SCIENCE

FRIDAY, SEPTEMBER 4, 1914

CONTENTS

Address of the President of the British Asso- ciation for the Advancement of Science: DR. WILLIAM BATESON	319
The Status of Hypotheses of Polar Wander- ings: Professor Joseph Barrell	333
Scientific Notes and News	340
University and Educational News	343
Discussion and Correspondence:— Composition and Thought: MIDDLE WEST	344
Scientific Books:— Enriques's Problems of Science: Professor C. J. Keyser. Kaye on X-Rays: Professor H. A. Wilson. Verworn on Irritability: C. C. S	346
Regeneration of Antennæ: A. N. CAUDELL	352

Special Articles:---

A Second	Case of	Metamorph	hosis witho	nıt
Parasitism	in the	Unionid x:	ARTHUR	D.
Howard.	Laborato	ry Notes:	LANCE BU	JR-
LINGAME .				353

ADDRESS OF THE PRESIDENT OF THE BRITISH ASSOCIATION FOR THE AD-VANCEMENT OF SCIENCE1

AT Melbourne I spoke of the new knowledge of the properties of living things which Mendelian analysis has brought us. I indicated how these discoveries are affecting our outlook on that old problem of natural history, the origin and nature of species, and the chief conclusion I drew was the negative one, that, though we must hold to our faith in the evolution of species, there is little evidence as to how it has come about, and no clear proof that the process is continuing in any considerable degree at the present time. The thought uppermost in our minds is that knowledge of the nature of life is altogether too slender to warrant speculation on these fundamental subjects. Did we presume to offer such speculations they would have no more value than those which alchemists might have made as to the nature of the elements. But though in regard to these theoretical aspects we must confess to such deep ignorance, enough has been learned of the general course of heredity within a single species to justify many practical conclusions which can not in the main be shaken. I propose now to develop some of these conclusions in regard to our own species, man.

In my former address I mentioned the condition of certain animals and plants which are what we call "polymorphic." Their populations consist of individuals of many types, though they breed freely together with perfect fertility. In cases of

¹Second part of the address delivered at Sydney on August 20. The first part of the address, delivered at Melbourne on August 14, was printed in the last issue of SCIENCE.

MSS. intended for publication and books, etc., intended for review should be sent to Professor J. McKeen Cattell, Garrisonon-Hudson, N. Y.

this kind which have been sufficiently investigated it has been found that these distinctions-sometimes very great and affecting most diverse features of organizationare due to the presence or absence of elements, or factors, as we call them, which are treated in heredity as separate entities. These factors and their combinations produce the characteristics which we perceive. No individual can acquire a particular characteristic unless the requisite factors entered into the composition of that individual at fertilization, being received either from the father or from the mother or from both, and consequently no individual can pass on to his offspring positive characters which he does not himself possess. Rules of this kind have already been traced in operation in the human species; and though I admit that an assumption of some magnitude is involved when we extend the application of the same system to human characteristics in general, yet the assumption is one which I believe we are fully justified in making. With little hesitation we can now declare that the potentialities and aptitudes, physical as well as mental, sex, colors, powers of work or invention, liability to diseases, possible duration of life, and the other features by which the members of a mixed population differ from each other, are determined from the moment of fertilization; and by all that we know of heredity in the forms of life with which we can experiment we are compelled to believe that these qualities are in the main distributed on a factorial system. By changes in the outward conditions of life the expression of some of these powers and features may be excited or restrained. For the development of some an external opportunity is needed, and if that be withheld the character is never seen, any more than if the body be starved can the full height be attained; but such influences are superficial and do not alter the genetic constitution.

The factors which the individual receives from his parents and no others are those which he can transmit to his offspring; and if a factor was received from one parent only, not more than half the offspring, on an average, will inherit it. What is it that has so long prevented mankind from discovering such simple facts? Primarily the circumstance that as man must have two parents it is not possible quite easily to detect the contributions of each. The individual body is a *double* structure, whereas the germ-cells are single. Two germ-cells unite to produce each individual body, and the ingredients they respectively contribute interact in ways that leave the ultimate product a medley in which it is difficult to identify the several ingredients. When, however, their effects are conspicuous the task is by no means impossible. In part also even physiologists have been blinded by the survival of ancient and obscurantist conceptions of the nature of man by which they were discouraged from the application of any rigorous analysis. Medical literature still abounds with traces of these archaisms, and, indeed, it is only quite recently that prominent horse-breeders have come to see that the dam matters as much as the sire. For them, though vast pecuniary considerations were involved, the old "homunculus" theory was good enough. We were amazed at the notions of genetic physiology which Professor Baldwin Spencer encountered in his wonderful researches among the natives of Central Australia; but in truth, if we reflect that these problems have engaged the attention of civilized man for ages, the fact that he, with all his powers of recording and deduction, failed to discover any part of the Mendelian system is almost as amazing. The popular notion that any parents can

have any kind of children within the racial limits is contrary to all experience, yet we have greatly entertained such ideas. As I have said elsewhere, the truth might have been found out at any period in the world's history if only pedigrees had been drawn the right way up. If, instead of exhibiting the successive pairs of progenitors who have contributed to the making of an ultimate individual, some one had had the idea of setting out the posterity of a single ancestor who possessed a marked feature such as the Hapsburg lip, and showing the transmission of this feature along some of the descending branches and the permanent loss of the feature in collaterals, the essential truth that heredity can be expressed in terms of presence and absence must have at once become apparent. For the descendant is not, as he appears in the conventional pedigree, a sort of pool into which each tributary ancestral stream has poured something, but rather a conglomerate of ingredient-characters taken from his progenitors in such a way that some ingredients are represented and others are omitted.

