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ensure actual realization. There arise at
once questions of biological adaptation, of
vital tenacity and of purposeful action.
Appeal to the record of the animal races
reveals in some cases a marvelous endu-
rance, in others the briefest of records,
while the majority fall between the ex-
tremes. Many families persisted for mil-
lions of years. A long career for man
may not therefore be denied on historical
grounds, neither can it be assured; it is an
individual race problem; it is a special case
of the problem of the races in the largest
sense of the phrase.

But into the problem of human endu-
rance two new factors have entered, the
power of definite moral purpose and the
resources of research. No previous race
has shown clear evidence that it was guided
by moral purpose in seeking distant ends.
In man such moral purpose has risen to
distinetness. As it grows, beyond question
it will count in the perpetuity of the race.
No doubt it will come to weigh more and
more as the resources of destructive pleas-
ure, on the one hand, and of altruistic recti-
tude on the other are increased by human
ingenuity. It will become more critical as
the growing multiplicity of the race brings
upon it, in increasing stress, the distinctive
humanistie phases of the struggle for exist-
ence now dimly foreshadowed. It will,
beyond question, be more fully realized as
the survival of the fittest shall render its
verdiet on what is good and what is evil in
this realm of the moral world.

But to be most efficient, moral purpose
needs to be conjoined with the highest in-
telligence, and herein lies the function of
research. None of the earlier races made
systematic inquiry into the conditions of
life. and sought thereby to extend their
careers. What can research do for the
extension of the career of man? We are
witnesses of what it is beginning to do in
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rendering the forees of nature subservient
to man’s control and in giving him com-
mand over the maladies of which he has
long been the vietim. Can it master the
secrets of vital endurance, the mysteries of
heredity and all the fundamental physi-
ological processes that condition the lon-
gevity of the race? The answer must be
left to the future, but I take no risk in
affirming that when ethics and research
join hands in a broad and earnest endeavor
to compass the highest development and
the greatest longevity of the race the era
of humanity will really have begun.

T. C. CHAMBERLIN

THE THESIS OF MODERN LOGISTIO*

I BAVE chosen to report upon this sub-
ject because it is one in which I have found
no little interest in recent years; because
the thesis in question represents one among
the greatest of all the triumphs of eritiecal
thought ; because it possesses such high and
permanent importance as belongs to in-
tellectual activity above the levels of
workaday life; because it is sufficiently
new, timely and general in its appeal; and
finally because, whilst it has come to be
everywhere a topic of much philosophic
and scientific allusion, but relatively few,
it seems, have been at the pains to ascertain
what the thesis precisely is.

To tell what it is, to render it intelligible
not merely to astronomers and mathema-
ticians but also to that larger class of edu-
cated folk who, as their primary interests
lie elsewhere, are not accustomed to think-
ing much about the fundamental subtleties
of logic and mathematics—that is one of
the two aims of this address; the other one
being to present, in so far as time will

! Address of the vice-president and chairman of
Section A—Mathematics and Astronomy—Amer-

ican Association for the Advancement of Seience,
Boston, 1909.
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allow, the more salient among the facts by
which the thesis is supported.

It is no part of my purpose to treat the
matter historically. As, however, the thesis
in question is the goal and culmination of
two originally independent but closely re-
lated and finally convergent movements of
modern thought, I can not refrain from
saying a brief preliminary word regarding
each of them. They may be characteristic-
ally designated as the critico-mathematical
movement and the logistical movement.

The distinetively critical spirit is not a
new manifestation in mathematics. The
age of Euclid was a critical age. And just
now, thanks to the superb edition of the

‘“Elements’’ by Dr. Heath with its wonder--

ful richness of bibliographic citation, quo-
tation and critical commentary, one is en-
abled to understand better than ever before
how very fine and penetrating in funda-
mental questions of geometry and of logic
was the thought of the age that produced
the Alexandrine classic—the age, I say, for
the ‘‘Klements’’ is to be attributed not less
to the age of Fuclid than to Euelid the man.
But it is not of antiquity that I wish to
speak. I refer to the critical movement in
modern mathematics—to the demand for
precision of conecept, to the process of log-
iecal rigorization, to the sense and the
craving for perfection of intellectual and
seientific form, in a word, to that spirit of
creative ecriticism which, following eclose
upon the great Eulerian and pre-Eulerian
period of discovery, manifesting itself al-
ready in the works of Gauss and Lagrange,
finding powerful agencies in the analytic
genius of Cauchy and Bolzano, in the geo-
metric genius of Lobachevski and Bolyai,
waxed in intensity throughout the lapsing
decades of the nineteenth century, at length
pervading the entire realm of mathematics
like a refining and purifying fire. The
result of this critical movement, thus orig-
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inating in mathematiecs and conducted
by mathematicians, was, not indeed the
grounding of mathematics itself, regarded
as a unitary science, but the grounding
rather, upon distinct bases of postulated
mathematical notions and propositions, of
various great branches of the science; in
witness whereof—to cite but one example
—behold the theory of the real variable as
founded by Weierstrass upon the familiar
theory of the cardinal numbers assumed as
certain, primordial and fundamental.
Such bases, however, were destined to
appear, in the light of modern researches
in another field or in what seemed at all
events another, namely, the field of logie,
not as constituting the foundation either
of mathematics or of any of its branches
but as genuine components of the super-
structure. For it has ever been the faith
of the logician that there are a few ideas in
terms of which all definable ideas admit of
immediate or mediate definition and a few
propositions upon which as a basis or from
which as a body of premises all demon-
strable propositions admit of proof or de-

