II III III Anorthite CaAlAlSi₂O₈.

In this series the valences of some of the individual elements vary, but their total and also the number of atoms in each compound are the same.

The galena group illustrates an isomorphous series in which the individual valences and the total number of atoms may both vary.

Galena .		• •	 •	•		•	•	•	•	•		•	• •	PbS
Argentite			 •				•				•	•	• •	$\stackrel{\mathrm{I}}{\mathrm{Ag}_2}\mathrm{S}.$

(For other examples of isomorphous series see Brauns's "Chemische Mineralogie," Arzruni's "Physikalische Chemie der Krystalle," and Groth's "Tabellarische Uebersicht der Mineralien," preferably the French edition of 1904.)

The similarity of beryl and benitoite is also to be noted by comparing their axial ratios. Both minerals crystallize in the hexagonal system.

Boryl									$\frac{\alpha}{1}$.	0 4989
Deryr	•••	•••	•••	•••	•••	••	••	•••		0.4000
Benitoite .	• •	•••	•••	• •	•••	••	••	•••	1:	0.4230.

The value for benitoite is one half of one of those suggested by Louderback and is, no doubt, to be considered only as approximate, since no data concerning the reliability of the readings are given.

It is well known that TiO_2 has either acidic or basic properties. In the case under consideration, the quantitative analysis simply reveals the presence of TiO_2 as such. As to whether it is acid or basic, depends upon which of these assumptions will allow of the simplest explanation and yet be in strict accord with the observed facts.

The similarity of the composition of beryl and benitoite indicates a metasilicate and that TiO_2 is to be considered basic in this instance. The metasilicates are very common in nature, which is not the case with the salts of $H_2Si_4O_9$, a derivative of the tetrasilicic acid $H_4Si_4O_{10}$, to which Louderback would refer benitoite. Up to the present time only one mineral, lorenzenite with the composition $Na_2(Ti, Zr)_2$ - Si_2O_9 , has been observed which can be referred to $H_2Si_4O_9$. In lorenzenite, Ti and Zr replace two atoms of silicon, but in benitoite, according to Louderback's interpretation, one atom of silicon would be replaced by titanium. Thus, in both cases, $H_2Si_4O_9$ is to be considered the basis. Hence, even though Louderback's interpretation be correct his statement, page 152, "Benitoite . . . stands in a class by itself, both as regards acid silicates and titanosilicates," needs to be modified.

In a very recent paper by Ralph Arnold,² it is pointed out that benitoite occurs in an area of basic rocks, such as serpentine and glaucophane schists. In fact, benitoite is found in cracks and cavities in the latter and is always associated with the hydrated basic metasilicate natrolite, $Na_2Al(AlO)$ - $(SiO_s)_s.2H_2O$. According to Arnold, benitoite may have crystallized before the natrolite, but some occurrences seem to indicate that probably the crystallization of these minerals was practically contemporaneous.

Therefore, the interpretation suggested above, which is based (1) upon the similarity of the chemical composition and axial ratios of beryl and benitoite; (2) upon the fact that TiO_{a} may act as a base; (3) that benitoite occurs in an area of basic rocks, and (4) is always associated with the hydrated basic metasilicate, natrolite, seems amply justified. Accordingly, from what has been published, benitoite is not to be considered "a very acid titanosilicate of barium," but rather a metasilicate of barium and titanium.

EDWARD H. KRAUS

MINERALOGICAL LABORATORY, UNIVERSITY OF MICHIGAN

SOME PHYSICAL CHARACTERISTICS OF COLLEGE STUDENTS¹

A PHYSICAL examination is required of all freshmen in Columbia College and the Schools of Applied Science during the first month of the academic year. The examination includes ² "Notes on the Occurrence of the Recently Described Gem Mineral, Benitoite," by Ralph Arnold, SCIENCE, N. S., Vol. XXVII., pp. 312–314, 1908.