Let me not, however, give the impression that the unraveling of such descents is easy. Even with fairly full details, which in the case of man are very rarely to be had, many complications occur, often preventing us from obtaining more than a rough general indication of the system of descent. The nature of these complications we partly understand from our experience of animals and plants which are amenable to breeding under careful restrictions, and we know that they are mostly referable to various effects of interaction between factors by which the presence of some is masked.

Necessarily the clearest evidence of regularity in the inheritance of human characteristics has been obtained in regard to the descent of marked abnormalities of structure and congenital diseases. Of the descent of ordinary distinctions such as are met with in the normal healthy population we know little for certain. Hurst's evidence, that two parents, both with lightcolored eyes—in the strict sense, meaning that no pigment is present on the front of the iris-do not have dark-eyed children, still stands almost alone in this respect. With regard to the inheritance of other color-characteristics some advance has been made, but everything points to the inference that the genetics of color and many other features in man will prove exceptionally complex. There are, however, plenty of indications of system comparable with those which we trace in various animals and plants, and we are assured that to extend and clarify such evidence is only a matter of careful analysis. For the present, in asserting almost any general rules for human descent, we do right to make large reservations for possible excep-It is tantalizing to have to wait, tions. but of the ultimate result there can be no doubt.

I spoke of complications. Two of these are worth illustrating here, for probably both of them play a great part in human genetics. It was discovered by Nilsson-Ehle, in the course of experiments with certain wheats, that several factors having the same power may co-exist in the same indi-These cumulative factors do not vidual. necessarily produce a cumulative effect. for any one of them may suffice to give the full result. Just as the pure-bred tall pea with its two factors for tallness is no taller than the cross-bred with a single factor, so these wheats with three pairs of factors for red color are no redder than the ordinary reds of the same family. Similar observations have been made by East and others. In some cases, as in the primulas studied by Gregory, the effect is cumulative. These results have been used with plausibility by Davenport and the American workers to elucidate the curious case of the mulatto. If the descent of color in the cross between the negro and the white man followed the simplest rule, the offspring of two firstcross mulattoes would be, on an average, one black: two mulattoes: one white, but this is notoriously not so. Evidence of some segregation is fairly clear, and the deficiency of real whites may perhaps be accounted for on the hypothesis of cumulative factors. though by the nature of the case strict proof is not to be had. But at present I own to a preference for regarding such examples as instances of imperfect segregation. The series of germ-cells produced by the crossbred consists of some with no black, some with full black, and others with intermediate quantities of black. No statistical tests of the condition of the gametes in such cases exist, and it is likely that by choosing suitable crosses all sorts of conditions may be found, ranging from the simplest case of total segregation, in which there are only two forms of gametes, up to those in which there are all intermediates in various pro-This at least is what general portions. experience of hybrid products leads me to anticipate. Segregation is somehow effected by the rhythms of cell-division, if such an expression may be permitted. In some cases the whole factor is so easily separated that it is swept out at once; in others it is so intermixed that gametes of all degrees of purity may result. That is admittedly a crude metaphor, but as yet we can not substitute a better. Be all this as it may, there are many signs that in human heredity phenomena of this kind are common. whether they indicate a multiplicity of cumulative factors or imperfections in seg-Such phenomena, however, in regation. no way detract from the essential truth that segregation occurs, and that the organism can not pass on a factor which it has not itself received.

In human heredity we have found some examples, and I believe that we shall find many more, in which the descent of factors is limited by sex. The classical instances are those of color-blindness and hæmophilia. Both these conditions occur with much greater frequency in males than in females. Of color-blindness at least we know that the sons of the color-blind man do not inherit it (unless the mother is a transmitter) and do not transmit it to their children of either sex. Some, probably all, of the daughters of the color-blind father inherit the character, and though not themselves color-blind, they transmit it to some (probably, on an average, half) of their offspring of both sexes. For since these normal-sighted women have only received the color-blindness from one side of their parentage, only half their offspring, on an average, can inherit it. The sons who inherit the color-blindness will be color-blind, and the inheriting daughters themselves again transmitters. become Males with normal color-vision, whatever their own parentage, do not have colorblind descendants, unless they marry transmitting women. There are points still doubtful in the interpretation, but the critical fact is clear, that the germ-cells of the color-blind man are of two kinds: (i) those which do not carry on the affection and are destined to take part in the formation of sons; and (ii) those which do carry on the color-blindness and are destined to form daughters. There is evidence that the ova also are similarly predestined to form one or other of the sexes, but to discuss the whole question of sex-determination is beyond my present scope. The descent of these sex-limited affections, nevertheless, calls for mention here, because it is an admirable illustration of factorial predestination. It, moreover, exemplifies that parental polarity of the zygote to which I alluded in my first address, a phenomenon which we suspect to be at the bottom of various anomalies of heredity, and suggests that there may be truth in the popular notion that in some respects sons resemble their mothers and daughters their fathers.