_duction; and it has ever been the chief of

the logician’s problems to discover such a
system of primitive concepts and proposi-
tions. It is in nothing less than a closely
approximate solution of that hoary problem
that modern investigations in logic have
culminated. As every one knows, the con-
ception of logic as an autonomous science
is nothing new. Among the very greatest
contributions of antiquity to human knowl-
edge is the ‘‘Liogic’’ of Aristotle. As a
scientific achievement it is ecomparable to
the “‘Elements’’ of Euclid—ecomparable to
it also in another respect, namely, that it
was not significantly improved upon for
nearly two thousand years. Though always
indispensable as an instrument of thought,
yet logie, regarded as a science, remained
stationary for so long a time, showing no
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token of life, that it came to be thought of
as a thing that is dead. And I suspect that
even to-day there may be found scientifie

men of eminence who are not aware of the

fact that in our time logic, as a field of
research, affords a spectacle of teeming
activity quite as intense as may be wit-
nessed in physies, for example, or in as-
tronomy or biology—men, it may be, who
have yet to learn that, owing to modern
logistic research, it would be as radical an
error to identify the modern significance of
the term logic with that of the Aristotelian
system as to identify the modern meaning
of the term geometry with that of Euclid’s
‘“‘Elements’’ or to identify modern juris-
prudence with the code of Lycurgus or the
““Pandects’’ of Justinian. By the logis-
tical movement I mean the movement that
began—somewhat prematurely, however, as
the event was destined to show—in the
logical speculations and investigations of
Jungius (1587-1657), Leibniz (1646-1716)
and Lambert (1728-1777); awaited the
powerful impulse imparted by Boole’s sym-
bolical ‘‘Investigation of the Laws of
Thought’’ (1854) ; and, under the leader-
ship of C. S. Peirce in our own country, of
Schroder in Germany, of Peano and his
numerous collaborators in Italy, of Cou-
turat, brilliant expounder and advocate of
the subject in France, and of Russell,
‘Whitehead and MeColl in England, has at
length produced that imposing body of
doectrine now known throughout the scien-
tific portions of the world under the char-
acteristic name of symbolic logie.

In its present form and state of develop-
ment this science is constituted of three
distinet but interconnected branches: the
logic of classes, which, though it corre-
sponds to the traditional system of Aris-
totle, is far from being identical with it;
the logic of propositions; and the logic of
relations, which was originated by Charles
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S. Peirce, was much elaborated, refined and
clarified by Schroder in the third volume
of his ‘“‘Vorlesungen iiber die Algebra der
Logik,’’ 1895, but owes its present form and
conception mainly to the various contribu-
tions of Bertrand Russell in recent volumes
of the Revue des Mathématiques (formerly
the Revista di Matematica) and elsewhere.

For the purpose in hand the thing to be
noted is the discovery of the fact that for
the notional basis of the triple organon it
was necessary and sufficient to assume,
without definition, a very few notions—
called the primitive ideas, or constants, of
logic—in order that in terms of them all
other notions entering logic should be de-
finable; and that it was necessary and suffi-
cient, for the propositional basis, to assume,

“without proof, a somewhat larger yet very

small number of propositions—ecalled the
primitive propositions, or the premises, of
logic—in order that by means of them all
other propositions of the science should be
capable of demonstration. This is not all,
however; for it has been found—and here we
encounter the thesis of modern logistic, the
common culmination and result of the two
movements hitherto sketched, and so a joint
achievement of the logician and the mathe-
matician, though hardly foreseen by either
of them—it has been found, I say, that the
basis of logic is the basis of mathematics
also—that, in other words, given the primi-
tives of logic, mathematics requires none of
its own but that in terms of the logieal
primitives all mathematical ideas and all
mathematical propositions admit respect-
ively of precise definition and of rigorous
demonstration. Accordingly, if a scientific
edifice may properly be regarded as consist-
ing of both foundation and superstructure,
it becomes evident, the thesis once estab-
lished, that, instead of logic and mathe-
maties being, as hitherto supposed, radi-
cally distinet sciences, the latter is strictly
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the outgrowth and prolongation of the
former, and that the twain are one as the
branches and upper stem of a tree are con-
tinuous with the lower stem and the roots.

To any one who knows something of the
immensity of modern mathematics, some-
thing of the continent of doctrine that the
term connotes, something of the ecountless
variety and the infinite complexity of the
ideas and propositions that compose the
bedy and constitution of the science, the
simple thesis in question is really astound-
ing. And one demands that the thesis be
explicated in terms in order that one may
know precisely and concretely in detail
what it constates. What, we wish to be
informed, are the logical primitives that,
it is alleged, are capable, though so few, of
supporting so great a burden? Before
attempting to meet this demand, I beg to
remind you of the fact that, given a logie-
ally coherent or autonomous body of propo-
sitions, it is always in some degree a matter
of arbitrary choice, though probably never
one of complete indifference which of the
propositions are taken as fundamental and
which as derivative—that is, which are
assumed and which proved. In every case
the choice is to be guided by considerations
of expedience, of interest, or of economy,
but seems never to be coerced by necessity
or by ‘‘the nature of things.”” Questions
of relative interest, however, and of relative
expedience and economy are matters of
judgment. Accordingly it is not a matter
for surprise that several systems of logical
primitives have been devised and submitted,
differing any two of them in respect of one
or more elements but agreeing all of them
as to the adequacy of a small number of
elements, and that among investigators in
the field it remains a moot question which
of the systems, if any one of them enjoys
that distinetion in comparison with the rest,
is to be preferred.
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The system that I shall present here is
that which Russell has adopted in his great
synthesis of modern logic and modern
mathematics, ‘‘The Principles of Mathe-
maties,”’ and which with slight modifica-
tions has been so delightfully expounded by
Couturat in his ‘“‘Les Principes des Mathé-
matiques’” and his ¢‘ Traité de Logistique.’’
I have thought it best to gather together
all the primitive elements of the three
branches of logic for compact presentation
in a single uninterrupted list under their
appropriate headings, reserving commen-
tary for a subsequent stage. Moreover,
despite the somewhat forbidding appear-
ance, at first glance, of logical symbolism,
I have decided to present primitive propo-
sitions in symbolic form, employing for this
purpose the symbolism of Peano slightly
modified by selection from that of Schrider.
Indeed this symbolism is not difficult to
master; and if at first it seems a thing of
so frightful mean that to be hated needs
but to be seen, yet, seen often enough to
become familiar with its face, we come first
to endure, and then to embrace it as a con-
venient and potent means of clarity and
economy alike of thought and of expression.
It is a moot question which one, if indeed
any one, of the three varieties of the logical
calculus is primordial to the other two.
As, however, discourse of any kind, whether
about classes or about relations, would seem
to be difficult if not impossible without
propositions, I shall follow the leading of
common sense and begin with

The Logic of Propositions.—In addition
to the notions, truth and its negative,
which, though they are constantly em-
ployed, seem neither to admit of effective
definition nor to be strictly coordinate with
any other indispensable notion, the primi-
tive notions in propositional logic are