¹Read before the New York Academy of Sciences, Section of Anthropology and Psychology, on October 28, 1907. a record of personal and family history, 31 measurements, 7 strength tests, vision and hearing tests, condition of skin, heart, lungs, nose, throat, teeth and of any abnormalities of spine, shoulders, chest, feet, etc.

The main purpose of these examinations is to help the medical director in guiding and advising each student in matters of physical exercise and hygienic living. The data collected are of interest to the physician and the anthropologist by showing the occurrence of various abnormalities and physical characteristics in healthy young men.

AVERAGE MEASUREMENTS OF 790 COLUMBIA STUDENTS 17, 18 AND 19 YEARS OLD

	an.	A	verage	s	cam.
	irst Ex:	206 cudents	317 cudents	267 sudents	cond Ea
	Щ 	<u></u>		<u></u>	x
Date Age	•••••	17.5	18.1	19	••••••
Weight		58.29	58.26	60.32	
Stretch of Arms		177.56	118 1.1	178 261	•••••
Height Standing		171	171 21	171.61	
Height Sitting			\$11.11	101 1	
Length of Trunk		63 67	63 9	64 63	
Girth of Neek		22 5	22 70	24 97	•••••
Ginth of Union Chost Deven		04 44	95 09	06 17	•••••
Ginth of Unnor Chest Actor		04,44	00.00	00.17	•••••
Expiration		81	81.07	8 2 .23	
Inspiration		89 53	90.06	91.2	
Girth of Low r Chast - Barrow		78 9	79	70 7	•••••
Girth of Lower Chest. After		10.2			•••••
Expiration		76.17	76,94	77.52	
Inspiration		84 52	84.96	85.94	
Girth of Waist		69.5	69.86	71 00	•••••
Girth of Right Upper Arm		24 54	25 14	25.4	•••••
Girth of Right Upper Arm		21.01	20.11	20.1	•••••
Girth of Bight Foregrm-		27.75	28.24	28.8	
Contracted		95 7	26	26.5	
Girth of Left Upper Arm		20.1	24 5	25.1	•••••
Girth of Left Upper Arm-	•••••	24.14	24.0	20.1	•••••
Girth of Left Forearm-Con-	••••••	27.10	27.00	20.2	•••••
tracted		24.97	25.32	25.67	
Girth of Right Thigh	•••••	49.76	50	50.77	
Girth of Right Calf		33.2	33.35	33.76	
Girth of Left Thigh		49.54	49.78	50.48	
Girth of Left Calf		33.14	33.33	33.7	
Depth of Chest-Repose		18.41	18.57	18.64	
Depth of Abdomen		17.3	17.32	17.4	
Depth of Head		19.35	19.33	19.42	
Breadth of Head		15.35	15.39	15.43	
Breadth of Shoulders		39.38	39.55	40.04	
Breadth of Chest-Repose		25.57	25.58	25.9	
Breadth of Waist		24.74	24.75	25.15	
Breadth of Hips	'	°1.88	31.98	32.3	
Capacity of Links		1.15	401.2	406.4	
Strength of Light Longin	·	1.4	47.54	50.84	
Strength of Left Forearm		40.95	43 22	45 2	
Strength of Back	.	101.75	138.95	144.0	1
Strength of Legs		211.8	231.1	235 8	
Strength of Upper Arms			1		
(Push Up)	.	4,39	5.43	5.9	
Strength of Upper Arms	1	1		1	
(Pull Up)		5.46	6.22	7.0	
Total Strength		508.68	549.22	577.5	1

The occurrence of flat foot and weak foot appears to be increasing from year to year, as shown in the following table.

ABNORMALITIES OF THE FEET

Class of	Class of
1910, 364	1911, 805
Students	Students
Per Cent.	Per Cent.
Normal feet 61.2	48.2
Both feet flat 15.4	16.9
Both feet weak 20.4	29.5
One foot weak 1.8	3.6
One foot weak and one flat 0.9	1.7

The following table shows the occurrence of abnormalities of the spine. More than 95 per cent. of the abnormalities recorded in this table were postural and not pathological.