As to the descent of hereditary diseases and malformations, however, we have abundant data for deciding that many are transmitted as dominants and a few as re-The most remarkable collection cessives. of these data is to be found in family histories of diseases of the eye. Neurology and dermatology have also contributed many very instructive pedigrees. In great measure the ophthalmological material was collected by Edward Nettleship, for whose death we so lately grieved. After retiring from practise as an oculist he devoted several years to this most laborious task. He was not content with hearsay evidence, but traveled incessantly, personally examining all accessible members of the families concerned, working in such a way that his pedigrees are models of orderly observation and recording. His zeal stimulated many younger men to take part in the work, and it will now go on, with the result that the systems of descent of all the common hereditary diseases of the eye will soon be known with approximate accuracy.

Give a little imagination to considering the chief deduction from this work. Technical details apart, and granting that we can not wholly interpret the numerical results, sometimes noticeably more and sometimes fewer descendants of these patients being affected than Mendelian formulæ would indicate, the expectation is that in the case of many diseases of the eye a large proportion of the children, grandchildren, and remoter descendants of the patients will be affected with the disease. Some-

times it is only defective sight that is transmitted; in other cases it is blindness. either from birth or coming on at some later age. The most striking example, perhaps, is that of a form of night-blindness still prevalent in a district near Montpellier, which has affected at least 130 persons, all descending from a single affected individual² who came into the country in the seventeenth century. The transmission is in every case through an affected parent. and no normal has been known to pass on the condition. Such an example well serves to illustrate the fixity of the rules of Similar instances might be redescent. cited relating to a great variety of other conditions, some trivial, others grave.

At various times it has been declared that men are born equal, and that the inequality is brought about by unequal opportunities. Acquaintance with the pedigrees of disease soon shows the fatuity of such fancies. The same conclusion, we may be sure, would result from the true representation of the descent of any human faculty. Never since Galton's publications can the matter have been in any doubt. At the time he began to study family histories even the broad significance of heredity was frequently denied, and resemblances to parents or ancestors were looked on as intercuriosities. Inveighing against esting hereditary political institutions, Tom Paine remarks that the idea is as absurd as that of an "hereditary wise man," or an "hereditary mathematician," and to this day I suppose many people are not aware that

² The first human descent proved to follow Mendelian rules was that of a serious malformation of the hand studied by Farabee in America. Drinkwater subsequently worked out pedigrees for the same malformation in England. After many attempts, he now tells me that he has succeeded in proving that the American family and one of his own had an abnormal ancestor in common, five generations ago. he is saying anything more than commonly foolish. We, on the contrary, would feel it something of a puzzle if two parents, both mathematically gifted, had any children *not* mathematicians. Galton first demonstated the overwhelming importance of these considerations, and had he not been misled, partly by the theory of pangenesis, but more by his mathematical instincts and training, which prompted him to apply statistical treatment rather than qualitative analysis, he might, not improbably, have discovered the essential facts of Mendelism.

It happens rarely that science has anything to offer to the common stock of ideas at once so comprehensive and so simple that the courses of our thoughts are changed. Contributions to the material progress of mankind are comparatively frequent. They result at once in application. Transit is guickened; communication is made easier; the food-supply is increased and population multiplied. By direct application to the breeding of animals and plants such results must even flow from Mendel's work. But I imagine the greatest practical change likely to ensue from modern genetic discovery will be a quickening of interest in the true nature of man and in the biology of races. I have spoken cautiously as to the evidence for the operation of any simple Mendelian system in the descent of human faculty; yet the certainty that systems which differ from the simpler schemes only in degree of complexity are at work in the distribution of characters among the human population can not fail to influence our conceptions of life and of ethics, leading perhaps ultimately to modification of social usage. That change can not but be in the main one of simplification. The eighteenth century made great pretence of a return to nature, but it did not occur to those philos-

ophers first to inquire what nature is; and perhaps not even the patristic writings contain fantasies much further from physiological truth than those which the rationalists of the "Encyclopædia" adopted as the basis of their social schemes. For men are so far from being born equal or similar that to the naturalist they stand as the very type of a polymorphic species. Even most of our local races consist of many distinct strains and individual types. From the population of any ordinary English town as many distinct human breeds could in a few generations be isolated as there are now breeds of dogs, and indeed such a population in its present state is much what the dogs of Europe would be in ten years' time but for the interference of the fanciers. Even as at present constituted, owing to the isolating effects of instinct, fashion, occupation and social class, many incipient strains already exist.