(1) Material Implication,

(2) Formal Implication.
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And the primitive propositions are
(1) pog.o.pog,
(2) pog.o.pop,
(3) pog-o gog,
(4) If pog and if p be true, p may be
dropped and ¢ asserted,
(5) pop-goq-2.pap,
(6) pog.qor.o.por,
(7) qoq.ror.po.qor:0.pgor,
(8) pop.qgor.pgor:a:po. qor,
(9) pog.por.o.pogr,
(10) pop.qgoq 9:( pag)op.op,
in which, as elsewhere, p, ¢ and » denote
propositions, o (inverse of the letter ¢)
stands for the word implies, pqg means ‘“p
and ¢,”” while the points or dots serve the
double use of denoting the word and, like
the first dot in (5), or, like those in (1),
playing the role of parentheses in indi-
cating the relative ranks of the various
parts of a- formula. Thus, for example,
(7) may be translated to read, the propo-
sition ‘‘q implies ¢ and r implies r and
p implies that ¢ implies '’ implies the
proposition ‘“‘p and ¢ together imply »’’;
or, in hypothetic form, if ¢ implies ¢, and
r implies 7, and p implies that ¢ implies r,
then p and g together imply 7.
The Logic of Classes.—The primitive no-
tions in this caleulus are
(1) Proportional Function, denoted by
such symbols as ¢(z), ¥(x), etc.,
(2) The Relation (denoted by e, read s
or belongs to) of an individual to
a class (containing it),
(3) The notion such that, denoted by >
(inverse of the Greek letter e).
And the primitive propositions are
(1) ke3wp(z) odp(k),
(2) o(x) = ¥(x).0:¢(2). = .29¥(z).
The Logic of Relations.—In this caleulus,
which Russell has shown to be the logic par
excellence of mathematics, the primitive
notions are
(1) Relation, denoted as a class by rel
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and as individuals by such capitals
as R, R, ete.,

(2) Identity, denoted by the symbol 1’.
The primitive propositions are

(1) Rerel.o:zRy. = .« has the relation R

to v,

(2) Rorel odrel~R'’3(zR'y. = .yRx),

(8) Arel~Rs(p=w.p= 1),

(4) ~*Kerel,

(5) ~“Kerel,

(6) R,R,erel,

(7) — Rerel,

(8) eerel,

(9) Terel,

(10) zV’z,
(11) 1717,
(12) Rerel.zRy.yl’z 0.z Rz.

To the foregoing primitives must be
added the notion of demoting, which has
been made the topic of a most subtle and
luminous discussion by Russell in the fifth
chapter of the work above cited. The
notion is that of the sense in which an
individual is denoted by a concept that
occurs in a proposition that is not a propo-
sition about the concept, as ‘‘She bought «
beautiful gown’’—the thing purchased be
nothing so tenuous and translucent as the
concept, a beautiful gown, but presumably
a concrete thing reasonably opaque.

By way of elucidating the foregoing and
further sketching out the three divisions of
logie, I shall now proceed to give some
explanation of the primitive terms and a
statement of the principal definitions and
theorems composing them.

Definitions and Theorems in Proposi-
tional Logic.—The central term, proposi-
tion, is defined in terms of (material)
implication, namely, a proposition is that
which implies itself. The two varieties of
implication are often confused and the dis-
tinction between them, being difficult to
draw sharply and clearly, is to be acquired
very much as a child learns to distingnish
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cats from dogs. For one thing material
implication subsists only between proposi-
tions while formal implication, though it is
present in propositional logie, holds only
between propositional functions. Now a
proposition to be such must be true or else
false, while a propositional function, say,
z is a number, though it has the form of
a proposition is not one, being neither true
nor false, until the unspecified term or
terms (z in the example cited) are specified
and then we have no longer a function but
a proposition. The implication postulated
in the primitive propositions is material.
The meaning of (1) is that if pogq, then
poq is a proposition; (2) means that what-
ever implies anything is a proposition; and
that of (3) is, whatever is implied is a
proposition, Number (4), which does not
admit of completely symbolic statement, is
the postulate that justifies the advance
from the hypothetic to the categoric-—the
advancement involved in passing from say-
ing ‘‘such and such a conclusion is true
if the premises are true’’ to saying, once
the premises are granted true, ‘‘the propo-
sition”’ (not now regarded as a conclusion)
““4s true.”’

One of the most striking facts in the
propositional logiec is the theorem that
every false proposition implies all propo-
sitions and that all true propositions are
implied by every proposition. The shock-
ing character of the theorem—which refers,
of course, to material implication only—
disappears on reflecting that the proposi-
tion, p implies ¢, means simply ‘‘q or
not-p’’—means, that is, “‘¢ is true or p is
false”’ and nothing else; for surely it is
nothing shocking to affirm that a proposi-
tion that is not contradicted by any propo-
sition in the class of true propositions is a
member of the class; and that affirmation
seems equivalent to asserting that ‘‘p im-
plies ¢’’ is true ‘unless ¢ is false and p
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true. If you assert of two propositions p
and ¢ that p implies ¢, thereby meaning
simply and solely that g can not be false
and p true, then unless it happens that at
once ¢ is false and p true, there would
seem to be in the arsenal of refutation no
weapon with which your assertion may be
struck down. The primitive propositions
are some of them far from being ‘self-
evident.”” It is not essential that they
should be. They are chosen with reference
to their sufficiency and look for justification
to the body of their consequences. In these
they shine—mnot a priori but a posterior:.
Neither can they be proved true by de-
ducing them from a theorem that is itself
deduced from them—to say which is, of
course, but to utter a commonplace. As
an exercise, however, it is legitimate as well
as interesting and instructive to assume
the foregoing theorem as a postulate and
as such to apply it as a test to the primi-
tive propositions in question. Thus, to
take a single example, the procedure in
the case of (8) would be as follows. Let #
be true and p and q either or both be false
or true; then gor is true, hence pa.qor is
true, hence (8) is true. Let r be false and
p and g be true; then pop and gor are both
true, pq is true, pgor is false, hence what
precedes the colon is false, hence (8) is
true. And so on for the remaining possible
suppositions respecting p, ¢ and 7.

