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T 3 E  INFLUENCE OF FOURIER?S SERIES  

UPON T H E  DEVELOPMENT OF 


MATHEMATICS1 


INselecting a subject for to-day 's address 
I have had the difficult task of interesting 
two distinct classes of men, the astronomer 
and the mathematician. I have therefore 
chosen 'a topic which, I trust, will appeal to 
both-trigonometric series. Though I pro-
pose to treat it only in its mathematical 
aspects, I shall try to do so in a broad way, 
tracing its general influence upon the trend 
of mathematical thought. 

As you know, the theory of the infinite 
trigonometric series, 
(1.1 f ($1 =f + (a,cos s +b1 sin s )

+ (a,w s  2x14-4 sin 2 s )  +... 
is different ab ilzitio from that of the power 
series, 

P ( z ) =co+ c,(s--a) + q ( ~ - a ) ~ +.... 
For the latter the fundamental element 

is xn, of which the graph is, for positive s, 
a monotone increasing function, wholly reg- 
ular, without peculiarities of 'any sort. It 
is therefore in no way surprising that the 
power series obtained by combining terms 
of form c,xn define the most civilized mem- 
bers of mathematical society-the so-called 
analytic functions-which are most orderly 
in their behavior, being continuous through- 
out their ''domains," possessing deriva-
tives of all orders and a Taylor's series at  
every point; and so forth. On the other 
hand, the graph of sin nx or cos nx is a 
wave curve with crests and troughs, whose 
number in  any x interval increases indefi- 

1 Address o f  the vice-president of Section A-
Mathematics qnd Astronomy, American Associa-
tion for the Advancement of Science, Atlanta, 
1913. 
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nitely with n. Accordingly, the functions 
defined by infinite trigonometric series are 
obtained by compounding waves of varying 
intensity and different wave-lengths and 
may be almost infinitely complicated in 
their behavior. This fact was fraught with 
vital consequences for mathematical de-
velopment. 

A further distinction between the trigo- 
nometric and power series appears in re-
spect to the values which their argument 
may take. The convergent power series 
P ( x )  has significance for at  least a limited 
domain of imaginary values of x; on the 
other hand, i t  is possible for trigonometric 
series to define functions which have no 
meaning except for real values of x. As, 
therefore, the trigonometric series has a 
functional content totally different from 
that of the power series, its influence was 
felt first,and primarily, in  the development 
of the notion of a function of a real 
variable. 

The concept function was at  first vague, 
as va,we and indefinite as our geometrical 
intuitions. It had its root in the 17th cen- 
tury in the analytic geometry of Descartes. 
Here the variation of y with x along a curve 
inevitably suggests the notion of a function. 
The first published definition of the term 
appeared in 1718 when John Bernoulli 
defined a function of .a variable as " a n  ex-
pression which is formed i n  any manner 
f rom the variable and constants." Thirty 
years later, in his "Infinitesimal Analysis," 
Euler defined it in like manner except that 
the function is now an "analytic expres-
sion." What is meant by "analytic ex-
pression" is not explained, but from his 
definition of special classes 'of functions it 
would appear that the term denoted an ex- 
pression put together in terms of the vari- 
able and constants by a finite or infinite 
number of operations of addition, subtwc- 
tion, mulitiplication, and division. Differ-

entiation and integration were also un-
doubtedly permissible. 

About this time there began the famous 
controversy over the mathematical repre-
sentation of a vibrating string. This satis- 
fies the well-known differential equation 

a2w = a2w 
at2 ax2' 

where a is a certain constant, x the position 
of a particle on thc string when taut, and 
w its transverse displacement at  time t. A 
wlution of this problem for the case of 
fixed end points was given by d'Alembert 
in 1747 under the form 

t u = f ( m  + a t )  - f ( a t - - z ) ,  

where f ( x )  denotes an arbitrary function 
whose nature he apprehended too narrowly. 
But he claimed to have the general solution 
inasmuch as his solution involved an arbi-
trary function. 

This shot into mathematics the question : 
What i s  an arbitrary function? Even 
to-day this question is a vexing one, owing 
to disagreement in the point-set theory con- 
cerning certain principles of logic which 
cluster around the "Pr inc ip der Auswahl" 
as a center. But mathematicians had not 
then arrived at  the subtleties of the present 
day. Their difficulties were really caused 
more by imperfect notions concerning a 
function than by the degree of arbitrariness. 
On the basis of the above definition of a 
function then current, Euler maintained 
that d'dlembert's solution was particular, 
rather than the most general possible. He 
rightly apprehended the nature of the phys- 
ical problem and saw that the motion of the 
string subsequent to the initial instant was 
completely determined by the initial form 
of the string and the initial velocities of 
its points. Now the initial shape of the 
string could be a continuous geometrical 
curve composed of successive pieces whose 
forms are absolutely independent of one 
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another. To represent these pieces, Euler 
daimed that an equal number of different 
analytic expressions, or arbitrary functions, 
were necessary. Hence, as d Ylembert 's 
solution involved only one arbitrary func- 
tion, i t  could not be the general solution of 
the problem. 