In one respect civilized man differs from all other species of animal or plant in that, having prodigious and ever-increasing power over nature, he invokes these powers for the preservation and maintenance of many of the inferior and all the defective members of his species. The inferior freely multiply, and the defective, if their defects be not so grave as to lead to their detention in prisons or asylums, multiply also without restraint. Heredity being strict in its action, the consequences are in civilized countries much what they would be in the kennels of the dog-breeder who continued to preserve all his puppies, good and bad: the proportion of defectives increases. The increase is so considerable that outside every great city there is a smaller town inhabited by defectives and those who wait on them. Round London we have a ring of such towns with some 30,000 inhabitants, of whom about 28,000 are defective,

largely, though of course by no means entirely, bred from previous generations of defectives. Now, it is not for us to consider practical measures. As men of science we observe natural events and deduce conclusions from them. I may perhaps be allowed to say that the remedies proposed in America, in so far as they aim at the eugenic regulation of marriage on a comprehensive scale, strike me as devised without regard to the needs either of individuals or of a modern state. Undoubtedly if they decide to breed their population of one uniform puritan gray, they can do it in a few generations; but I doubt if timid respectability will make a nation happy, and I am sure that qualities of a different sort are needed if it is to compete with more vigorous and more varied communities. Every one must have a preliminary sympathy with the aims of eugenists both abroad and at home. Their efforts at the least are doing something to discover and spread truth as to the physiological structure of society. The spirit of such organizations, however, almost of necessity suffers from a bias towards the accepted and the ordinary, and if they had power it would go hard with many ingredients of society that could be ill-spared. I notice an ominous passage in which even Galton, the founder of eugenics, feeling perhaps some twinge of his Quaker ancestry, remarks that "as the Bohemianism in the nature of our race is destined to perish, the sooner it goes, the happier for mankind." It is not the eugenists who will give us what Plato has called divine releases from the common ways. If some fancier with the catholicity of Shakespeare would take us in hand, well and good; but I would not trust even Shakespeares meeting as a committee. Let us remember that Beethoven's father was a habitual drunkard and that his mother died of consumption. From the genealogy

of the patriarchs also we learn—what may very well be the truth—that the fathers of such as dwell in tents, and of all such as handle the harp or organ, and the instructor of every artificer in brass and iron—the founders, that is to say, of the arts and the sciences—came in direct descent from Cain, and not in the posterity of the irreproachable Seth, who is to us, as he probably was also in the narrow circle of his own contemporaries, what naturalists call a *nomen nudum*.

Genetic research will make it possible for a nation to elect by what sort of beings it will be represented not very many generations hence, much as a farmer can decide whether his byres shall be full of shorthorns or Herefords. It will be very surprising indeed if some nation does not make trial of this new power. They may make awful mistakes, but I think they will try.

Whether we like it or not, extraordinary and far-reaching changes in public opinion are coming to pass. Man is just beginning to know himself for what he is-a rather long-lived animal, with great powers of enjoyment if he does not deliberately forego them. Hitherto superstition and mythical ideas of sin have predominantly controlled these powers. Mysticism will not die out: for those strange fancies knowledge is no cure; but their forms may change, and mysticism as a force for the suppression of joy is happily losing its hold on the modern world. As in the decay of earlier religions Ushabti dolls were substituted for human victims, so telepathy, necromancy and other harmless toys take the place of eschatology and the inculcation of a ferocious moral code. Among the civilized races of Europe we are witnessing an emancipation from traditional control in thought, in art, and in conduct which is likely to have prolonged and wonderful influences. Returning to freer or, if you will, simpler con-

ceptions of life and death, the coming generations are determined to get more out of this world than their forefathers did. Is it then to be supposed that when science puts into their hand means for the alleviation of suffering immeasurable, and for making this world a happier place, that they will demur to using those powers? The intenser struggle between communities is only now beginning, and with the approaching exhaustion of that capital of energy stored in the earth before man began it must soon become still more fierce. In England some of our great-grandchildren will see the end of the easily accessible coal, and, failing some miraculous discovery of available energy, a wholesale reduction in population. There are races who have shown themselves able at a word to throw off all tradition and take into their service every power that science has yet offered them. Can we expect that they, when they see how to rid themselves of the ever-increasing weight of a defective population, will hesitate? The time can not be far distant when both individuals and communities will begin to think in terms of biological fact, and it behooves those who lead scientific thought carefully to consider whither action should lead. At present I ask you merely to observe the facts. The powers of science to preserve the defective are now enormous. Every year these powers increase. This course of action must reach a limit. To the deliberate intervention of civilization for the preservation of inferior strains there must sooner or later come an end, and before long nations will realize the responsibility they have assumed in multiplying these "cankers of a calm world and a long peace."