Two propositions are equivalent if each
implies the other, and we write p==gq.
Two propositions are equivalent when and
only when both are true or both are false.
The fundamental operations of proposi-
tional multiplication and summation are
definable as follows: We may first define
the logical product of the two special prop-
ositions—e is a proposition, b is a propo-
sition—to be the proposition, ¢ is a propo-
sition and b is a proposition. Then,
denoting this special product by @oa.bb,
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the logical produet, pg or p-q, of any two
propositions, p and ¢, may be formally de-
fined by the definition:

PIP.gaq. 11,01 pg = 1po( qor).or.
This definition of the notion—vulgarly
called the joint assertion of p and g—may
be rendered thus: p, q, r being proposi-
tions, the product of p and ¢ is the proposi-
tion—any proposition r such that p im-
plies that ¢ implies it, is true. The logical
sum, p-q, of two propositions p and ¢
admits of the definition:

POP.goq. 7oY. 21 p~q = 1POT.QIOTIT
that is, p, ¢ and r being propositions, ¢-p
is the proposition equivalent to the propo-
sition that » is implied by the produect of
por and gor. Such is the definition of the
phrase, p or ¢. It is noteworthy that,
whilst pg is true when and only when p
and ¢ ave both true, the sum p-q is true
whenever either p or g is true. Among
cardinal theorems I will, further, mention
the laws of tautology, commutation, asso-
ciation and distribution:

pp(or p*) = p,
P~9=9-P P-9=9-p;
(p~)~r=p~(¢-7), (p-q)-r=p-(g-7);

p~(g=r) = (p~9)=(p~7),
p=(g-r) = (p-q)-(p-r) = p—q-p-r-.
The negative, — p, of p is a proposition
definable thus:
Pop.goq.0: — p = .pogq,

which states that —p is the proposition
equivalent to the proposition that p im-
plies all propositions; and we have the
theorem of double negatives: — (—p) =np.
Also the theorems of contradiction and ex-
cluded middle: —p~q is false; — p-gq is
true.

Definitions and Theorems in Class Logic.
— As already pointed out, a propositional
funetion—say, x is a pragmatist, or

p-p=p;
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tan & = y—though a proposition in form,
is not one in fact, being neither true nor
false. But such a function yields a propo-
sition whenever the indeterminate terms,
as z, y, are replaced by determinate terms.
Thus any such function is a sort of en-
velope of a limitless number of proposi-
tions. A function being given, those terms
that on being substituted for its indeter-
minates yield true propositions are said to
constitute a class. The symbolism zad(s)
means ‘‘the class of terms z such that
¢(z) is true,”” and primitive proposition
(1) asserts that, if the individual % is a
member of the class, ¢(k) is true. Two
functions ¢(z) and ¥(x) are said to be
equivalent when the propositions of every
pair of propositions obtainable by substi-
tuting definite terms for x are equivalent;
and (2) states that when two functions are
equivalent the corresponding classes are
the same—composed of the same individ-
uals. If the propositions derivable from
#(z) are all of them false, the function is
said to determine a null-class; and it read-
ily follows that all null-classes are exten-
stonally the same, so that we can, in this
sense, speak of the null-class. The defi-
nition and symbolic expression of “‘z is
identical with v,”’ # and y being individ-
uals, is z=Y.=: ZeW.ou.Yel, Where o

u

means ‘‘implies for every (class) «.”” The

relation in question is symmetric, a fact
involved in the theorem, x=y.=.y =u.
A singular class w (class of but one term)
is defined to be such that

TEU.YeU.0. L = U ;

and a singular class u is symbolically dis-
tinguished from its term ¢ by writing 1@ to
denote u, and 1u to denote a; so we have
1@ = u, 1 =a, and 1y =u, but not u=a.
The notion of inclusion of the terms of a
class 4 by a class v is denoted by wov
(where o is the symbol for ‘‘implies’’ in
propositional logic) and is defined to be
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such that wov.= :meu.s.zev. Two classes
w and v are (extensionally) identical, and
we write 4 =v, when and only when wuov
and wvou. Two classes are disjoint if
neither includes a term of the other. It is
necessary to avoid confounding e with the
use of o in eclass logie, the former holds be-
tween an individual and a class but o holds
only between classes. Thus, if class wo
class v, and if individual aeu, we can not
write aov.

The important notions of class multipli-
cation and summation are definable as fol-
lows. The logical product of the classes u
and v, which is denoted by u-~v, is such
that w~v=.z3(weu.wev); while the log-
ical sum, w~v, w and v being disjoint or
not, is such that wu-v.= .zs(Teu.~.Tev).
Among cardinal theorems are the laws of
tautology, commutation, association, dis-
tribution and double negation:

U = U= U ;
U~V = VU, UV = VU ;
u~(v~w) = (u~v)~w, U—(v-w) = (U-v)~w;
u~(v—w) = (u~v)—(u~w),
U (v-w) = (u-v)—(u-w);

and — (—u) = u, where —u, called the
negative of u, is, by definition, such that
— U= x3(x —eu).

The foregoing sketch indicates how the
class logic sends its roots down into the
soil of the propositional logic, and there is
at the same time exhibited a remarkable
parallelism between the two logies. It is
important, however, to mnote the fact,
pointed out by Schrider, that the parallel-
ism is not thoroughgoing. For example, if
p, ¢, r be propositions and a, b, ¢ be classes,
we have

PEIT. = POr.—.qQOr,
but not
a~boc. = :ave.—.boc.

Explanations, Definitions and Theorems
in Relational Logic.—In its present form
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this caleculus is mainly the creation of Mr.
Bertrand Russell. It was he who perceived
and demonstrated the advantage of adopt-
ing the extensional as distinguished from
the intensional view of relations. It was
he who perceived and demonstrated its
preeminent importance in and for mathe-
matics. Finally, it was he who cast its
general principles—primitive propositions,
fundamental definitions, theorems and
their proofs—in symbolic form (cf. Revue
de Mathematiques, vol. 7, 1900-1901).