I n  these considerations of Euler there is 
a sharp antithesis between geometry and 
analysis. I n  Euler's thought the independ- 
ent pieces of the above curve formed 
z 6 curvae dscorttinuce seu mixtcrz seu i~regu- 
lares. 'Vhere was a blind belief that the 
definition of a curve in any interval by a 
mathematical expression carried with it a 
definite continuation of the curve beyond 
the interval, the violation of which was a 
violation of analysis. Thus the question 
was raised as to the relative power of mathe- 
matically constructible expressions and of 
geometric representation, and i t  was de-
cided that geometric form transcends ana-
lytic expression rather than the converse. 

The dual character of this controversy 
was changed into s triple one by Daniel 
Bernoulli, who first introduced Fourier's 
series into physics and obtained the solu- 
tion of the equation of the vibrating string 
with axed end points under the form of a 
trigonometric series, 

* . n naat 
g = 2, ansin -- cos -,

*=I 1 I 
where 1 denotes the length of the string. 
The separate terms of this series give the 
tones and overtones of the vibrating string. 
Inasmuch as this solution is compounded of 
an infinite number of tones and overtones 
of all possible intensities, Daniel Bernoulli 
claimed that he had obtained the general 
wlution of the problem. 

For t=0 the above equation gives as the 
initid form of the string, 

The question then at once arose whether 

d 'Alemlbert 's arbitrary function was capa- 
ble of expansion into such a sine series. 
To Euler this seemed unthinkable. I t  was, 
so to speak, against the laws of the game, it 
was contrary to the rules of analysis that 
arbitrary, non-periodic functions could be 
represented in terms of periodic functions. 
Hence to Euler, Bernoulli's solution of the 
problem appeared even more limited than 
that of d'Alembert. 

I have not the time to follow further this 
controversy, nor to show how d'Alembert 
and Lagrange united with Euler in declar- 
ing Daniel Bernoulli wrong in his claim. 
Yet not withstanding this overwhelming 
preponderance of authority Daniel Ber-
noulli was right. The controversy gradu- 
ally languished without any clear conclusion 
till 1807, twenty-five years after Bernoulli's 
death, when Fourier presented to the 
French Academy one of the first of his com- 
munications which were summed up in 
1822 in his "Analytic Theory of Heat." 
I n  this communication he startled La-
grange with the absolutely revolutionary 
doctrine that an arbitrarily given curve or 
function, irrespective of its nature, could 
be represented in any interval by a trigo- 
nometric series. Fourier sought no strict 
proof of his assertion, but the concrete ex- 
amples which he gave vindic~ted its force. 
The precise limitations necessary to make 
the assertion exactly true remained, and to 
some extent sGll remain, for his swcewrs  
to ascertain. 

Fourier's result not merely vindicated 
Daniel Bernoulli's claim for his series, but 
showed that his claim fell far short of the 
reality. At a single blow it  shattered hope- 
lessly the notion of Euler and his contem- 
poraries that amathematical funetion could 
be carried continuously beyond the interval 
of definition in only a single way. But 
Fourier's examples went further than this. 
The arbitrary curve which he represented 
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by his series (I) could consist of separate 
pieces of any sort, not merely having no 
logical or definitional dependence on one 
another, but even not connecting succes-
sively at their ends. Thus by virtue of Fou- 
rier's assertion the power of representation 
through analytic expression is a t  least as 
great as the power of geometric picturi- 
zation. 

When once it was realized that mathemat- 
ical expression could be adapted to the 
most diverse and unrelated demands upon 
it, no logical stopping-point could be seen 
short of the definition to-day accepted for 
a function of a real variable, and often re- 
ferred to as the Dirichlet definition of a 
function. i f ,  namely, to every value of x 
in an  interval there corresponds a definite 
value of y (no matter how fixed or deter- 
mined), y is called a function of x. For 
example, y may he equal to + 1 at  all 
rational points which are everywhere dense 
in any interval, and equal to 0 at the irra- 
tionla1 points which are likewise everywhere 
dense. The Fourier series has thus neces- 
sitated a radical reconstruction of the notion 
of a function. This i s  the first of i ts  serv- 
ices which I wish to emphasize, the devel- 
opment and complete clarification of the 
concept of a fulzctio~z. 