The definitely feeble-minded we may with propriety restrain, as we are beginning to do even in England, and we may safely prevent unions in which both parties are defective, for the evidence shows that as a rule such marriages, though often prolific, commonly produce no normal children at all. The union of such social vermin we should no more permit than we would allow parasites to breed on our own bodies. Further than that in restraint of marriage we ought not to go, at least not yet. Something too may be done by a reform of medical ethics. Medical students are taught that it is their duty to prolong life at whatever cost in suffering. This may have been right when diagnosis was uncertain and interference usually of small effect; but deliberately to interfere now for the preservation of an infant so gravely diseased that it can never be happy or come to any good is very like wanton cruelty. In private few men defend such interference. Most who have seen these cases lingering on agree that the system is deplorable, but ask where can any line be drawn. The biologist would reply that in all ages such decisions have been made by civilized communities with fair success both in regard to crime and in the closely analogous case of lunacy. The real reason why these things are done is because the world collectively cherishes occult views of the nature of life, because the facts are realized by few, and because between the legal mind—to which society has become accustomed to defer-and the seeing eye, there is such physiological antithesis that hardly can they be combined in the same body. So soon as scientific knowledge becomes common property, views more reasonable and, I may add, more humane, are likely to prevail.

To all these great biological problems that modern society must sooner or later face there are many aspects besides the obvious ones. Infant mortality we are asked to lament without the slightest thought of what the world would be like if the majority of these infants were to survive. The decline in the birth-rate in countries already over-populated is often deplored, and we are told that a nation in which population is not rapidly increasing must be in a decline. The slightest acquaintance with biology, or even schoolboy natural history, shows that this inference may be entirely wrong, and that before such a question can be decided in one way or the other, hosts of considerations must be taken into account. In normal stable conditions population is stationary. The laity never appreciates, what is so clear to a biologist, that the last century and a quarter, corresponding with the great rise in population, has been an altogether exceptional period. To our species this period has been what its early years in Australia were to the rabbit. The exploitation of energy-capital of the earth in coal, development of the new countries, and the consequent pouring of food into Europe, the application of antiseptics, these are the things that have enabled the human population to increase. I do not doubt that if population were more evenly spread over the earth it might increase very much more; but the essential fact is that under any stable conditions a limit must be reached. A pair of wrens will bring off a dozen young every year, but each year you will find the same number of pairs in your In England the limit beyond garden. which under present conditions of distribution increase of population is a source of suffering rather than of happiness has been reached already. Younger communities living in territories largely vacant are very probably right in desiring and encouraging more population. Increase may, for some temporary reason, be essential to their prosperity. But those who live, as I do, among thousands of creatures in a state of semi-starvation will realize that too few is better than too many, and will acknowledge the wisdom of Ecclesiasticus, who said, "Desire not a multitude of unprofitable children."

But at least it is often urged that the decline in the birth-rate of the intelligent and successful sections of the population-I am speaking of the older communitiesis to be regretted. Even this can not be granted without qualification. As the biologist knows, differentiation is indispensable to progress. If population were homogeneous civilization would stop. In every army the officers must be comparatively few. Consequently, if the upper strata of the community produce more children than will recruit their numbers some must fall into the lower strata and increase the pressure there. Statisticians tell us that an average of four children under present conditions is sufficient to keep the number constant, and as the expectation of life is steadily improving we may perhaps contemplate some diminution of that number without alarm.

In the study of history biological treatment is only beginning to be applied. For us the causes of the success and failure of races are physiological events, and the progress of man has depended upon a chain of these events, like those which have resulted in the "improvement" of the domesticated animals and plants. It is obvious, for example, that had the cereals never \mathbf{been} domesticated cities could scarcely have existed. But we may go further, and say that in temperate countries of the Old World (having neither rice nor maize) populations concentrated in large cities have been made possible by the appearance of a "thrashable" wheat. The ears of the wild wheats break easily to pieces, and the grain remains in the thick husk. Such wheat can be used for food, but not readily. Ages before written history began, in some unknown place, plants, or more likely a plant, of wheat lost the dominant factor to which this brittleness is due, and the recessive, thrashable wheat resulted. Some man noticed this wonderful novelty, and it has been disseminated over the earth. The original variation may well have occurred once only, in a single germ-cell.

So must it have been with man. Translated into terms of factors, how has that progress in control of nature which we call civilization been achieved? By the sporadic appearance of variations, mostly, perhaps all, consisting in a loss of elements, which inhibit the free working of the mind. The members of civilized communities, when they think about such things at all, imagine the process a gradual one, and that they themselves are active agents in it. Few, however, contribute anything but their labor; and except in so far as they have freedom to adopt and imitate, their physiological composition is that of an earlier order of beings. Annul the work of a few hundreds-I might almost say scores-of men, and on what plane of civilization should we be? We should not have advanced beyond the medieval stage without printing, chemistry, steam, electricity, or surgery worthy the name. These things are the contributions of a few ex-Galton reckoned cessively rare minds. those to whom the term "illustrious" might be applied as one in a million, but in that number he is, of course, reckoning men famous in ways which add nothing to universal progress. To improve by subordinate invention, to discover details missed, even to apply knowledge never before applied, all these things need genius in some degree, and are far beyond the powers of the average man of our race; but the true pioneer, the man whose penetration creates a new world, as did that of

Newton and of Pasteur, is inconceivably rare. But for a few thousands of such men, we should perhaps be in the Paleolithic era, knowing neither metals, writing, arithmetic, weaving, nor pottery.

