the inclination to do work, in which the subjects had the choice of doing mental multiplication or typewriting for pay, or of reading novels or doing nothing, showed a distinct lessening in the total amount of work done in the hot room while with male subjects whose votes as to comfort showed no preference for the 68° over the 75° condition there was as

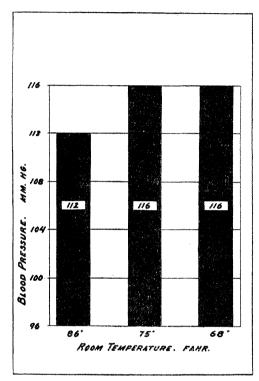


FIG. 4. Relation between Room Temperature and Average Systolic Blood Pressure of all subjects at end of day.

much accomplished in the warm as in the cool room. We plan to repeat these experiments with women subjects who may probably be more susceptible to slight degrees of overheating.

The results with physical work (lifting dumbbells and riding a stationary bicycle) were much more definite. Again maximum effort tests showed no appreciable influence of room temperature, but when the subjects had a choice they accomplished 15 per cent. less work at 75° and 37 per cent. less at 86° than at 68°. These conclusions are quite what one would expect. Under pressure efficient work can usually be accom-

SCIENCE

plished even under unfavorable conditions, but as a matter of common experience we find that the children in overheated schoolrooms and the workers in overheated factories are listless and inactive.

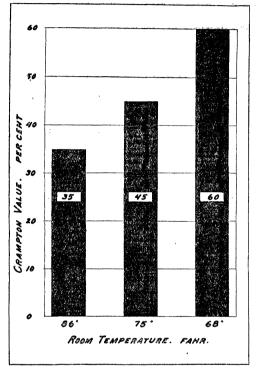


FIG. 5. Relation between Room Temperature and Average Crampton Value for all subjects at end of day.

Experiments are now under way in regard to the influence of overheated rooms upon susceptibility to respiratory disease which promise to confirm the observations of Leonard Hill as to the changes in the mucous membranes which follow exposure to hot and dry air, while we find that the resistance of animals to artificial infection is very definitely lowered by chill following exposure to a hot atmosphere.

As to the effect of stagnant breathed air, contaminated by a group of subjects so as to contain on an average from 20 to 60 parts of carbon dioxide per 10,000, our observations are entirely negative, so far as the physiological and psychological and efficiency tests above mentioned are concerned. So long as the room temperature was the same it seemed to make not the slightest

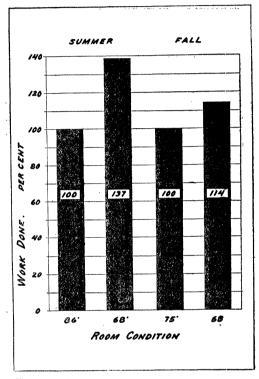


FIG. 6. Relation between Room Temperature and Average Amount of Physical Work accomplished during the day, in summer and fall experiments.

difference to our subjects whether the air in the chamber was stagnant or was renewed at the rate of 45 cubic feet per minute per capita—except in one particular respect to be discussed more fully below.

It is perhaps not unnatural that these results, like the similar results of earlier investigators, should be popularly misinterpreted as meaning that ventilation of any kind is a needless luxury. When the first progress report of the commission was discussed in a New York paper under the headline, "Commission put its O. K. on Stagnant Air," the curator of a large college building at once called upon the chief of the investigating staff to ask if he would be justified in stopping his fans. Such a conclusion as this is, of course, guite unjustified and most unfortunate in its effects. No scientific investigations can contradict or minimize the well-established results of experience as to the bad effects of poor ventilation and the beneficial results of fresh air. What physiological research has done is to show why bad air is bad-primarily on account of its high temperature and lack of cooling air movement, sometimes combined with high humidity. In our experimental rooms we can separate the factors of stagnation and overheating, but in practise an unventilated room (if at all crowded) is an overheated room. Ventilation is just as essential to remove the heat produced by human bodies as it was once thought to be to remove the carbon dioxide produced by human lungs.

Even the quantitative standards of air change established on the old chemical basis serve very well on the new physical one. For example, according to Pettenkofer's classical figure, which is a very low one, an adult gives off 400 British thermal units per hour. Let us assume that this heat must be removed by air entering the room at 60° and leaving it not above 70°. One B. T. U. raises the temperature of about 50 cubic feet of air by 1°, or the temperature of 5.0 cubic feet of air from 60° to 70°. Hence our average adult producing 400 B. T. U. will require 2,000 cubic feet of air per hour at 60° to keep the surrounding temperature from rising. An ordinary gas burner produces 300 B. T. U. per candle-power hour; therefore each such burner requires 1,500 cubic feet of air per candle power. These calculations. of course, ignore direct heat loss through walls and ceiling which with a zero temperature outside may carry off the heat produced by 50 or 100 people. Ventilation provisions must, however, be based on the least, rather than on the most, favorable conditions. In crowded auditoria every bit of the 2,000 cubic feet of air is needed, and in many industrial processes where the heat produced by human beings and illuminants is reinforced by the friction of machinery and the heat from solder pots, furnaces, mangles, pressing irons and a host of other sources, even more will be required.