Without loss of generality the interval in 
which the representation of the function by 
the series is required may be supposed to 
lie between -T and + a. The series has 
then the form (I.) hitherto assumed. To 
determine its coefficients from the function 
Fourier used for the most part the 
equations, 

1 r 
a. = ,Lwj(xj COB nxdx, 

b. = 1S" j(x)sin nxdx ; 
?T -r 

but this determination, as Fourier himself 
stated, had 'been made by Euler before him. 
Trigonometric series whose coefficients can 

be obtained from the function represented 
in this manner are now called Potcrier's 
series in  distinction from trigonometric se- 
ries whose coefficients can not be so obtained 
through integration. I have, however, in 
the title of my paper used the term "Pou- 
rier's series" in the older and broader sense 
as synonynions with all series of the form 
(1.1-

The consideration of trigonometric series 
from a strict mathematical standpoint 
marks a second epoch in their history. This 
began with Dirichlet in 1829 in a memoir 
remarkable for its combination of clearness 
and rigor. Here he first determined accu- 
rately a set of sufficient conditions for the 
expansion of a function into a Fourier se- 
ries. These familiar "Dirichlet conditions" 
i t  is scarcely necessary to repeat. 

The extension oP his results v a s  at  once 
soaght, in particnlar by Riemann in a 
Giittingen Habilitations-Dissertation, which 
bore the title "Ueber die Darstellbarkeit 
einer Function durch eine trigonometrische 
Reihe." Riemann's aim was, however, to 
determine the necessary conditions for the 
representability of the function by the 
series. Must the fanction be integrable, as 
required in the sufficient conditions of Dir- 
ichlet ? Must i t  have only a finite number of 
maxima and minima and of discontinuities? 
Such questions as these were easily an- 
swered by him in the negative, and a flood 
of light was poured upon the problem of 
representability but without making visible 
its complete solution. Possibly i t  was for 
this reason that this IIabilitationsschrift, 
though delivered in 1854, was not published 
until thirteen years later, and then only 
after Riemann's death. Yet the work is 
a classic. As has been said of the poet 
Coleridge, so it could be said of Riemann, 
he wrote but little, but that little should be 
bound in gold. 

To put the theory of Fourier's series on 
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a broader basis, Riemann perceived that 
first of all i t  was necessary to sharpen and 
widen the concept of an integral. Initially 
f~eibnitz had thought of integration as 
a summation process, but this notion was 
forced into the background by its definition 
as the reverse of differentiation, until re- 
vived by Cauchy in 1823. I-Ie then defined 
the integral of a continuous function as 
most of us were taught to define it. The 
interval of integration was divided into n 

mathematically discontinuous. The work 
of Fourier had disclosed that mathematical 
expressions could portray functions with 
breaks, and the exacter but more limited 
investigation of Dirichlet drew still further 
attention to discontinuities. Riemann's 
definition of an integral did more; with 
one leap i t  planted the discontinuous func- 
tion firmly upon the mathematical arena. 
I n  his integrable functions was comprised 
a class of functions whose discontinuities 

pa%s ai, each ai was multiplied by the value * were infinitely dense in every interval, na 
of the function f (xi )  at its beginning, and 
the integral was defined as the limit of the 
sum L;&f (xc)when the number of parts in- 
creased indefinitely, their size diminishing 
indefinitely. Because of the continuity of 
the function this definition of the definite 
integral was equivalent to that framed by 
means of the reverse process of differenti- 
ation. Riemann dismisses altogether the 
requirement of continuity for the function, 
and in forming the sum multiplies each sub- 
interval 6 4  by the value of the fundion, not 
necessarily at the beginning of the interval, 
but at a point & arbitrarily assumed in the 
subinterval. If, then, a limit exists for the 
sum SGgf (&), irrespective of the manner of 
partitioning the interval and of the choice 
of the points [ r ,  this is called the integral. 
Thus he redefined the fundamental concept 
of the integral calculus, making i t  entirely 
independent of the differential calculus. 
This definition, often referred to as the Rie- 
mann defin2tion of an integral, has now be- 
come the universally accepted one and is 
the basis of scientific treatment of the in- 
tegral calculus. Thus  a second service of 
Pourier's series has been in laying the fmn-
datio?z of the modern integral calculus, and 
in such wise t h t  it bid fair t o  completely 
eclipse the diferential calculus in impor-
tance and reach. 

Riemann's memoir may also be charac- 
terized as the beginning of a theory of the 

matter how small-though indeed, as we 
now know, they are not totally discontin- 
uous. One example which he gave was the 
integrable function defined by the conver- 
gent series, 

(GI (2x1 ((3x1

1 +7+,+-g+ ..., 

in which ( n x )  denotes the positive or nega- 
tive difference between nx and the nearest 
integral value, unless n x  falls half way be- 
tween two consecutive integers, when the 
value of (nx) is to be set equal to 0. The 
sum of the series was shown to be discon- 
tinuous for every rational value of s of the 
form p/2n, where p is an odd integer rela- 
tively prime b n. 