In the history of art the same is true, but with this remarkable difference, that not only are gifts of artistic creation very rare, but even the faculty of artistic enjoyment, not to speak of higher powers of appreciation, is not attained without variation from the common type. I am speaking, of course, of the non-Semitic races of modern Europe, among whom the power, whether of making or enjoying works of art, is confined to an insignificant number of individuals. Appreciation can in some degree be simulated, but in our population there is no widespread physiological appetite for such things. When detached from the centers where they are made by others most of us pass our time in great contentment, making nothing that is beautiful, and quite unconscious of any deprivation. Musical taste is the most notable exception, for in certain races-for example, the Welsh and some of the Germans-it is almost univer-Otherwise artistic faculty is still sal. sporadic in its occurrence. The case of music well illustrates the application of genetic analysis to human faculty. No one disputes that musical ability is congenital. In its fuller manifestation it demands sense of rhythm, ear, and special nervous and muscular powers. Each of these is separable and doubtless genetically distinct. Each is the consequence of a special departure from the common type. Teaching and external influences are powerless to evoke these faculties, though their development may be assisted. The only conceivable way in which the people of England, for example, could become a musical nation would be by the gradual rise in the proportional numbers of a musical strain or

strains until the present type became so rare as to be negligible. It by no means follows that in any other respect the resulting population would be distinguishable from the present one. Difficulties of this kind beset the efforts of anthropologists to trace racial origins. It must continually be remembered that most characters are independently transmitted and capable of much recombination. In the light of Mendelian knowledge the discussion whether a race is pure or mixed loses almost all significance. A race is pure if it breeds pure, and not otherwise. Historically we may know that a race like our own was, as a matter of fact, of mixed origin. But a character may have been introduced by a single individual, though subsequently it becomes common to the race. This is merely a variant on the familiar paradox that in the course of time, if registration is accurate, we shall all have the same surname. In the case of music, for instance, the gift, originally, perhaps, from a Welsh source, might permeate the nation, and the question would then arise whether the nation, so changed, was the English nation or not.

Such a problem is raised in a striking form by the population of modern Greece, and especially of Athens. The racial characteristics of the Athenian of the fifth century B.C. are vividly described by Galton in "Hereditary Genius." The fact that in that period a population, numbering many thousands, should have existed, capable of following the great plays at a first hearing, reveling in subtleties of speech, and thrilling with passionate delight in beautiful things, is physiologically a most singular phenomenon. On the basis of the number of illustrious men produced by that age Galton estimated the average intelligence as at least two of his degrees above our own, differing from us as much

as we do from the negro. A few generations later the display was over. The origin of that constellation of human genius which then blazed out is as yet beyond all biological analysis, but I think we are not altogether without suspicion of the sequence of the biological events. If I visit a poultry-breeder who has a fine stock of thoroughbred game fowls breeding true, and ten years later-that is to say ten fowlgenerations later-I go again and find scarcely a recognizable game-fowl on the place, I know exactly what has happened. One or two birds of some other or of no breed must have strayed in and their progeny been left undestroyed. Now in Athens we have many indications that up to the beginning of the fifth century, so long as the phratries and gentes were maintained in their integrity, there was rather close endogamy, a condition giving the best chance of producing a homogeneous population. There was no lack of material from which intelligence and artistic power might be derived. Sporadically these qualities existed throughout the ancient Greek world from the dawn of history, and, for example, the vase-painters, the makers of the Tanagra figurines, and the gem-cutters were presumably pursuing family crafts, much as are the actor-families³ of England or the professorial families of Germany at the present day. How the intellectual strains should have acquired predominance we can not tell, but in an inbreeding community homogeneity at least is not surprising. At the end of the sixth century came the "reforms" of Cleisthenes (507 B.C.), which sanctioned foreign marriages and admitted to citizenship a number not only of resident aliens, but also of manu-As Aristotle says, Cleismitted slaves. thenes legislated with the deliberate pur-

³ For tables of these families, see the Supplement to "Who's Who in the Theater."

pose of breaking up the phratries and gentes, in order that the various sections of the population might be mixed up as much as possible, and the old tribal associations abolished. The "reform" was probably a recognition and extension of a process already begun; but is it too much to suppose that we have here the effective beginning of a series of genetic changes which in a few generations so greatly altered the character of the people? Under Pericles the old law was restored (451 B.C.), but losses in the great wars led to further laxity in practise, and though at the end of the fifth century the strict rule was re-enacted that a citizen must be of citizen-birth on both sides, the population by that time may well have become largely mongrelized.

Let me not be construed as arguing that mixture of races is an evil: far from it. A population like our own, indeed, owes much of its strength to the extreme diversity of its components, for they contribute a corresponding abundance of aptitudes. Everything turns on the nature of the ingredients brought in, and I am concerned solely with the observation that these genetic disturbances lead ultimately to great and usually unforeseen changes in the nature of the population.