In order to understand the doctrine in-
cluding its primitive propositions above
given, it will be necessary to explain or
define the principal concepts involved in it
and to associate with them the symbols
(including those already explained) by
which they are denoted. These concepts
and symbols are as follows, the numbers
(1), (2), -+ referring to primitive propo-
sitions. The writing zRy means to assert
that z has the relation B to ¥, so that a
relation has sense or direction; the symbols
p and p, called respectively the domain
and the codomain of R, denote respect-
ively the classes of terms that may stand
before R and after E; the logical sum of
these classes is the field of E; if = be a
term of p, px denotes the class of terms y
such that zRy, and if 2 be a term of p,
o% is the class of terms y such that yRz;
a class is said to exist unless it be a null-
class, and the existence of a class is affirmed
by writing & before its symbol, as in (3);
if u is a class of terms of p, pu is the class
of terms y such that, given any one of
them, there is in w an x for which zRy;
on the other hand, « again being a class of
terms of p, up denotes the class of terms y
such that for every term z of u we have
zRy; if, now, u is a class of terms in the
codomain p, pu denotes the class of terms
such that, given any one y of them, there
is in % a term x for which yRz, while, on
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the other hand, up is the class of terms such
that, given any one y of them, we have,
for every x of u, yRx; R is said to be
wncluded in R', RoR', if and only if, for
all z’s and y’s, 2Ry implies zR'y; and
R and R’ are equivalent when and only
when each of them includes the other; (2)
asserts that, given any R, there is a rela-
tion R'—ecalled the converse of B and de-
noted by R—such that xRy and yR'z are
equivalent functions; a relation R is said
to be symmeiric when and only when
R=E ; (8) affirms that, given any two
terms « and vy, there is between them a
relation that does not subsist between the
terms of any other pair of terms; the log-
ical sum, R,-R,, of two relations E, and
R, is a relation such that the proposition
z(R,~R,) is equivalent for all z’s and y’s
to the logical sum of the propositions R,y,
xR,y ; the logical product, R,-R,, is such
that (R, -R,)y is equivalent to the product
2R y.xR,y, for all z’s and y’s; if K be a
class of relations, their sum, _‘K, affirmed
by (4) to be a relation, is a class of rela-
tions such that, given any one B of them
and any pair z, ¥y for which zRy, there is
in K a relation R’ for which xRy, and that,
given any R’ of K and a pair z,y for which
zR'y, there is in the sum-class an R for
which «Ry; similarly the product, ~‘K
assumed by (5) to be a relation, is the
class of relations such that, B being any
one of them and z and ¥ being a pair for
which xRy, then, for every R’ of K, zR'y,
and conversely, if z and ¥ be a pair for
~which zR'y holds for every R’ of K, there
is in the product-class an R for which
zRy; R, and R, being relations, their rela-
tive product, R.R,, affirmed by (6) to be
a relation, is defined to be such that, if
zR.R,z, there is a ¥ for which zR,y and
yR,2, and that, if zR,y and yR,z, then
zR,R,2; R* means RR; a relation R is
transitive if and only if R? is included in
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R, that is, if the product of zRy and yRz
implies «Rz; B being a relation, its nega-
tive, — R, affirmed by (7) to be a relation,
is defined to be such that, z — Ry is true
or false aceording as xRy is false or true;
if y is a class of classes, their sum ‘y is
the class of terms « such that xéy;
diwersity, 0°, is defined to be the negative
of identity, so that 0°’=—1"; R is a umt-
form relation, N¢ - 1, when and only
when, whatever =z of p be given, there is
one and but one % for which zRy; R is a
couniform relation, 1 — N¢, when R is
uniform; R is a biuniform relation, 1 — 1,
when it is both uniform and eouniform.
Such are the chief of the concepts in the
superstructure of the logic of relations.
In the study of relations one is close to
reality. We do not say with Hegel ‘‘Das
Seyn ist das Nichts’’ but rather with Liotze
“‘Being consists in relations.”” The realm
of the thinkable is filled by a multidimen-
sional tissue of relations. These are finer
than gossamer but stronger than cables of
steel. Among the theorems of the general
theory the following, which are readily
proved by means of the symbolic machin-
ery, are cardinal. Each relation R has one
and but one converse relation R ; the con-
verse of the converse of a relation is equiv-

valent to the relation, that is, R=R; if
R,=R,, then §, = p,, and p, = p,, and, if
the latter two equivalences subsist, then
R,=R,; also, if R,=R,, then R, =R,;
the converse of the relative product
of two relations is equivalent to the
relative product of their converses re-
versed in order, that is (R:R2) =IV321§1 ;
if R is transitive and if xRz, there exists
a y such that Ry and yRz; the converse
of the negative of a relation is equivalent
to the negative of the converse of the rela-
tion; a null-class is included in every other
class; if, for every « in the domain p of
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R, zRy is equivalent to yez, then R==F¢;
if w and v are existent (not null) classes,
there exists a relation subsisting befween
every term of % and every term of v but
not between other two terms; if » is an
existent class, there exists a relation E such
that xR implies for every z both p=wu
and zeu, and, conversely, the product of
p=u and zeu implies zRu for every
z; identity is transitive; identity is
equivalent to its converse; the relative
product of identity by itself is equivalent
to identity; diversity is equivalent to the
converse of diversity; if R.R, is included
in diversity, so is R,R,, and conversely;
identity is biuniform; if a relation is bi-
uniform, so is its converse; if a relation is
couniform, the relative product of it and
its converse is included in but is not always
identical with identity; if two relations are
biuniform, so is their relative product;
given that R, and R, are uniform relations,
that v is a class included in p,, that pu is
included in p, and that B,R, = R, then the
two classes, p,(p,#t) and pu, are equivalent;
if B, is uniform and if RZ:-—RIEI, then
R, is transitive and symmetric; conversely,
if an existent relation R, 1s transitive and
symmetric, then there exists a uniform
relation R, such that RQ:RIRP

So striking as well as important is the
theorem last stated that I can not refrain
from presenting its demonstration, which
runs as follows: R, being given, p, is also
given: let # be a term of p,, and denote by
u the class p,z; let R, be such that zR,u
means Zep, and w=p,z; then, if yR,u,
Yep, and u = pyY == p,w; but, if xR,u and
yR,u, then, zR,R,y; and, as R, is transi-
tive and symmetric, «zR,y; hence, as
2R, R,y implies zR,y, R,R, is included in
R,; again, as R, is transitive and sym-
metrie, if zR,y then zepz, and so 2R,y
implies #Rpxr and yR,px, and hence im-
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plies xRIIvily ; hence R, is included in
R.R,; hence R,=R,R,; moreover, R, is
uniform, its codomain consisting of the
single term u. Hence the theorem.