This example and others, such as that of 
an integrable function with aninfinitenum- 
ber of maxima and minima which was inca- 
pable of representation by a Fourier's 
series, were exceedingly etimulating. The 
investigation so impressed the imagination 
of Hermann Hankel as to call forth his no- 
table memoir "Uber die unendlich oft oszil- 
lierenden und unstetigen Functionen" in 
which he unfolds his principle of "conden- 
sation of singularities," a memoir so impor- 
tant that it has even been said to "entitle 
him to be called the founder of the inde- 
pendent theory of functions of a real vari- 
able." I t  would appear to me that this 
distinction could be assigned with equal 
propriety to Riemann, for historically the 
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fimt of the two or three principal sources of 
this theory is to be found in Riemann's ap- 
plication of integration to discontinuous 
functions in his memoir on "the represent- 
ability of a function by Fourier's series." 

The above example of Riemann is notable 
for giving a mathematical expression for a 
discontinuous function incapable of graph- 
ical representation. 1have already pointed 
out how Euler conceived of graphs so 
arbitrary as to be impossible of represen- 
tation through an "analytic expression." 
The scales were now turned decisively to 
the other side, though i t  was not till later 
that i t  was recognized that our geometric 
ggnres have only an approximating char- 
acter which our mathematical equations 
refine. 

But the full power of mathematical ex- 
pression was not realized until 1872-1875, 
when Weierstrass startled the mathematical 
world with an example (first published 
by Du Bois Reymond in 1875) of a contin- 
uous function having nowhere a derivative, 
or, in other terms, of a continuous curve 
without a tangent. The function given by 
Weierstrass was a trigonometric series 

in which b is a positive constant less than 
1and a a fixed odd integer large enough 
to make ab exceed a certain value. Weier-
strass states also that Riemann is supposed 
to have shown that the series 

sin n9z 
2: --g-

represented a function of like property, but 
the proof was not known. The failure of 
the continuous function of Weierstrass to 
be differentiable is due to the possession of 
an infinite number of maxima and minima 
in any interval, however small. 

This example completed the separation 
beheeh diRerentiable and continuous func- 

tions. I t  shows that the former are only a 
subclass o f  the  latter, a result not even sur-
mised by the boldest geometrical intuition, 
This  i s  the  third influence of Fourier's 
series which I wish to emphasixe. So far  
as I know, this is the only one of its results 
which vitally afYects geometric theory. It 
reveals the transcendence of analysis over 
geometrical perception. It signalizes the 
flight of human intellect beyond the bounds 
of the senses. * I return now to trace further the march 
of the function theory of the real variable. 
The second principal element in its forma- 
tion seems to me to have been the concept 
of un i form convergence. This also seems 
to have been suggested chiefly by study of 
trigonometric series. Originally it was sup- 
posed that the sum of a convergent series 
of continuous functions shared the common 
properties of its terms and accordingly wm 
continuous. Even so great a mathemati-
cian as Cauchy fell for a time into this 
error. The fallaciousness of this assump- 
tion was first pointed out by Abel in 1826 
in his well-known memoir on the binomial 
series. Here he also discusses the series 

f($) = sin+ - sin 29 + sin 36 - . . . 
2 3 (2)7 

every term of which is continuous. Clearly 
the sum ~anishes whenever 4 is a multiple 
of T. If 4 lies between mn and (rn+1)m, 

the sum is +/2 -VT, where v denotes the 

I 

/ ' 1 ' 

half of m or m f 1,according as m is even 
or odd. Consequently, when 4 passes 
through an odd multiple of w, the sum ha$ 
a discontinuity of amount T, as is indi-
cated in the adjoining graph. This re-



sult is in sharp contrast with $he oonBinw 
i$y of the sum which he demonstrates for 
the binomial and other real power series. 
At the same time he establishes the circular 
form of the region of convergence of the 
binomial series. Here, then, appears the 
initial cleavage between the theorieg of real 
and of analytic functions. 

The difference between the trigonometric 
and the power series in respect to contin- 
uity is naturally to be sought in the charac- 
ter of the convergence at the points of con- 
tinuity and of discontinuity. This differ- 
ence was pointed out by Stokes in 1847 and 
by Seidel a year later. Both discovered the 
infinitely increasing slowness of conver-
gence of the series on approaching a disc 
continuity of its sum. Consequently a dis- 
continuity can not be enclosed in any inter- 
val, however small, in which the conver-
genee is throughout "von gleichem Grade." 
I n  more modern parlance, the convergence 
is non-uniform. Seidel in his introduction 
explicitly points out that the erroneousness 
of Cauchy's conclusion (see above) is ob- 
vious from the existence of discontinuities 
in functions represented by Fourier's series, 
and he is evidently incited thereby to seek 
'a cause for the discontinuity. The origin 
of Stokes's study is sufficiently obvious 
from its title: "On the Critical Values of 
the Sum of Periodic Series." His failure 
to appreciate the importance of his own 
convergence discussion is evident from the 
fact that it is not even mentioned in the 
opening analysis of his lengthy memoir. 