Some experiments of this kind are going on at the present time, in the United States, for example, on a very large scale. Our grandchildren may live to see the characteristics of the American population entirely altered by the vast invasion of Italian and other South European elements. We may expect that the Eastern States, and especially New England, whose people still exhibit the fine Puritan qualities with their appropriate limitations, absorbing little of the alien elements, will before long be in feelings and aptitudes very notably differentiated from the rest. In Japan,

also, with the abolition of the feudal system and the rise of commercialism, a change in population has begun which may be worthy of the attention of naturalists in that country. Till the revolution the Samurai almost always married within their own class, with the result, as I am informed, that the caste had fairly recognizable features. The changes of 1868 and the consequent impoverishment of the Samurai have brought about a beginning of disintegration which may not improbably have perceptible effects.

How many genetic vicissitudes has our own peerage undergone! Into the hardfighting stock of mediæval and Plantagenet times have successively been crossed the cunning shrewdness of Tudor statesmen and courtiers, the numerous contributions of Charles II. and his concubines, reinforcing peculiar and persistent attributes which popular imagination especially regards as the characteristic of peers, ultimately the heroes of finance and industrialism. Definitely intellectual elements have been sporadically added, with rare exceptions, however, from the ranks of lawyers and politicians. To this aristocracy art, learning and science have contributed sparse ingredients, but these mostly chosen for celibacy or childlessness. A remarkable body of men, nevertheless; with an average "horse-power," as Samuel Butler would have said, far exceeding that of any random sample of the middle-class. If only man could be reproduced by budding what a simplification it would be! In vegetative reproduction heredity is usually complete. The Washington plum can be divided to produce as many identical individuals as are required. If, say, Washington, the statesman, or preferably King Solomon, could similarly have been propagated, all the nations of the earth could have been supplied with ideal rulers.

Historians commonly ascribe such changes as occurred in Athens, and will almost certainly come to pass in the United States, to conditions of life and especially to political institutions. These agencies, however, do little unless they are such as to change the breed. External changes may indeed give an opportunity to special strains, which then acquire ascendency. The industrial developments which began at the end of the eighteenth century, for instance, gave a chance to strains till then submerged, and their success involved the decay of most of the old aristocratic families. But the demagogue who would argue from the rise of the one and the fall of the other that the original relative positions were not justifiable altogether mistakes the facts.

Conditions give opportunities, but cause no variations. For example, in Athens, to which I just referred, the universality of cultivated discernment could never have come to pass but for the institution of slavery which provided the opportunity, but slavery was in no sense a cause of that development, for many other populations have lived on slaves and remained altogether inconspicuous.

The long-standing controversy as to the relative importance of nature and nurture, to use Galton's "convenient jingle of words," is drawing to an end, and of the overwhelmingly greater significance of nature there is no longer any possibility of doubt. It may be well briefly to recapitulate the arguments on which naturalists rely in coming to this decision as regards both races and individuals. First, as regards human individuals, there is the common experience that children of the same parents reared under conditions sensibly identical may develop guite differently, exhibiting in character and aptitudes a segregation just as great as in their colors or hair-forms. Conversely, all the more marked aptitudes have at various times appeared and not rarely reached perfection in circumstances the least favorable for their development. Next, appeal can be made to the universal experience of the breeder, whether of animals or plants, that strain is absolutely essential, that though bad conditions may easily enough spoil a good strain, yet that under the best conditions a bad strain will never give a fine result. It is faith, not evidence, which encourages educationists and economists to hope so greatly in the ameliorating effects of the conditions of life. Let us consider what they can do and what they can not. By reference to some sentences in a charming though pathetic book, "What Is, and What Might Be," by Mr. Edmond Holmes, which will be well known in the Educational Section. I may make the point of view of us naturalists clear. I take Mr. Holmes's pronouncement partly because he is an enthusiastic believer in the efficacy of nurture as opposed to nature, and also because he illustrates his views by frequent appeals to biological analogies which help us to a common ground. Wheat badly cultivated will give a bad yield, though, as Mr. Holmes truly says, wheat of the same strain in similar soil well cultivated may give a good harvest. But, having witnessed the success of a great natural teacher in helping unpromising peasant children to develop their natural powers, he gives us another botanical parallel. Assuming that the wild bullace is the origin of domesticated plums, he tells us that by cultivation the bullace can no doubt be improved so far as to become a better bullace, but by no means can the bullace be made to bear plums. All this is sound biology; but, translating these facts into the human analogy, he declares that the work of the successful teacher shows that with man the facts are otherwise, and that the average rustic child, whose normal ideal is "bullacehood," can become the rare exception, developing to a stage corresponding with that of the plum. But the naturalist knows exactly where the parallel is at fault. For the wheat and the bullace are both breeding approximately true, whereas the human crop, like jute and various cottons, is in a state of polymorphic mixture. The population of many English villages may be compared with the crop which would result from sowing a bushel of kernels gathered mostly from the hedges, with an occasional few from an orchard. If any one asks how it happens that there are any plum-kernels in the sample at all, he may find the answer perhaps in spontaneous variation, but more probably in the appearance of a long-hidden For the want of that genetic recessive. variation, consisting probably, as I have argued, in loss of inhibiting factors, by which the plum arose from the wild form. neither food, nor education, nor hygiene can in any way atone. Many wild plants are half-starved through competition, and, transferred to garden soil, they grow much bigger; so good conditions might certainly enable the bullace population to develop beyond the stunted physical and mental stature they commonly attain, but plums they can never be. Modern statesmanship aims rightly at helping those who have got sown as wildings to come into their proper class; but let not any one suppose such a policy democratic in its ultimate effects, for no course of action can be more effective in strengthening the upper classes whilst weakening the lower.