Furthermore, the recent studies of the New York State Commission suggest that there may, after all, be certain deleterious effects resulting from the chemical composition of the stagnant air of occupied rooms,

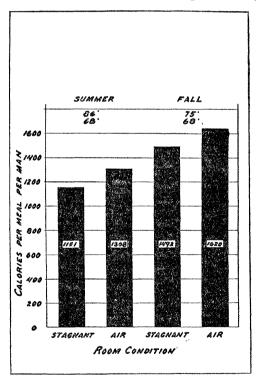


FIG. 7. Average Calorific Value of luncheons eaten with ample supply of fresh air and with no fresh air supply. In both summer and fall experiments the same conditions as to temperature and humidity prevailed through each series.

entirely aside from its temperature. As noted above, all the ordinary physiological and psychological tests failed to show any such effect; but in one particular we noted a difference in the behavior of the subjects exposed to stagnant and fresh air of the same temperature and humidity. In two of our series of experiments standard luncheons were served to the subjects in the experimental chamber and the amount on their plates was weighed. In one series the subjects consumed on the stagnant days an average of 1,151 calories and on the fresh-air days an average of 1,308 calories, an increase of 13 per cent. In a second series during colder weather, the average consumption was larger, 1,492 calories for the stagnant and 1.620 calories for the fresh-air days, an excess again for the fresh-air days, this time of about 9 per cent. The opinions of the subjects as to their comfort slightly favored the stagnant days, but it seems possible that odors of some sort, not consciously perceived by those exposed to them for several hours, may yet affect the appetite and hence the general health.

Even if further investigations should fail to confirm this result, it is my personal feeling that occupied rooms should be kept free from noticeable odors as a measure of public decency if not of public health. The cleanliness which results from the habit of bathing, except for the washing of the hands before eating, has, so far as I am aware, no important sanitary results. Just as the people who have been in a close room do not notice the odors which have accumulated during their occupancy, the person unaccustomed to bathing is unconscious of the effect produced, yet common decency rightly demands both bodily cleanliness and fresh air.

Recent research has, on the whole, strengthened rather than weakened the arguments for ventilation. It has shown, however, that the physical quality of the air as well as its amount must be considered, and that a room supplied with air at the room inlet which will explode a thermometer registering to 125° (which happened to the instrument of one of my investigators in a New York City school) is not well ventilated, however many cubic feet of air may enter it.

The thermometer is the first essential in estimating the success of ventilation. Temperature standards must come into general use and a rise above 70° must be recognized as a sign that discomfort is being produced and efficiency decreased and vitality lowered. The carbon dioxide standard is still of value, however, as ordinarily a measure of the air change which is required to carry off both heat and odors; and the mechanical standard of thirty cubic feet of air per minute per capita as the amount necessary to supply in some way if an occupied room is to remain cool and fresh is still of general application.

The question of humidity is perhaps the most important one which remains to be solved before the practise of ventilation can be placed on a sure basis. A lack of humidity, as Professor Phelps has pointed out, makes hot air feel cooler and cold air feel warmer. Extreme dryness per se. however, at high or moderate temperatures, is believed by many to be in itself harmful. conducing to nervousness and restlessness and producing injurious effects upon the membranes of the nose and throat. There is, unfortunately, no solid experimental evidence upon this point, and this is one of the most important subjects which the N.Y. State Commission hopes to be able to study during the coming year.

It is a foolish empiricism which maintains that outdoor air as Nature makes it is necessarily the final word in air conditioning. The task of applied science is to find out the best elements in a natural environment and to select the good without the bad.

Only as we succeed by the application of the methods of research in disentangling and measuring the various factors involved in atmospheric influence shall we be able to establish sound standards for the practical art of ventilation.

C.-E. A. WINSLOW

NEW YORK CITY

SOME ENGINEERING PROBLEMS IN VENTILATION

In the study of ventilation the engineering problems have not been overlooked. The criticisms directed against artificial ventilation have accomplished the double purpose of spurring to greater effort those who have been investigating the physiological problems relating to this subject and of causing the ventilating engineer to investigate the mechanical features of his work, with the intent of determining whether ventilation systems as installed meet all of the demands of good ventilation as now understood and whether they operate at a maximum of mechanical efficiency.

A careful review of the results in both fields is of surprising interest. The sanitarian formerly told us that carbon dioxide was a poison, that insufficient ventilation meant insufficient oxygen for breathing purposes and that we were endangered by "crowd poison" when in a mass of people. But little was said of temperature, less of humidity and nothing of air movement. We all believed that the chemistry of the air was vital.

The sanitarians, as a result of much experimentation, beginning about ten years ago, have proven to the satisfaction of all that there were other factors within the realm of ventilation of much greater importance than the chemistry of the air, notably its temperature, humidity and air movement, that is, the physical condition of the air.

The effect of excessive temperatures and humidities is especially well understood, as is the demand for constant air movement for the elimination of bodily heat and moisture. Less is scientifically known of the effect of cold and the effect of low humidities. The solution of these two problems is of vast importance.

Some there are who disregard altogether air quality, pinning their entire faith on proper temperature, humidity and air movement. Such a position is not justified by any reliable data now available. The cumulative effect of long exposures to stagnant air must be studied before safe conclusions may be drawn. Attention may be directed to the fact that in the experiments of the New York State Commission on Ventilation stagnant air decreased the appetite of the subjects 13 per cent. Is it not safe to assume that this is indicative of other. and possibly more serious, results. The report of Professor Winslow on the first year's work of the commission well states that this is "an observation which for the first time offers scientific evidence in favor of fresh air as compared with stagnant air of the same temperature and humidity." A final determination of the importance of air quality involves extended experimentation.

Window ventilation has been put forward as a panacea for all of ventilation's ills. But how little we scientifically know of its worth or its difficulties, especially those of air distribution, drafts, stagnant areas, temperature regulation, humidification, dust and economics.

But real advances have been made in solving the long-standing question of what constitutes good ventilation. The solution