A third discoverer of uniform conver-
gence was Weierstrass, who is known to 
have been in possession of the notion as 
early as 1841. Through his followers (Heine 
and others) i t  gradually percolated into 
the mathematical literature. Unlike Seidel 
and Stokes, he thoroughly realized its im-
portance. As Osgood has well said in his 
Punctionentheorie, he developed uniform 

convergence into one of the mod importmk 
organs " (methods) of modern analysis.'' 
The origin of the notion in the ease 05 
Weierstrass I have been unable to asoerttbin, 
A conjecture or surmise may therefore be 
pardoned. As is well known, the work of 
Weier~trms is rooted in that of Abel, the 
central theme or core being the theory of 
Abelian functions. I t  would not seem to 
be altogether improbable that both Weier- 
stram's theory of the analytic function and 
his concept of uniform convergence had as 
their starting point Abel's memoir on the 
binomial series. For here, on the one hand, 
with the demonstration of the circular form 
of the region of convergence of the binomial 
series, we find a proof of the continuity of 
the series which involves implicitly the 
idea of uniform convergence; on the other 
hand, we htave in the footnote a series with 
discontinuities due, in fact, to non-uniform 
convergence. I t  would be a small matter 
for the discriminating Weierstrass to see 
that the continuity of the sum could not be 
carried over from the binomial to the trigo- 
nometric series, because there was not the 
same kind of convergence in the latter case. 
If this surmise is correct, the discovery of 
uniform convergence in the case of the third 
discoverer also is closely connected with s 
Fourier series. 
1 have dwelt at some length on uniform 

convergence because its discovery marks 
both the culmination of the first and older 
epoch in the treatment of functional series, 
and the beginning of a new one. I n  uni- 
form convergence and a study of the dis- 
continuous we have sought for the chief 
springs of the modern theory of funcCions 
of a real variable. B y  so doing we are led 
to assign as a fourth great service of P m  
vier's series the genesis of this theory. It 
is not to be forgotten, however, that other 
sources have also copiously contributed. 
The morphology of one rnern;ber of a body 
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must be in many ways perverted, if strxdiecl 
Without correlation to the other members. 
But, after all, it is the Fourier series which 
gave the initial push and chief impetus to 
the construction of the function theory of 
the real variable. 

This becomes still plainer if we take into 
consideration the comparatively recent 
point-set theory. Originally an off-shoot of 
the real function theory and still often 
treated by itself, it has been largely ab- 
sorbed back into this theury, and its con- 
cepts already permeate analysis. Its 
founder was George Cantor, who was 
trained in  the exact yet fertile school of 
Weierstrass. His earliest papers presaging 
this theory relate to a trigonometric series. 

Two problems occupy his attention. The 
first is to show that if the series 2 ( a ,  s:n 7z.r 

+ b ,  cog n x )  is convergent throughout an 
entire interval, except possibly for a finite 
num'ber of points, the coefficients a,  and 6, 
have for n =co the limit 0. The second is 
to establish the uniqueness of the develop- 
ment of a function into a trigonometric 
wries; in other words, to prove that when 
2 ( a ,  sin nx +b, cos n x )  is identically 0 
over an interval, then each and every a, 
and 8, must be 0. The requirement of con- 
vergence of the sum in the one case and of 
its vanishing in the other, was originally 
made for the entire interval, but Cantor 
found that it could be remitted for certain 
infinite aggregates of points without affect- 
ing the truth of the conclusions. He was 
led consequently to introduce the notion of 
the "derivative of a point-sot. " Consider 
with him the set of points for which the 
requirement is omitted, and suppose that 
they cluster in infinite number in the vicin- 
ity of any point. This will be called a 
limit-point of the set. The totality of these 
limit-points is called the first derived set, 
or first derivative. This derived set of 
points may also have cluster points which 

form the second derivative; and so on. 
After introducing this concept, Cantor 
proved that the requirement could be re-
mitted for any set of points whose r~ th  deriv-
ative contains only a finite number of points 
and whose (9%+1)th derivative accord-
ingly vanishes. 