As in the case of propositions and in that
of classes, so here, too, are valid the the-
orems of tautology, association, commuta-
tion, distribution and double negation:

R~R= R=R-R;
(BR~R)~R, = R ~(ER,),
(R~R,)-R,= R—-(R,-R,);
R~R,=E~R, E~E, = E-R,;
R~(R-R) = (E~R)-(R~R,),
R~(R,~R)) = (R~R)-(R~R,));
—(—R)=R.

Awhile ago I promised to ‘‘explicate’’
the thesis of modern logistie, to state it,
that is, explicitly in terms of the logical
primitives upon which as the sufficient
foundation it asserts that the entire body
of mathematics, both actual and potential,
stands as a superstructure. The primitives
in question have been given; so that, except
for a restatement of the thesis in terms of
them—which T shall omit as being now easy
and involving useless repetition—I may
claim to have done much more than fulfil
the promise; for I have given in addition
to the primitives, which were all that was
essential, a digest of modern logic. Indeed,
the concepts above defined and the theorems
above stated, though they are convention-
ally assigned to logic, are evidently, if the
thesis be true, genuine parts of mathe-
maties.

How is the thesis, if true, to be estab-
lished? Obviously not, in the ordinary
sense, as the conclusion of a syllogism.
No, it affirms that a certain thing can be
done, namely, that all definable mathe-
matical ideas and all mathematical theo-
rems are respectively definable and demon-
strable in terms of the primitives given.
The only way to show that the deed is
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performable is to perfrom it. Here noth-
ing can succeed except success. Happily
the procedure in question need not be ap-
plied to all mathematical concepts and
theorems but only to those—and they are
not so numerous—upon which, it is ad-
mitted, the remainder rest. Well, an ex-
amination of the volumes of the Revista
di Matematica and of its continuation, the
Revue de Mathematiques, will show that
the principal mathematical branches have
been successfully subjected to the treat-
ment in question, with reference, however,
to primitive-systems differing somewhat
from that above given. As for the latter
system, its adequacy to the demands of
the thesis has been shown by Russell in his
“Principles’”’ with approximate complete-
ness and with as much rigor as discourse,
mainly non-symbolic, can be reasonably
expected to attain. If, as is to be expected,
new branches of mathematics shall arise in
the days to come, though we can not be ab-
solutely certain, we may confidently ex-
pect that they will be congruous with
existing doctrines and will not demand a
radical change in foundations.

Process of Testing the Thesis Illustrated.
—The little time that remains to me for
this address, I shall devote to illustrating
by means of a few cardinal examples, the
procedure by which the thesis is justified.
And T shall begin with the concept of
cardinal number. Before defining cardinal
number of a class, we define what is meant
by sameness of cardinal number, or, better,
what is meant by saying this class and that
have the same cardinal number. Two
classes ¢ and b are said to have the same
cardinal number when there is a biuniform
relation, or, as we commonly phrase it, a
one-one correlation between them. A
slight change in the statement is necessary
to prove suitable for zero. Then the car-
dinal number of a class ¢ is defined to be
the class whose terms are the classes having
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each of them, according to the preceding
definition, the same cardinal number as a.
Thus with each class is associated a defi-
nite cardinal number. That of the null-
class is named zero and denoted by 0; that
of a singular class is called one and de-
noted by 1. Addition of cardinals is de-
finable in terms of logical addition of
classes: if ¢ and b be two disjoint classes
having respectively the numbers o and g,
the sum a -+ 8 is the number of the logical
sum (a class) ¢ + b of ¢ and b. If ¢ and
b are singular classes, the cardinal of their
sum may be named fwo and denoted by the
symbol 2, in which case 1 +1=2; and so
on. Mulitiplication of cardinals is also de-
fined in purely logical terms. This is done
by means of the concept (due to White-
head) of multiplicative class, which is itself
given in terms of logical constants: % be-
ing a class of disjoint classes, the multi-
plicative class of k is the class of all the
classes each of which contains one and but
one term of each class in %. Then the
product of the cardinal numbers of the
classes in % is defined to be the cardinal
number of the multiplicative class of k.
As multiplication and addition in eclass
logic are commutative, associative and dis-
tributive, it readily follows that these
laws are valid for cardinal numbers. In
the manner indicated the entire theory of
cardinals can be established. And thus it
appears—to refer again to an example be-
fore cited—that the foundation assumed
by Weierstrass for the theory of the real
variable is itself underlaid by a basis in
pure logie.

It is noteworthy that the foregoing con-
cept of cardinal is independent of the (as
yet undefined) notion called order and that
it equally comprises both finite and infinite
cardinals, the distinetion of finite and in-
finite being this: the cardinal number of a
class @ is infinite or finite according as @
is or is not such that there is a class b com-
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posed of some but not all of the terms of
o and having to ¢ a biuniform relation.
In respect to the finite cardinals, they
may be defined as follows, presenting them
in what, once order is defined, will be
called a series, 0, 1, 2, . . . Let zero (0) be
defined as above; let the cardinal next after
the cardinal n be defined to be the cardinal
n -+ 1; let N, the class of finite cardinals,
be defined to be the class of cardinals that
are contained in every class that contains
0 and contains n -1 if it contains n. It
remains then to show that the two defini-
tions of finite cardinals are equivalent, and
that can be done.

Cardinals, we have seen, are classes.
The ordinary rational numbers, or frae-
tions, are not classes, but are, as we shall
see, relations of finite cardinals. Let a
be any given finite cardinal, and let 2 and
y be any finite cardinals such that ze =y.
Denote by A the relation such that zAdy is
equivalent to za==y. Similarly, to any
finite cardinal n there corresponds a rela-
tion N whose domain and codomain are
respectively composed of all the finite car-
dinals z and v such that zn=y. If
ab=p and cd=p, that is, if ab==cd,
then aBp and ¢Dp, whence pbc, so that
aBDc. The relation Bﬁ, the relative prod-
uet of B and the converse of D, is named
rational number, or fraction, and denoted
by b/d. If ab=cd, it readily follows
that b/d==a/c. The rational n/1 is com-
monly denoted by m, but the rational =
and the cardinal » are radically different,
the former being a relation while the latter
is a class.