ABNORMALITIES OF THE SPINE

Class of	Class of
1910, 365	1911, 305
Students	Students
Per Cent.	Per Cent.
Normal spine 18.3	15.4
Kyphosis (round back) 17.3	18.0
Lordosis (hollow back) 12.6	12.1
Scoliosis (lateral curvature) 6.6	4.0
All three abnormalities combined 15.6	13.7
Kyphosis and lord sis 20.5	29.0
Kyphosis and scoliosis 4.6	3.6
Lordosis and scoliosis 4.4	4.2
Scoliosis alone or combined 31.2	25.5

The nationality of the students is of interest in connection with the above data.

BIRTHPLACE OF 283 STUDENTS IN THE CLASS OF 1911

	Per
	Cent
United States 240	84.8
Russia 14	4.9
Canada 5	1.8
Austria 4	1.4
Roumania 3	1.0
West Indies 3	1.0
Italy 3	1.0
Hungary 3	1.0
England 2	
Scotland 1	
India 1	
China 1	
Germany 1	
South America 1	
Japan 1	

NATIONALITY OF PARENTS OF 288 STUDENTS Per.

		Cent
American (both parents)	100	34.7
German (both parents)	57	20.0
British (both parents)	33	11.5
Hebrew (both parents)	20	6.9
Russian and Pole (both parents)	16	5.5
Hungarian (both parents)	4	1.4
Italian (both parents)	3	1.0
Latin-American (both parents)	3	1.0
French (both parents)	2	
Scandinavian (both parents)	2	
Chinese (both parents)	1	
Japanese (both parents)	1	
Roumanian (both parents)	1	
Bohemian (both parents)	1	
American and foreign	12	4.1
Mixed foreign	19	6.6
Three or more nationalities represent-		
ed in parents and grandparents	13	4.5
G. 1	i. Me	EYLAN

THE AMERICAN FEDERATION OF TEACH-ERS OF THE MATHEMATICAL AND THE NATURAL SCIENCES

GENERAL STATEMENT OF THE POLICY

THE officers of the federation deem it advisable to make the following brief statement of plans and policy, for the information of associations which may be interested in joining the organization.

The general purpose of the federation is to increase the efficiency of the federated (local) associations by bringing each of them into helpful cooperative relations with others that are working along similar lines in other parts of the country, and with the new Section L on Education of the American Association for the Advancement of Science.

The work of the federation through its officers and committees is expected in the near future to be developed along the following principal lines:

As a clearing house for the federated societies the federation will undertake to collect and to keep up-to-date information in regard to the work and the publications of these societies, and to aid as opportunity offers in the formation of new societies when needed.

As a publishing agency the federation will systematically print such of this information as may be of general interest in simple bulletins or in reports in scientific periodicals. Each federated society will be furnished with a list of the principal papers published in its field, and available to its members by purchase or exchange.

As a cooperative organization the federation will from time to time, of its own initiative or at the instance of a particular society, propose questions of general interest for the consideration of the federated societies, or appoint committees on questions of national scope in the teaching of science.

In relations with national societies, such as, for example, the American Association for the Advancement of Science, the National Educational Association, the National Society for the Promotion of Industrial Education, etc., the federation will endeavor to secure due recognition of the interests of the associations composing it, and of the great body of teachers of science.

At its Chicago meeting the American Association for the Advancement of Science showed its interest in and approval of the movement by affiliating the new federation with itself, and then extending to members of the federated associations the opportunity of joining the association without the usual initiation fee.

In general, the federation is expected in the future development of its policy to promote the advancement and improvement of science teaching in whatever manner may seem wise under the restrictions fundamental to its organization, which leave entire freedom of action to the federated associations, and which contemplate the transaction of federation business mainly