In  these very early papers of Cantor we 
have very clearly the beginning of his point- 
set theory. His attention is here concen- 
trated upon an infinite aggregate of poinb, 
and the notion of the derived point-set was 
the first of the concepts by means of which 
he is able to distinguish between different 
infinite aggregates of points. Prior to Can- 
tor no efyort was made to distinguish quali- 
takively between them. To be sure, mathe- 
maticians were thoroughly conversant with 
the distinction between a continuous curve 
or set of points, on the one hand, and a 
merely dense aggregate of points such as 
the totality of points with rational coordi- 
nates. The raw material lay a t  hand for a 
beginning, especially in the work of Rie- 
mann and others on integration. Cantor 
alone saw the imperativeness of the need. 
I n  comparing infinite sets of objects and 
seeking a theory of the truly infinite he 
blazed a new path for the human mind. 
As a fifth a d  a mighty  influence of Pou-
vier's series we have, therefom, to record 
the historic o*.igilz of 11~etheory of infinite 
aggregates. 

Thus far in my slietch I have traced one 
strong, single current of influence of the 
Fourier's series. I have now to indicate 
some other effects without close relation to 
the foregoing. 

I n  Fourier's "Analytical Theory of 
Heat" there are found what are said to be 
the first instances of the solution of an in- 
finite number of linear ecluatjons with an 
infinite number of unknowns. He has, for 
example, to determine the coefficients in the 
equation : 



l = a c o s  y f  b cos3y f  o c o s 5 y f  .... 
For this purpose he differentiates an even 
number of times, obtaining thus the system 
of equations 
0 =a cos y + b3n cos 3 y  + c.5n cos 5y

+ ... (n=2, 4, ...) 

Combining this with the preceding equa- 
tion and putting y =0, he obtains an infi- 
nite number of equations of first degree 
with an infinite number of unknowns, a, 
b, c, ... . To solve these he uses the first 
m equations to determine the first rn un-
knowns, suppressing all the other un-
knowns, and finally determines their limit- 
ing values as m increases indefinitely. 
There is no time to point out the lack of 
rigor. Fourier uses his mathematics with 
the delightful freedom and nayvet6 of the 
physicist or astronomer who trusts in a 
mathematical providence. 

This suggestive line of attack was not 
follol~ed up, and indeed could not be, prior 
to the development of a theory of infinite 
determinants. When such a system of 
linear equations with an infinite number 
of unknowns came again to the foreground, 
the inciting cause was again a trigono-
metric series. I refer, as you know, to the 
work of our own astronomer, Hill. I n  his 
memoir on the ( (  Motion of the Lunar Peri- 
gee" he had before him a differential equa- 
tion of the following form, with numerical 
coefficients: 

Assuming a solution in the form 

(which except for the factor ehT is only a 
trigonometric series under another guise), 
Hill obtains for the determination of c and 
the b, an infinite system of equations lin- 
ear in the 6,. The elimination of the b, 
then gives c as the root of a certain infinite 

determinant, and then the values of the b i  
are also found by use of jnfinibte determi- 
nants. 

The importance of Hill's results at  once 
attracted the genius of Poincarh whose at- 
tention had, in fact, been previously drawn 
by Appell to an infinite system of linear 
equations. Poinear4 now proceeded to con- 
sider the question of the convergence of in- 
finite determinants, and in so doing laid a 
sound foundation for a new mathematical 
subject. I n  this new theory of infinite de-
terminants the central thought is the pas- 
sage, under restrictions to be properly 
ascertained, from a finite to an infinite sys- 
tem of linear equations. This principle here 
employed has been since applied in  an even 
more striking manner by Fredholm, who 
was led through its use to his historic 
solution of a class of integral equations. 
In  the theory of these equations the infinite 
determinant plays an indispensable r6le. 
A s i x t h  inf luence of F o u r i e r ' s  series i s  t h u s  
seen i n  t h e  o r i g i n  of a theory  of ia f in i te  
determinants,  also indirectly in the theory 
of integral equations for which it has sup- 
plied an important tool. 

The seventh and the last influence on 
which I shall specifically dwell is more sub- 
tile, not so easily pointed out or demon-
strated as some of the foregoing, but never- 
theless one of the most far-reaching and 
prdbably the most pervasive of all. The 
physicist, astronomer, or mathematician has 
again and again to expand an arbitrary or 
assigned function into a series of functions, 
the nature of which varies with the prob- 
lem before one. When once the idea and 
method of expressing an a~bi t rary  function 
in series of sines and cosines have been won, 
they can be extended to other series of 
functions, as for instance series of Bessel's 
functions, zonal harmonics, Lam6 polyno- 
mials, spherical harmonics. For such de- 
velopments the trigonometric series with its 
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applications has repeatedly served as a 
guide post. Numberless analogous results 
have been suggested thereby, though with- 
out definite statement of the fact. TO 
take an example a t  random, the relation 

L'P!Z.(X)P~.k)dx = 0 (m 9 n) 

hcta its trigonometric analogues 

Who can deny, or who can affirm, in many 
such individual instances that the sugges- 
tion came from the trigonometric series? 
Yet in  the bulk the debt is so great that he 
who runs can read it. 

I t  is especially in connection with bound- 
a ry  value problems that we encounter 
series of functions. Now the trigonometric 
series was the inevitable tool for the first 
boundary value problems-those of vibrat- 
ing strings, rods, columns of air, etc. Later, 
when Fourier crystallized the boundary 
value problems into classic shape, he used 
trigonometric series and, to lesser degree, 
similar series of Bessel's functions, obvi- 
ously because these d o r d e d  him the sim- 
plest tools for the simplest problems. From 
series of sines of multiple angles he was 
led by certain problems in heat conduction 
to series of form %isin aix, where the 
ad are roots of a certain transcendental 
equation. Thence the orientizing influence 
of Fourier's series is continued down to 
the modern development of normal func- 
tions in the theory of integral equations. 
All such influences are in the very warp 
and woof of mathematical development and 
can not be disentangled. To minimize or 
ignore them would be to give a distorted 
picture. They form a most vital and lead- 
ing part of the mighty theory of harmonic 
and normal functions and of the boundary 
value theory. 

The extent of these influences in  the past 
gives rise naturally to the question of 

whether the trigonometric series will con- 
tinue to exert such a moulding influence in 
the future. Certain results of Baire to be 
shortly mentioned incline one to answer 
negatively. Yet the questions regarding the 
convergence of the series and the character 
of the functions which i t  can represent are 
even to-day incompletely answered. When 
new implements are invented, i t  is still to 
these unanswered questions that the investi- 
gator naturally turns to test their worth, as, 
for example, Lebesgue with his great new 
concept of an integral which has applica- 
tion when Riemanh's integral is void of 
sense, or Fejbr with a method of summing a 
divergent series. Also the Fourier series 
still offers an occasional surprise. Who in- 
deed would have anticipated Cibbs's dis-
covery, since extended by Bather, which re- 
lates to the approximation curve y=S, (5), 
obtained by equating y to the sum of the 
first n terms of the series (2) above? As 
n. increases indefinitely, the amount of the 
oscillation of the curve in the vicinity of 
each point of discontinuity of the limit does 
not tend toward the measure of the discon- 
tinuity, as would be supposed, but to this 
value increased in a certain definite ratio! 
Gut it may be reasonably expected that 
these surprises will become fewer and less 
important. 

I n  this brief review I have neglected 
certain less analytic aspects, such as trig- 
onometric interpolation and the use of the 
series in  computation and in the pertur- 
bation theory. It has also not been neces- 
sary to emphasize the simplicity of structure 
of the series and its adaptation to compu- 
tation. Neither do I need to speak of its 
correspondence in  structure to so many 
periodic phenomena of nature, sound, light, 
the tides, etc. But I do wish, in closing, 
to emphasize and examine further, one 
aspect implied in all my preceding con-



siderations, the wonderful pliability of the 
series. 

It was this pliability which was embodied 
in Fourier's intuition, commonly but falsely 
called a theorem, according to which the 
trigonometric series (I.) "can express any  
function whateoer between definite values 
of the variable." This familiar statement 
of Fourier's "theorem," taken f k m  
Thompson and Tait7s "Natural Philos-
ophy," is much too broad a one, but even 
with the limitations which must to-day be 
imposed upon the conclusion, its impor- 
tance can still be most fittingly described 
as follows in their own words: The theorem 
" i s  not only one of the most beautiful re- 
sults of modern analysis, but  may  be said to 
furnish a n  indispensable instrument in the 
treatment of nearly recondite question in 
modern physics. " T o  mention ortly sono-
rous vibrations, the propagation of electric 
signals along a telegraph .wire, and the 
conduction of heat by the earth's crust, as 
subjects in their generality intractable 
without it, i s  t o  give but  a feeble idea of 
its importance." 

Truly, the theorem is so comprehensive 
in its mathematical content that we mathe- 
maticians may well query with one of my 
colleagues whether i t  may not have con-
ditioned the form of physical thought it- 
self-whether i t  has not actually forced the 
physicist often to think of complicated phys- 
ical phenomena as made up of oscillatory 
or harmonic components, when they are not 
inherently so composed. 

It is this same pliability of the series that 
has been a source of perpetual delight and 
surprise ta the mathematician. I t  has re- 
vealed an undreamt-of power in analysis. 
It has stimulated intuition and vigor, and 
has helped to usher in a modern critical 
era in mathematics similar in spirit to the 
Greek period. It has separated differen- 
tiable from continuous functions; it hfm 

put the integral calculus on a basis of in- 
dependence of the differential calculus ; i t  
has focused attention upon sets of irregu- 
larities and discontinuities whose study has 
started the point-set theory; it has opened 
the field of discontinuous functions to and- 
ysis and, above all, has engendered a theory 
of functions of the real variable. 

