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SPECIAL ARTICLE8 

NOTE ON THE FORMULAS FOR ENERGY STORED 1[N 
ELECTRIC AND MAGNETIC FIELDS 

CONSIDER Let i t  grow in a charged sphere. 
size. The potential decreases for the same 
charge as the radius increases. Hence the 
potential energy also decreases. The tubes of 
force, everywhere pulling the surface out 
toward infinity, are losing the potential energy 
of their stretched condition, and at  infinity 
they have closed up and the potential energy 
has disappeared from the potential state. 

We may then consider the energy as resi- 
ding, not in the sphere but in the dielectric 
outside, and that the amount of energy that 
disappears from the potential state at  each 
step is entirely in the spherical shell of the 
dielectric, which makes up the difference in  
voIume between the successive steps in the 
growth of the sphere. We have then, only to 
calculate the difference in potential energy for 
two slightly different radii of the sphere and 
divide by the volume of the spherical shell, 
and we shall have the density of the energy 
in the electric field. I t  is to be noted that the 
electric field a t  any point outside the sphere 
is unchanged by the growth of the sphere, 
since the number of tubes of force, and hence 
the amount of their crowding, depends only 
on the charge and not on the size of the 
sphere. 

Let r be the radius of the sphere, v the 
volume, e the charge, E the electric field, $ 
the potential, P the potential energy, the 
dielectric constant. 

By definition 3 is the work necessary to 
carry unit charge from infinity to the sphere, 
or 

which might have been written immediately, 
since the capacity of a sphere is r. Also by 
definition 

E =d$/dr  

We have also 

From (1) and (3), 

=d / d r  ( e / r )  =e /P .  

P =3$e. 

(2)  

( 3 )  

P =e2/2r. 

Differentiating, we get the change in potential 

energy due to a small change in  radius, 

the negative sign meaning a decrease in 
energy for an increase in radius. The volume 
of the shell is M d p , an& the lose of potential 
energy per em8is, by equation (2), 

Rence the energy in the dielectric is E3/8r 
ergs per em8. 

I f  E+ 1,the charge for the same $ and the 
same E is greater and we have to write a) and 
(a)instead of 3 and E in equations (1) and 
(2), to make them hold numerically. This 
followed through gives, finally, 

The expression for the energy in a magnetic 
field follows in exactly the same way; we have 
only to substitute m for e and H for E in the 
equations above. We may take a sphere of 
very great permeability as an isolated pole m. 
Should i t  seem clearer, this sphere may be 
thought of as the pole piece of a long magnet 
of infinitesimal diameter reaching to infinity, 
where the other pole piece forms another 
spherical shell. The tubes of force tend to 
shorten as in the electrostatic field, closing up 
when the sphere grows to infinite radius. 

The energy per emS comes out IT/~T. 
I f  all surrounding space is filled with a 

medium whose permeability is p instead of 1, 
the number of tubes for the same H is p timea 
as great. So, as before, we must use and 
(pH) in equations (1) and (2), which, traced 
through, give H(t"H)/8.rr ergs per emg. 

The first three derivations are rigorous, but 
awkward questions arise as to what the H and 
the B, in the last case, represent physically. 
Yet it can be made satisfactory by supposing 
that the long thin magnet is divided into two 
parts, one supplying B tubes of force, and the 
other supplying (p -1) H tubes, the former 
being rigidly magnetized. 

From the method of this derivation i t  fol- 
lows without additional proof that the tension 
a l o ~ g  the lines of force is numerically equal 
to the energy density. P. (X. AGNEW 
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