The cardinals and rationals are signless.
Like the rationals, positive and negative
integers and fractions are relations but
they are relations of a different type. Sup-
pose the finite cardinals arranged as by
their second definition above given. Let
R be such that 2Ry, £ and y being finite
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cardinals, means that, in the mentioned
arrangement, ¥ is the immediate successor
of z; then Ry means that y is the immedi-
ate predecessor of x. Tt is readily proved
that R» is the converse of (R)? or, what is
the same, of E?. The relations RB? and R
(p being a finite cardinal) are defined to
be the positive and negative integers fa-
miliarly denoted by 4+ p and — p respec-
tively. Thus to each finite ecardinal p
there corresponds a positive integer, -+ p,
and a negative integer, — p. If z, y and
p are finite cardinals, the propositions,
zR?y and x -} p=y, are equivalent; so,
too, are ml;?"y andy +p=zorz—p=1y.
Similarly if z be a rational number, and
if 4 and 2 stand for any two rational num-
bers so related that y -+ 2 =2, the relation
in question is denoted by - z; but if y
and z are so related that y —xz==¢, the
relation is denoted by — .

Before speaking of the ordinal number,
it is necessary to tell what is meant by say-
ing of a class that it is ordered or that its
terms are arranged in a series. This,
which is one of Russell’s most brilliant
achievements, was accomplished as follows.
I here but indicate the method and state
the result. The method was precisely that
of research in natural science, namely, he
collected together the various kinds of rela-
tion by which what is called order, whatever
order in its essence should turn out to be,
is generated. These relations, which he
found to belong to one or another of six
distinet types, turned out, upon penetra-
ting analysis, to be reducible to a single
type, namely, that of relations at once
transitive and asymmetric, an asymmetric
relation R being such that, if xRy, then
not yRz. The conclusion may be stated to

be that, a class being given, if there exist a
transitive asymmetric relation B such that,
z and y being any two whatever of its
terms, either 2Ry or else yRx, the class is
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thus arranged in a series; and that order
otherwise generable is generable by such a
relation. The result is of course subject to
such doubt as must always attend the
method employed, but its correctness seems
highly probable. It can be easily proved
that, given any three terms z, 4, 2 of an
open series, we have 2By and yEz, or ykz
and zRz or zRx and zRy, that is, one of
the three terms is between the other two;
and if the series be closed, like that of the
points of a circle, it can be rendered open
by cutting it—that is, by regarding it as
beginning (or ending) with some (any)
definite term.

‘We are now prepared to present the no-
tion of ordinal number. If, given two
series s, and s,, there subsist between them,
regarded as classes, a biuniform relation B
such that, @, and b, being any two terms
of s, and a, and b, their respective corre-
spondents (through R) in 8,, @, precedes
or follows b, according as a, precedes or
follows b,, then the series s; and s, are said
to be like. Plainly likeness is a transitive
and symmetric relation. Two like series
are said to have the same ordinal number
or the same order-type. Herewith ordinal
number, or order-type, of a series is yet not
defined. The definition is: the ordinal
number, or order-type, of a series s is the
class of all series like it. Or, defining like
relations to be such as generate like series,
we can define ordinal number, or order-
type, of a series-generating relation to be
the class (a relation by primitive propo-
sition) of series like it. The definition does
not distinguish finite and infinite and so ap-
plies to both. In case the terms of a series
constitute a finite class, the cardinal num-
ber of the class and the ordinal number of
the series obey the same laws and are com-
monly denoted by the same name and sym-
bol. Yet they are radically different no-

tions. For example, the cardinal three
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includes the class composed of @, b and ¢,
but not the series @, b and ¢ as such, while
the ordinal three includes the series but
not the class. On transition to infinites
the distinetion is foreed upon wus, for in-
finite cardinals obey, for example, the law
of commutation, while the infinite ordinals
do not.

I have time for but a single indication
pointing the way to the concept and theory
of real numbers, Consider, for example,
the two familiar classes: A, the class of
rationals less than 2; B, the class of ra-
tionals whose squares are less than 2. Each
of these classes possesses the properties:
(1) it does not contain all the rational
numbers; (2) it contains all the rational
numbers less than any one of its numbers;
(8) every number in it is less than some
other number in it. Any class of rationals
that has the three properties is named seg-
ment (of rationals). Given a segment s,
the class of rationals not belonging to s
may be called the cosegment of s. It is
found that the class of all segments admits
of a theory precisely isomorphic with that
of the real numbers as usually defined.
Hence the segments are named real num-
bers. Segments fall into two classes ac-
cording as their cosegments have or have
not a smallest rational. In the former case
the segment is called a rational real num-
ber. Thus segment A4 is the rational real
two or 2. In the other case, the segment
is called an drrational real number. Thus
segment B ig the irrational real commonly
denoted by V2. It is obvious that seg-
ments and reals might just as well be
defined by the relation greater than instead
of less than. The decisive advantage of the
foregoing definition, which makes no ap-
peal to the (as yet) undefined notion of
limst, is that it avoids the necessity of
assuming a limit where there is none, as
in case of class B.
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It is to be noted that in usage various
kinds of numbers are denoted by the same
symbol. This is due to the fact that cus-
tom antedates criticism. Thus 2 stands for
a cardinal (a class), for a positive integer
(a relation), for a rational number or frac-
tion (a relation), for an ordinal (a rela-
tion), and for a rational real (a class)—
neither the classes nor the relations being
of the same kind.