In all practical schemes for social reform the congenital diversity, the essential polymorphism of all civilized communities must be recognized as a fundamental fact, and reformers should rather direct their efforts to facilitating and rectifying class-distinctions than to any futile attempt to abolish them. The teaching of biology is perfectly clear. We are what we are by virtue of our differentiation. The value of civilization has in all ages been doubted. Since. however, the first variations were not strangled in their birth, we are launched on that course of variability of which civilization is the consequence. We can not go back to homogeneity again, and differentiated we are likely to continue. For a period measures designed to create a spurious homogeneity may be applied. Such attempts will, I anticipate, be made when the present unstable social state reaches a climax of instability, which may not be long hence. Their effects can be but evanescent. The instability is due not to inequality, which is inherent and congenital, but rather to the fact that in periods of rapid change like the present. convection-currents are set up such that the elements of the strata get intermixed and the apparent stratification corresponds only roughly with the genetic. In a few generations under uniform conditions these elements settle in their true levels once more.

In such equilibrium is content most surely to be expected. To the naturalist the broad lines of solution of the problems of social discontent are evident. They lie neither in vain dreams of a mystical and disintegrating equality, nor in the promotion of that malignant individualism which in older civilization has threatened mortification of the humbler organs, but rather in a physiological coordination of the constituent parts of the social organism. The rewards of commerce are grossly out of proportion to those attainable by intellect or industry. Even regarded as compensation for a dull life, they far exceed the value of the services rendered to the community. Such disparity as an incident of the abnormally rapid growth of population is quite indefensible as a permanent social condition. Nevertheless, capital, distinguished as a provision for offspring, is a eugenic institution; and unless human instinct undergoes some profound and improbable variation, abolition of capital means the abolition of effort; but as in the body the power of independent growth of the parts is limited and subordinated to the whole, similarly in the community we may limit the powers of capital, preserving so much inequality of privilege as corresponds with physiological fact.

At every turn the student of political science is confronted with problems that demand biological knowledge for their solution. Most obviously is this true in regard to education, the criminal law, and all those numerous branches of policy and administration which are directly concerned with the physiological capacities of mankind. Assumptions as to what can be done and what can not be done to modify individuals and races have continually to be made, and the basis of fact on which such decisions are founded can be drawn only from biological study.

A knowledge of the facts of nature is not yet deemed an essential part of the mental equipment of politicians; but as the priest, who began in other ages as medicine-man, has been obliged to abandon the medical parts of his practise, so will the future behold the schoolmaster, the magistrate, the lawyer, and ultimately the statesman, compelled to share with the naturalist those functions which are concerned with the physiology of race.

WILLIAM BATESON

THE STATUS OF HYPOTHESES OF POLAR WANDERINGS

For the past century, hypotheses which postulate a wandering of the earth's axis of rotation within its body have been advocated by various geologists and biologists as an explanation of past climatic and biotic changes. Astronomers, on the contrary, have in general been opposed to hypotheses of polar migration; for in their opinion, not only is there no astronomic evidence pointing toward such instability of axis, but extensive and progressive wanderings are regarded as mechanically impossible. Geologists and biologists may array facts which suggest such hypotheses, but the testing of their possibility is really a problem of mathematics, as much as are the movements of precession, and orbital perturbations. Notwithstanding this, a number of hypotheses concerning polar migration have been ingeniously elaborated and widely promulgated without their authors submitting them to these final tests, or in most cases even perceiving that an accordance with the known laws of mechanics was necessary. Others, of more logical mind, recognizing the need of mathematical justification, have thought to find a qualified support in the work of Kelvin and G. H. Darwin. The chief point of this paper lies in showing that the work of Darwin, instead of permitting hypotheses of polar wanderings, offers the most convincing proof which is available that migrations of the axis of the earth sufficiently extensive to be of geological importance have not occurred. Darwin, in his conclusion, granted the possibility that the pole may have worked its way in a devious course some 10° or 15° away from the geographic position which it held at the consolidation of the earth, and he states that it may as a maximum have been deflected from 1° to 3° in any one geological period. This extreme limit to migration was purposely based upon those assumptions which might be geologically possible and which would permit the greatest changes in the axis of rotation. A reexamination of those assumptions in the light of forty added years of geologic progress suggests that the actual changes have been much less and are more likely to be limited to a fraction of the maximum limits set by Darwin. His paper seems to have checked further speculation upon this subject in England, but, apparently unaware of its strictures, a number of continental geologists and biologists have car-