To the mathematician the theory of ana- 
lytic functions for some time appeared to 
be of much greater importance than the 
freaky theory of the real variable, because 
almost all the important functions of mathe- 
matics are analytic. Also, the same has 
been hastily assumed for physics because 
the real and imaginary components of an 
analytic function are harmonic functions 
satisfying Laplace's equation. But this is 
to ignore features of at least equal, if not 
of superior, importance. Not long ago 
many thought that the mathematical world 
was created out of analytic functions. It 
was the Fourier series which disclosed a 
terra incognita in a second hemisphere. 

Here, in the new hemisphere, the mathe- 
matician has advanced beyond the boun- 
dary of the trigonometric series. It has been 
found that discontinuous functions repre- 
sentable through such series form a thor-
oughly restricted class. They belong to 
what Baire calls the first class of functions 
which are limits of convergent sequences 
or series of continuous functions, them- 
selves of "class 0." These in turn may be 
used to generate new functions. Even as 
non-uniformly convergent Fourier series 
may give rise to discontinuous functions of 
Class 1,so non-unif ormly convergent series 
of functions of this class may give a new 
sort of functions of Class 2, and so on. 
Indeed, to every transfinite number a of the 
first or second class there corresponds, as 
Lebesgue has shown, a definite class of func- 
tiom. T h u s  the Fourier series has, after 
all, a very limited range of  representat io~ 
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in the totality of functiolzs mathematically 
conceivable. 

Even for functions of Class 0 or 1 the 
trigonometric series has a limited power of 
representation. This is manifest from an 
example given by Paul Du Bois Reymond of 
a continuous function which can not be rep- 
resented by a trigonometric series. It re-
mains to determine in the future just what 
properties are necessary and sufficient to 
characterize those functions of Classes 0 
and 1 which are expressible by means of 
trigonometric series. 

Earlier in my paper I pointed out that 
the generality of functions representable 
through Fourier's series was so great that 
the mathematician was led irresistibly to 
the Dirichlet definition of a function. If, 
namely, to every value of z in an interval 
we have a corresponding value of y,  then 
y is called a function of z, no matter how 
the correspondence is set up, whether by a 
graph, a mathematical expression, a law, or 
any other way. To-day the pendulum has 
swung baclr to the old question of Euler. 
The study of representability in terms of 
trigonometric series has been succeeded by 
the broader question of the possibility of 
analytic expression in general. Now every 
continuous function, as is well known, can 
be represented by a uniforinly convergent, 
set of polynomials. Starting then from the 
totality of polynomials as a basis of func- 
tions for Class 0, we arrive successively at  
Baire's and Lebesgue's classes of func-
tions corresponding to or, if you prefer, 
marlied, by the transfinite numbers of the 
first and second classes. 

Do these different classes of functions 
comprise all which are "alzalytically ezpres- 
sible"? Before answering the question it 
is necessary first to sharply define the 
phrase "analytically expressible." This is 
done by Lebesgue. Then, after broaden- 
ing the content of these classes in a manner 

I have not the time to describe, he goes on 
to show that they do in truth comprise all 
such functions. The final question then 
confronts us : Are all possible functions in- 
cluded which are defined in accordance with 
the general definition of Dirichlet? I n  
other words, are there functions incapable 
of being "analytically expressed"? Le-
besgue by an example shows that this is the 
case. Our study of the Fourier series 
opened with the question: What is an ar- 
bitrary function? Here, at  last, appar-
ently, we have discovered the existence of a 
function of such a height or depth of ar-
bitrariness as to be mathematically inex-
pressible. Having started with the Fou- 
rier series on a voyage of exploration, shall 
we conclude by saying that there is for us 
an unattainable pole ? 
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UNIVERSITY REGISTRATION STATISXICf4 

TIIE registration returns for November 
1,1913, of thirty of the leading universities 
of the country will be found tabulated on 
the following page. Specific attention 
should be called once again to the fact that 
these universities are neither the thirty lar- 
gest universities in the country, nor neces- 
sarily the leading institutions. The only 
universities which show a decrease in the 
grand total attendance (including the sum- 
mer sessions) are Harvard, Western Re- 
serve and Yale, the attendance of the two 
institutions last named having remained 
practically stationary. The largest gains 
in terms of student units, including the 
summer attendance, but making due al- 
lowance by deduction for the summer 
session students who returned for instruc- 
tion in  the fall, were registered by New 
Pork University (965), Illinois (944), Co- 
lumbia (927), Wisconsin (749), Pennsyl- 
vania (681), California (614), Iowa (598), 