Passing now to the notion of the (linear)
continuum, it is to be defined in ordinal
terms and without the logically vicious
assumption often tacitly made that the
continuum to be defined is already im-
mersed in a continuum. The following
procedure is due to G. Cantor. Let 5
denote the order-type of series like that of
the rationals taken in so-called natural
order. Any series of this type has the
following properties, all of them ordinal:
(1) it is denumerable; (2) it has neither
beginning nor end; (3) it is compact. A
series of terms in a series of type 7 is said
to be fundamental if it is a progression,
that is, if it is like the series 1, 2, 3, ---;
and it is described as ascending or descend-
ing according as its terms follow one an-
other in the same sense (or direction) as
do these of the series % or in the reverse
sense. A term of a series is a limaf if it
immediately follows (or precedes) a class
of terms of the series and does not imme-
diately follow (or precede) any one assign-
able term of it. It follows that a funda-
mental series s of a series n has a limit if
in % there is a term that is first after or
first before all the terms of s according as
s is aseending or descending. A series is
said to be perfect if (1) all its fundamental
series have limits and (2) all its terms are
limits of fundamental series. It can be
proved that a series whose terms are terms
of a perfect series and which, besides being
denumerable, are so distributed that there
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is one between every two terms of the per-
fect series, is a series of type . We can
now define: a series 4 is continuous if it is
perfect and contains a denumerable class
of terms such that there is one of them
between every two terms of §. The defini-
tion is based upon the properties found to
characterize the series of real numbers from
0 inclusive to 1 inclusive.

The significance of what has been said is
by no means confined to analysis. Yet I
wish, in closing, to refer explicitly to geom-
etry. As a branch of mathematics, geom-
etry does not eclaim to be an accurate or
true description of actual or perceptual
space, whatever that may be. As for the
notion and the name of space, it does not
seem to be a modern discovery that they
are not essential to geometry, for, as Peano
has pointed out, neither the one nor the
other is to be found in the works either of
Euelid or of Archimedes. What, then, is
geometry? And how related to the thesis
of modern logistic? The answer must be
in terms of form and subject-matter. As
to form, geometry is, as Pieri has said and
by his great memoirs has done as much as
any one to show, a purely ‘‘hypothetico-
deductive’’ seience. It is true indeed that
in each of the postulate-systems—whether
those of Pieri or of Pasch or of Peano or
of Hilbert or of Veblen or of others—that
have recently been offered as basis for de-
seriptive or projective or metric geometry
or for any sub-division of those grand
divisions, there occurs at least one postulate
in categoriec form, as, for example, ‘‘there
exists at least one point’’—thus seeming to
assert or to imply that the geometry in
question, whatever variety it may be,
transeends the hypothetic character and
has in faet validity of an extra-theoretic
or external kind. Nevertheless, the seem-
ing is appearance only. What the geomet-
rician really asserts, and he asserts nothing
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else, is that, if there be terms, which he
calls points, and might as well call ‘‘roints’’
or ““raths’’ or ‘“‘“momes’’ or any other name
(what’s in a name?), that satisfy the given
postulates, then they satisfy certain propo-
sitions called theorems. The only existence
asserted by or in geometry is thus the exist-
ence of ecertain implications. As to subject-
matter, that of geometry, as Russell has, I
think, shown beyond a reasonable doubt, is
multiple series or, more radically, the rela-
tions by which such series are generated or
in which they extensionally consist.

I wish to add in closing that this address
had not been possible but for the far-reach-
ing researches and brilliant expositions of
Schroder, Russell and Couturat in the
works already cited. C. J. KevsER

CorLUMBIA UNIVERSITY

CHEMISTRY AT HARVARD UNIVERSITY

» TrE following letter has been prepared by
the committee of overseers to visit the chem-
ical laboratory of Harvard University and by
several others who are especially interested in
the subject:

HarvarpD UNIVERSITY is in urgent need of the
endowment of modern facilities for chemical in-
struction and research.

Some progress toward such an endowment has
already been made by the conditional offer of
contributions for the comstruction of a special
laboratory for research in physical and inorganic
chemistry, as a memorial to Wolcott Gibbs.

Wolcott Gibbs was a pioneer in scientific re-
search in the fleld of inorganic and physical chem-
istry, and for many years was considered the
foremost chemist of America. He died on Decem-
ber 9, 1908, in his eighty-seventh year. The
greater part of his useful life was spent as Rum-
ford professor at Harvard University, and it is
eminently fitting that any memorial to this great
and good man should take a form which would
further that branch of chemistry to which he had
devoted his splendid abilities.

_ This project forms a highly suitable beginning
of the much-needed endowment of modern facili-
ties for chemical
Harvard University, because in precise investiga-
tions of this kind Harvard is among the leading
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institutions of the world, Such work demands,
for its highest development, construction and
facilities superior to any now in existence; and
above all this laboratory should be designed for
research only, and separated from the rooms in
which elementary teaching is conducted. The new
building would also partially relieve the very dis-
advantageous and unhygienic condition of Boyls-
ton Hall, now one of the most crying evils in
Harvard University.

This Woleott Gibbs Memorial Laboratory would
form part of the group of several buildings neces-
sary for the adequate accommodation of the de-
partment of chemistry. The report of the Com-
mittee of Overseers to Visit the Chemical Labora-
tory contains a provisional plan of this projected
group, which offers a magnificent opportunity for
other large gifts. These would form dignified
memorials of benefactors or those named by them,
as well as permanent sources of usefulness to
Harvard and to America.

The report just mentioned calls attention to the
important role played by pure chemistry in almost
all departments of industrial science which con-
tribute towards the health and prosperity of man-
kind, and concludes:

“The last century has been a century of power,
by the perfection of machinery and the develop-
ment of electricity. The coming century promises
to be a chemical century. Should Harvard, if all
this be true, be content until it has obtained the
best chemical laboratory in the world?”

Towards the erection of the Woleott Gibbs Me-
morial Laboratory subscriptions of nearly $53,000
have already been made, most of them upon the
condition that $47,000 more be immediately se-
cured. Checks either for this fund or as contribu-
tions toward one of the other laboratory buildings
may be drawn to the order of Charles Francis
Adams, 2d, treasurer of Harvard College, 50 State
Street, Boston,

J. CoLriNs WARREN,

James M. CRAFTS,

Erinu THOMSON,

E. D. PEARCE,

CLIFFORD RICHARDSON,

CuaArrLEs H, W, FOSTER,

MORRIS LOEB, "7 HARRISON S. MORRIS,

A. LAWRENCE LOWELL, E. MALLINCKRODT, JR.,
Committee of the Overseers to Visit the

Chemical Laboratory

Cuaries W. Evior,
AILEXANDER AGASSIZ,
HeNrY P. WALCOTT,
Hexry L. HIGGINSON,
ALEXANDER COCHRANE,
FreEpERICK P, FISH,

President Lowell’s interest is emphatically
expressed in the following letter, which he
kindly permits to be published:



